summaryrefslogtreecommitdiff
path: root/tests/fstar/demo
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--tests/fstar/demo/Primitives.fst405
1 files changed, 405 insertions, 0 deletions
diff --git a/tests/fstar/demo/Primitives.fst b/tests/fstar/demo/Primitives.fst
new file mode 100644
index 00000000..e9391834
--- /dev/null
+++ b/tests/fstar/demo/Primitives.fst
@@ -0,0 +1,405 @@
+/// This file lists primitive and assumed functions and types
+module Primitives
+open FStar.Mul
+open FStar.List.Tot
+
+#set-options "--z3rlimit 15 --fuel 0 --ifuel 1"
+
+(*** Utilities *)
+val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) :
+ ls':list a{
+ length ls' = length ls /\
+ index ls' i == x
+ }
+#push-options "--fuel 1"
+let rec list_update #a ls i x =
+ match ls with
+ | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x
+#pop-options
+
+(*** Result *)
+type error : Type0 =
+| Failure
+| OutOfFuel
+
+type result (a : Type0) : Type0 =
+| Return : v:a -> result a
+| Fail : e:error -> result a
+
+// Monadic return operator
+unfold let return (#a : Type0) (x : a) : result a = Return x
+
+// Monadic bind operator.
+// Allows to use the notation:
+// ```
+// let* x = y in
+// ...
+// ```
+unfold let (let*) (#a #b : Type0) (m: result a)
+ (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) :
+ result b =
+ match m with
+ | Return x -> f x
+ | Fail e -> Fail e
+
+// Monadic assert(...)
+let massert (b:bool) : result unit = if b then Return () else Fail Failure
+
+// Normalize and unwrap a successful result (used for globals).
+let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x
+
+(*** Misc *)
+type char = FStar.Char.char
+type string = string
+
+let is_zero (n: nat) : bool = n = 0
+let decrease (n: nat{n > 0}) : nat = n - 1
+
+let mem_replace_fwd (a : Type0) (x : a) (y : a) : a = x
+let mem_replace_back (a : Type0) (x : a) (y : a) : a = y
+
+(*** Scalars *)
+/// Rem.: most of the following code was partially generated
+
+let isize_min : int = -9223372036854775808 // TODO: should be opaque
+let isize_max : int = 9223372036854775807 // TODO: should be opaque
+let i8_min : int = -128
+let i8_max : int = 127
+let i16_min : int = -32768
+let i16_max : int = 32767
+let i32_min : int = -2147483648
+let i32_max : int = 2147483647
+let i64_min : int = -9223372036854775808
+let i64_max : int = 9223372036854775807
+let i128_min : int = -170141183460469231731687303715884105728
+let i128_max : int = 170141183460469231731687303715884105727
+let usize_min : int = 0
+let usize_max : int = 4294967295 // TODO: should be opaque
+let u8_min : int = 0
+let u8_max : int = 255
+let u16_min : int = 0
+let u16_max : int = 65535
+let u32_min : int = 0
+let u32_max : int = 4294967295
+let u64_min : int = 0
+let u64_max : int = 18446744073709551615
+let u128_min : int = 0
+let u128_max : int = 340282366920938463463374607431768211455
+
+type scalar_ty =
+| Isize
+| I8
+| I16
+| I32
+| I64
+| I128
+| Usize
+| U8
+| U16
+| U32
+| U64
+| U128
+
+let scalar_min (ty : scalar_ty) : int =
+ match ty with
+ | Isize -> isize_min
+ | I8 -> i8_min
+ | I16 -> i16_min
+ | I32 -> i32_min
+ | I64 -> i64_min
+ | I128 -> i128_min
+ | Usize -> usize_min
+ | U8 -> u8_min
+ | U16 -> u16_min
+ | U32 -> u32_min
+ | U64 -> u64_min
+ | U128 -> u128_min
+
+let scalar_max (ty : scalar_ty) : int =
+ match ty with
+ | Isize -> isize_max
+ | I8 -> i8_max
+ | I16 -> i16_max
+ | I32 -> i32_max
+ | I64 -> i64_max
+ | I128 -> i128_max
+ | Usize -> usize_max
+ | U8 -> u8_max
+ | U16 -> u16_max
+ | U32 -> u32_max
+ | U64 -> u64_max
+ | U128 -> u128_max
+
+type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty}
+
+let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) =
+ if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure
+
+let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x)
+
+let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
+ if y <> 0 then mk_scalar ty (x / y) else Fail Failure
+
+/// The remainder operation
+let int_rem (x : int) (y : int{y <> 0}) : int =
+ if x >= 0 then (x % y) else -(x % y)
+
+(* Checking consistency with Rust *)
+let _ = assert_norm(int_rem 1 2 = 1)
+let _ = assert_norm(int_rem (-1) 2 = -1)
+let _ = assert_norm(int_rem 1 (-2) = 1)
+let _ = assert_norm(int_rem (-1) (-2) = -1)
+
