diff options
Diffstat (limited to 'tests/fstar/demo')
-rw-r--r-- | tests/fstar/demo/Primitives.fst | 405 |
1 files changed, 0 insertions, 405 deletions
diff --git a/tests/fstar/demo/Primitives.fst b/tests/fstar/demo/Primitives.fst deleted file mode 100644 index e9391834..00000000 --- a/tests/fstar/demo/Primitives.fst +++ /dev/null @@ -1,405 +0,0 @@ -/// This file lists primitive and assumed functions and types -module Primitives -open FStar.Mul -open FStar.List.Tot - -#set-options "--z3rlimit 15 --fuel 0 --ifuel 1" - -(*** Utilities *) -val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) : - ls':list a{ - length ls' = length ls /\ - index ls' i == x - } -#push-options "--fuel 1" -let rec list_update #a ls i x = - match ls with - | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x -#pop-options - -(*** Result *) -type error : Type0 = -| Failure -| OutOfFuel - -type result (a : Type0) : Type0 = -| Return : v:a -> result a -| Fail : e:error -> result a - -// Monadic return operator -unfold let return (#a : Type0) (x : a) : result a = Return x - -// Monadic bind operator. -// Allows to use the notation: -// ``` -// let* x = y in -// ... -// ``` -unfold let (let*) (#a #b : Type0) (m: result a) - (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) : - result b = - match m with - | Return x -> f x - | Fail e -> Fail e - -// Monadic assert(...) -let massert (b:bool) : result unit = if b then Return () else Fail Failure - -// Normalize and unwrap a successful result (used for globals). -let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x - -(*** Misc *) -type char = FStar.Char.char -type string = string - -let is_zero (n: nat) : bool = n = 0 -let decrease (n: nat{n > 0}) : nat = n - 1 - -let mem_replace_fwd (a : Type0) (x : a) (y : a) : a = x -let mem_replace_back (a : Type0) (x : a) (y : a) : a = y - -(*** Scalars *) -/// Rem.: most of the following code was partially generated - -let isize_min : int = -9223372036854775808 // TODO: should be opaque -let isize_max : int = 9223372036854775807 // TODO: should be opaque -let i8_min : int = -128 -let i8_max : int = 127 -let i16_min : int = -32768 -let i16_max : int = 32767 -let i32_min : int = -2147483648 -let i32_max : int = 2147483647 -let i64_min : int = -9223372036854775808 -let i64_max : int = 9223372036854775807 -let i128_min : int = -170141183460469231731687303715884105728 -let i128_max : int = 170141183460469231731687303715884105727 -let usize_min : int = 0 -let usize_max : int = 4294967295 // TODO: should be opaque -let u8_min : int = 0 -let u8_max : int = 255 -let u16_min : int = 0 -let u16_max : int = 65535 -let u32_min : int = 0 -let u32_max : int = 4294967295 -let u64_min : int = 0 -let u64_max : int = 18446744073709551615 -let u128_min : int = 0 -let u128_max : int = 340282366920938463463374607431768211455 - -type scalar_ty = -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -let scalar_min (ty : scalar_ty) : int = - match ty with - | Isize -> isize_min - | I8 -> i8_min - | I16 -> i16_min - | I32 -> i32_min - | I64 -> i64_min - | I128 -> i128_min - | Usize -> usize_min - | U8 -> u8_min - | U16 -> u16_min - | U32 -> u32_min - | U64 -> u64_min - | U128 -> u128_min - -let scalar_max (ty : scalar_ty) : int = - match ty with - | Isize -> isize_max - | I8 -> i8_max - | I16 -> i16_max - | I32 -> i32_max - | I64 -> i64_max - | I128 -> i128_max - | Usize -> usize_max - | U8 -> u8_max - | U16 -> u16_max - | U32 -> u32_max - | U64 -> u64_max - | U128 -> u128_max - -type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty} - -let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) = - if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure - -let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x) - -let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (x / y) else Fail Failure - -/// The remainder operation -let int_rem (x : int) (y : int{y <> 0}) : int = - if x >= 0 then (x % y) else -(x % y) - -(* Checking consistency with Rust *) -let _ = assert_norm(int_rem 1 2 = 1) -let _ = assert_norm(int_rem (-1) 2 = -1) -let _ = assert_norm(int_rem 1 (-2) = 1) -let _ = assert_norm(int_rem (-1) (-2) = -1) - -let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure - -let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x + y) - -let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x - y) - -let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x * y) - -(** Cast an integer from a [src_ty] to a [tgt_ty] *) -// TODO: check the semantics of casts in Rust -let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) = - mk_scalar tgt_ty x - -/// The scalar types -type isize : eqtype = scalar Isize -type i8 : eqtype = scalar I8 -type i16 : eqtype = scalar I16 -type i32 : eqtype = scalar I32 -type i64 : eqtype = scalar I64 -type i128 : eqtype = scalar I128 -type usize : eqtype = scalar Usize -type u8 : eqtype = scalar U8 -type u16 : eqtype = scalar U16 -type u32 : eqtype = scalar U32 -type u64 : eqtype = scalar U64 -type u128 : eqtype = scalar U128 - - -let core_isize_min : isize = isize_min -let core_isize_max : isize = isize_max -let core_i8_min : i8 = i8_min -let core_i8_max : i8 = i8_max -let core_i16_min : i16 = i16_min -let core_i16_max : i16 = i16_max -let core_i32_min : i32 = i32_min -let core_i32_max : i32 = i32_max -let core_i64_min : i64 = i64_min -let core_i64_max : i64 = i64_max -let core_i128_min : i128 = i128_min -let core_i128_max : i128 = i128_max - -let core_usize_min : usize = usize_min -let core_usize_max : usize = usize_max -let core_u8_min : u8 = u8_min -let core_u8_max : u8 = u8_max -let core_u16_min : u16 = u16_min -let core_u16_max : u16 = u16_max -let core_u32_min : u32 = u32_min -let core_u32_max : u32 = u32_max -let core_u64_min : u64 = u64_min -let core_u64_max : u64 = u64_max -let core_u128_min : u128 = u128_min -let core_u128_max : u128 = u128_max - -/// Negation -let isize_neg = scalar_neg #Isize -let i8_neg = scalar_neg #I8 -let i16_neg = scalar_neg #I16 -let i32_neg = scalar_neg #I32 -let i64_neg = scalar_neg #I64 -let i128_neg = scalar_neg #I128 - -/// Division -let isize_div = scalar_div #Isize -let i8_div = scalar_div #I8 -let i16_div = scalar_div #I16 -let i32_div = scalar_div #I32 -let i64_div = scalar_div #I64 -let i128_div = scalar_div #I128 -let usize_div = scalar_div #Usize -let u8_div = scalar_div #U8 -let u16_div = scalar_div #U16 -let u32_div = scalar_div #U32 -let u64_div = scalar_div #U64 -let u128_div = scalar_div #U128 - -/// Remainder -let isize_rem = scalar_rem #Isize -let i8_rem = scalar_rem #I8 -let i16_rem = scalar_rem #I16 -let i32_rem = scalar_rem #I32 -let i64_rem = scalar_rem #I64 -let i128_rem = scalar_rem #I128 -let usize_rem = scalar_rem #Usize -let u8_rem = scalar_rem #U8 -let u16_rem = scalar_rem #U16 -let u32_rem = scalar_rem #U32 -let u64_rem = scalar_rem #U64 -let u128_rem = scalar_rem #U128 - -/// Addition -let isize_add = scalar_add #Isize -let i8_add = scalar_add #I8 -let i16_add = scalar_add #I16 -let i32_add = scalar_add #I32 -let i64_add = scalar_add #I64 -let i128_add = scalar_add #I128 -let usize_add = scalar_add #Usize -let u8_add = scalar_add #U8 -let u16_add = scalar_add #U16 -let u32_add = scalar_add #U32 -let u64_add = scalar_add #U64 -let u128_add = scalar_add #U128 - -/// Substraction -let isize_sub = scalar_sub #Isize -let i8_sub = scalar_sub #I8 -let i16_sub = scalar_sub #I16 -let i32_sub = scalar_sub #I32 -let i64_sub = scalar_sub #I64 -let i128_sub = scalar_sub #I128 -let usize_sub = scalar_sub #Usize -let u8_sub = scalar_sub #U8 -let u16_sub = scalar_sub #U16 -let u32_sub = scalar_sub #U32 -let u64_sub = scalar_sub #U64 -let u128_sub = scalar_sub #U128 - -/// Multiplication -let isize_mul = scalar_mul #Isize -let i8_mul = scalar_mul #I8 -let i16_mul = scalar_mul #I16 -let i32_mul = scalar_mul #I32 -let i64_mul = scalar_mul #I64 -let i128_mul = scalar_mul #I128 -let usize_mul = scalar_mul #Usize -let u8_mul = scalar_mul #U8 -let u16_mul = scalar_mul #U16 -let u32_mul = scalar_mul #U32 -let u64_mul = scalar_mul #U64 -let u128_mul = scalar_mul #U128 - -(*** Range *) -type range (a : Type0) = { - start : a; - end_ : a; -} - -(*** Array *) -type array (a : Type0) (n : usize) = s:list a{length s = n} - -// We tried putting the normalize_term condition as a refinement on the list -// but it didn't work. It works with the requires clause. -let mk_array (a : Type0) (n : usize) - (l : list a) : - Pure (array a n) - (requires (normalize_term(FStar.List.Tot.length l) = n)) - (ensures (fun _ -> True)) = - normalize_term_spec (FStar.List.Tot.length l); - l - -let array_index_shared (a : Type0) (n : usize) (x : array a n) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let array_index_mut_fwd (a : Type0) (n : usize) (x : array a n) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let array_index_mut_back (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -(*** Slice *) -type slice (a : Type0) = s:list a{length s <= usize_max} - -let slice_len (a : Type0) (s : slice a) : usize = length s - -let slice_index_shared (a : Type0) (x : slice a) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let slice_index_mut_fwd (a : Type0) (x : slice a) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let slice_index_mut_back (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -(*** Subslices *) - -let array_to_slice_shared (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x -let array_to_slice_mut_fwd (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x -let array_to_slice_mut_back (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) = - if length s = n then Return s - else Fail Failure - -// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *) -let array_subslice_shared (a : Type0) (n : usize) (x : array a n) (r : range usize) : result (slice a) = - admit() - -let array_subslice_mut_fwd (a : Type0) (n : usize) (x : array a n) (r : range usize) : result (slice a) = - admit() - -let array_subslice_mut_back (a : Type0) (n : usize) (x : array a n) (r : range usize) (ns : slice a) : result (array a n) = - admit() - -let array_repeat (a : Type0) (n : usize) (x : a) : array a n = - admit() - -let slice_subslice_shared (a : Type0) (x : slice a) (r : range usize) : result (slice a) = - admit() - -let slice_subslice_mut_fwd (a : Type0) (x : slice a) (r : range usize) : result (slice a) = - admit() - -let slice_subslice_mut_back (a : Type0) (x : slice a) (r : range usize) (ns : slice a) : result (slice a) = - admit() - -(*** Vector *) -type vec (a : Type0) = v:list a{length v <= usize_max} - -let vec_new (a : Type0) : vec a = assert_norm(length #a [] == 0); [] -let vec_len (a : Type0) (v : vec a) : usize = length v - -// The **forward** function shouldn't be used -let vec_push_fwd (a : Type0) (v : vec a) (x : a) : unit = () -let vec_push_back (a : Type0) (v : vec a) (x : a) : - Pure (result (vec a)) - (requires True) - (ensures (fun res -> - match res with - | Fail e -> e == Failure - | Return v' -> length v' = length v + 1)) = - if length v < usize_max then begin - (**) assert_norm(length [x] == 1); - (**) append_length v [x]; - (**) assert(length (append v [x]) = length v + 1); - Return (append v [x]) - end - else Fail Failure - -// The **forward** function shouldn't be used -let vec_insert_fwd (a : Type0) (v : vec a) (i : usize) (x : a) : result unit = - if i < length v then Return () else Fail Failure -let vec_insert_back (a : Type0) (v : vec a) (i : usize) (x : a) : result (vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -// The **backward** function shouldn't be used -let vec_index_fwd (a : Type0) (v : vec a) (i : usize) : result a = - if i < length v then Return (index v i) else Fail Failure -let vec_index_back (a : Type0) (v : vec a) (i : usize) (x : a) : result unit = - if i < length v then Return () else Fail Failure - -let vec_index_mut_fwd (a : Type0) (v : vec a) (i : usize) : result a = - if i < length v then Return (index v i) else Fail Failure -let vec_index_mut_back (a : Type0) (v : vec a) (i : usize) (nx : a) : result (vec a) = - if i < length v then Return (list_update v i nx) else Fail Failure |