+let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
+ if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure
+
+let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
+ mk_scalar ty (x + y)
+
+let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
+ mk_scalar ty (x - y)
+
+let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
+ mk_scalar ty (x * y)
+
+(** Cast an integer from a [src_ty] to a [tgt_ty] *)
+// TODO: check the semantics of casts in Rust
+let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) =
+ mk_scalar tgt_ty x
+
+/// The scalar types
+type isize : eqtype = scalar Isize
+type i8 : eqtype = scalar I8
+type i16 : eqtype = scalar I16
+type i32 : eqtype = scalar I32
+type i64 : eqtype = scalar I64
+type i128 : eqtype = scalar I128
+type usize : eqtype = scalar Usize
+type u8 : eqtype = scalar U8
+type u16 : eqtype = scalar U16
+type u32 : eqtype = scalar U32
+type u64 : eqtype = scalar U64
+type u128 : eqtype = scalar U128
+
+
+let core_isize_min : isize = isize_min
+let core_isize_max : isize = isize_max
+let core_i8_min : i8 = i8_min
+let core_i8_max : i8 = i8_max
+let core_i16_min : i16 = i16_min
+let core_i16_max : i16 = i16_max
+let core_i32_min : i32 = i32_min
+let core_i32_max : i32 = i32_max
+let core_i64_min : i64 = i64_min
+let core_i64_max : i64 = i64_max
+let core_i128_min : i128 = i128_min
+let core_i128_max : i128 = i128_max
+
+let core_usize_min : usize = usize_min
+let core_usize_max : usize = usize_max
+let core_u8_min : u8 = u8_min
+let core_u8_max : u8 = u8_max
+let core_u16_min : u16 = u16_min
+let core_u16_max : u16 = u16_max
+let core_u32_min : u32 = u32_min
+let core_u32_max : u32 = u32_max
+let core_u64_min : u64 = u64_min
+let core_u64_max : u64 = u64_max
+let core_u128_min : u128 = u128_min
+let core_u128_max : u128 = u128_max
+
+/// Negation
+let isize_neg = scalar_neg #Isize
+let i8_neg = scalar_neg #I8
+let i16_neg = scalar_neg #I16
+let i32_neg = scalar_neg #I32
+let i64_neg = scalar_neg #I64
+let i128_neg = scalar_neg #I128
+
+/// Division
+let isize_div = scalar_div #Isize
+let i8_div = scalar_div #I8
+let i16_div = scalar_div #I16
+let i32_div = scalar_div #I32
+let i64_div = scalar_div #I64
+let i128_div = scalar_div #I128
+let usize_div = scalar_div #Usize
+let u8_div = scalar_div #U8
+let u16_div = scalar_div #U16
+let u32_div = scalar_div #U32
+let u64_div = scalar_div #U64
+let u128_div = scalar_div #U128
+
+/// Remainder
+let isize_rem = scalar_rem #Isize
+let i8_rem = scalar_rem #I8
+let i16_rem = scalar_rem #I16
+let i32_rem = scalar_rem #I32
+let i64_rem = scalar_rem #I64
+let i128_rem = scalar_rem #I128
+let usize_rem = scalar_rem #Usize
+let u8_rem = scalar_rem #U8
+let u16_rem = scalar_rem #U16
+let u32_rem = scalar_rem #U32
+let u64_rem = scalar_rem #U64
+let u128_rem = scalar_rem #U128
+
+/// Addition
+let isize_add = scalar_add #Isize
+let i8_add = scalar_add #I8
+let i16_add = scalar_add #I16
+let i32_add = scalar_add #I32
+let i64_add = scalar_add #I64
+let i128_add = scalar_add #I128
+let usize_add = scalar_add #Usize
+let u8_add = scalar_add #U8
+let u16_add = scalar_add #U16
+let u32_add = scalar_add #U32
+let u64_add = scalar_add #U64
+let u128_add = scalar_add #U128
+
+/// Substraction
+let isize_sub = scalar_sub #Isize
+let i8_sub = scalar_sub #I8
+let i16_sub = scalar_sub #I16
+let i32_sub = scalar_sub #I32
+let i64_sub = scalar_sub #I64
+let i128_sub = scalar_sub #I128
+let usize_sub = scalar_sub #Usize
+let u8_sub = scalar_sub #U8
+let u16_sub = scalar_sub #U16
+let u32_sub = scalar_sub #U32
+let u64_sub = scalar_sub #U64
+let u128_sub = scalar_sub #U128
+
+/// Multiplication
+let isize_mul = scalar_mul #Isize
+let i8_mul = scalar_mul #I8
+let i16_mul = scalar_mul #I16
+let i32_mul = scalar_mul #I32
+let i64_mul = scalar_mul #I64
+let i128_mul = scalar_mul #I128
+let usize_mul = scalar_mul #Usize
+let u8_mul = scalar_mul #U8
+let u16_mul = scalar_mul #U16
+let u32_mul = scalar_mul #U32
+let u64_mul = scalar_mul #U64
+let u128_mul = scalar_mul #U128
+
+(*** Range *)
+type range (a : Type0) = {
+ start : a;
+ end_ : a;
+}
+
+(*** Array *)
+type array (a : Type0) (n : usize) = s:list a{length s = n}
+
+// We tried putting the normalize_term condition as a refinement on the list
+// but it didn't work. It works with the requires clause.
+let mk_array (a : Type0) (n : usize)
+ (l : list a) :
+ Pure (array a n)
+ (requires (normalize_term(FStar.List.Tot.length l) = n))
+ (ensures (fun _ -> True)) =
+ normalize_term_spec (FStar.List.Tot.length l);
+ l
+
+let array_index_shared (a : Type0) (n : usize) (x : array a n) (i : usize) : result a =
+ if i < length x then Return (index x i)
+ else Fail Failure
+
+let array_index_mut_fwd (a : Type0) (n : usize) (x : array a n) (i : usize) : result a =
+ if i < length x then Return (index x i)
+ else Fail Failure
+
+let array_index_mut_back (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) =
+ if i < length x then Return (list_update x i nx)
+ else Fail Failure
+
+(*** Slice *)
+type slice (a : Type0) = s:list a{length s <= usize_max}
+
+let slice_len (a : Type0) (s : slice a) : usize = length s
+
+let slice_index_shared (a : Type0) (x : slice a) (i : usize) : result a =
+ if i < length x then Return (index x i)
+ else Fail Failure
+
+let slice_index_mut_fwd (a : Type0) (x : slice a) (i : usize) : result a =
+ if i < length x then Return (index x i)
+ else Fail Failure
+
+let slice_index_mut_back (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) =
+ if i < length x then Return (list_update x i nx)
+ else Fail Failure
+
+(*** Subslices *)
+
+let array_to_slice_shared (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x
+let array_to_slice_mut_fwd (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x
+let array_to_slice_mut_back (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) =
+ if length s = n then Return s
+ else Fail Failure
+
+// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *)
+let array_subslice_shared (a : Type0) (n : usize) (x : array a n) (r : range usize) : result (slice a) =
+ admit()
+
+let array_subslice_mut_fwd (a : Type0) (n : usize) (x : array a n) (r : range usize) : result (slice a) =
+ admit()
+
+let array_subslice_mut_back (a : Type0) (n : usize) (x : array a n) (r : range usize) (ns : slice a) : result (array a n) =
+ admit()
+
+let array_repeat (a : Type0) (n : usize) (x : a) : array a n =
+ admit()
+
+let slice_subslice_shared (a : Type0) (x : slice a) (r : range usize) : result (slice a) =
+ admit()
+
+let slice_subslice_mut_fwd (a : Type0) (x : slice a) (r : range usize) : result (slice a) =
+ admit()
+
+let slice_subslice_mut_back (a : Type0) (x : slice a) (r : range usize) (ns : slice a) : result (slice a) =
+ admit()
+
+(*** Vector *)
+type vec (a : Type0) = v:list a{length v <= usize_max}
+
+let vec_new (a : Type0) : vec a = assert_norm(length #a [] == 0); []
+let vec_len (a : Type0) (v : vec a) : usize = length v
+
+// The **forward** function shouldn't be used
+let vec_push_fwd (a : Type0) (v : vec a) (x : a) : unit = ()
+let vec_push_back (a : Type0) (v : vec a) (x : a) :
+ Pure (result (vec a))
+ (requires True)
+ (ensures (fun res ->
+ match res with
+ | Fail e -> e == Failure
+ | Return v' -> length v' = length v + 1)) =
+ if length v < usize_max then begin
+ (**) assert_norm(length [x] == 1);
+ (**) append_length v [x];
+ (**) assert(length (append v [x]) = length v + 1);
+ Return (append v [x])
+ end
+ else Fail Failure
+
+// The **forward** function shouldn't be used
+let vec_insert_fwd (a : Type0) (v : vec a) (i : usize) (x : a) : result unit =
+ if i < length v then Return () else Fail Failure
+let vec_insert_back (a : Type0) (v : vec a) (i : usize) (x : a) : result (vec a) =
+ if i < length v then Return (list_update v i x) else Fail Failure
+
+// The **backward** function shouldn't be used
+let vec_index_fwd (a : Type0) (v : vec a) (i : usize) : result a =
+ if i < length v then Return (index v i) else Fail Failure
+let vec_index_back (a : Type0) (v : vec a) (i : usize) (x : a) : result unit =
+ if i < length v then Return () else Fail Failure
+
+let vec_index_mut_fwd (a : Type0) (v : vec a) (i : usize) : result a =
+ if i < length v then Return (index v i) else Fail Failure
+let vec_index_mut_back (a : Type0) (v : vec a) (i : usize) (nx : a) : result (vec a) =
+ if i < length v then Return (list_update v i nx) else Fail Failure