diff options
Diffstat (limited to 'tests/fstar/betree/BetreeMain.Clauses.fst')
-rw-r--r-- | tests/fstar/betree/BetreeMain.Clauses.fst | 210 |
1 files changed, 210 insertions, 0 deletions
diff --git a/tests/fstar/betree/BetreeMain.Clauses.fst b/tests/fstar/betree/BetreeMain.Clauses.fst new file mode 100644 index 00000000..07484711 --- /dev/null +++ b/tests/fstar/betree/BetreeMain.Clauses.fst @@ -0,0 +1,210 @@ +(** [betree_main]: templates for the decreases clauses *) +module BetreeMain.Clauses +open Primitives +open BetreeMain.Types + +#set-options "--z3rlimit 50 --fuel 0 --ifuel 1" + +(*** Well-founded relations *) + +(* We had a few issues when proving termination of the mutually recursive functions: + * - betree_internal_flush + * - betree_node_apply_messages + * + * The quantity which effectively decreases is: + * (betree_size, messages_length) + * where messages_length is 0 when there are no messages + * (and where we use the lexicographic ordering, of course) + * + * However, the `%[...]` and `{:well-founded ...} notations are not available outside + * of `decrease` clauses. + * + * We thus resorted to writing and proving correct a well-founded relation over + * pairs of natural numbers. The trick is that `<<` can be used outside of decrease + * clauses, and can be used to trigger SMT patterns. + * + * What follows is adapted from: + * https://www.fstar-lang.org/tutorial/book/part2/part2_well_founded.html + * + * Also, the following PR might make things easier: + * https://github.com/FStarLang/FStar/pull/2561 + *) + +module P = FStar.Preorder +module W = FStar.WellFounded +module L = FStar.LexicographicOrdering + +let lt_nat (x y:nat) : Type = x < y == true +let rec wf_lt_nat (x:nat) + : W.acc lt_nat x + = W.AccIntro (fun y _ -> wf_lt_nat y) + +// A type abbreviation for a pair of nats +let nat_pair = (x:nat & nat) + +// Making a lexicographic ordering from a pair of nat ordering +let lex_order_nat_pair : P.relation nat_pair = + L.lex_t lt_nat (fun _ -> lt_nat) + +// The lex order on nat pairs is well-founded, using our general proof +// of lexicographic composition of well-founded orders +let lex_order_nat_pair_wf : W.well_founded lex_order_nat_pair = + L.lex_t_wf wf_lt_nat (fun _ -> wf_lt_nat) + +// A utility to introduce lt_nat +let mk_lt_nat (x:nat) (y:nat { x < y }) : lt_nat x y = + let _ : equals (x < y) true = Refl in + () + +// A utility to make a lex ordering of nat pairs +let mk_lex_order_nat_pair (xy0:nat_pair) + (xy1:nat_pair { + let (|x0, y0|) = xy0 in + let (|x1, y1|) = xy1 in + x0 < x1 \/ (x0 == x1 /\ y0 < y1) + }) : lex_order_nat_pair xy0 xy1 = + let (|x0, y0|) = xy0 in + let (|x1, y1|) = xy1 in + if x0 < x1 then L.Left_lex x0 x1 y0 y1 (mk_lt_nat x0 x1) + else L.Right_lex x0 y0 y1 (mk_lt_nat y0 y1) + +let rec coerce #a #r #x (p:W.acc #a r x) : Tot (W.acc r x) (decreases p) = + W.AccIntro (fun y r -> coerce (p.access_smaller y r)) + +let coerce_wf #a #r (p: (x:a -> W.acc r x)) : x:a -> W.acc r x = + fun x -> coerce (p x) + +(* We need this axiom, which comes from the following discussion: + * https://github.com/FStarLang/FStar/issues/1916 + * An issue here is that the `{well-founded ... }` notation + *) +assume +val axiom_well_founded (a : Type) (rel : a -> a -> Type0) + (rwf : W.well_founded #a rel) (x y : a) : + Lemma (requires (rel x y)) (ensures (x << y)) + +(* This lemma has a pattern (which makes it work) *) +let wf_nat_pair_lem (p0 p1 : nat_pair) : + Lemma + (requires ( + let (|x0, y0|) = p0 in + let (|x1, y1|) = p1 in + x0 < x1 || (x0 = x1 && y0 < y1))) + (ensures (p0 << p1)) + [SMTPat (p0 << p1)] = + let rel = lex_order_nat_pair in + let rel_wf = lex_order_nat_pair_wf in + let _ = mk_lex_order_nat_pair p0 p1 in + assert(rel p0 p1); + axiom_well_founded nat_pair rel rel_wf p0 p1 + +(*** Decrease clauses *) +/// "Standard" decrease clauses + +(** [betree_main::betree::List::{1}::len]: decreases clause *) +unfold +let betree_list_len_decreases (t : Type0) (self : betree_list_t t) : betree_list_t t = + self + +(** [betree_main::betree::List::{1}::split_at]: decreases clause *) +unfold +let betree_list_split_at_decreases (t : Type0) (self : betree_list_t t) + (n : u64) : nat = + n + +(** [betree_main::betree::List::{2}::partition_at_pivot]: decreases clause *) +unfold +let betree_list_partition_at_pivot_decreases (t : Type0) + (self : betree_list_t (u64 & t)) (pivot : u64) : betree_list_t (u64 & t) = + self + +(** [betree_main::betree::Node::{5}::lookup_in_bindings]: decreases clause *) +unfold +let betree_node_lookup_in_bindings_decreases (key : u64) + (bindings : betree_list_t (u64 & u64)) : betree_list_t (u64 & u64) = + bindings + +(** [betree_main::betree::Node::{5}::lookup_first_message_for_key]: decreases clause *) +unfold +let betree_node_lookup_first_message_for_key_decreases (key : u64) + (msgs : betree_list_t (u64 & betree_message_t)) : betree_list_t (u64 & betree_message_t) = + msgs + +(** [betree_main::betree::Node::{5}::apply_upserts]: decreases clause *) +unfold +let betree_node_apply_upserts_decreases + (msgs : betree_list_t (u64 & betree_message_t)) (prev : option u64) + (key : u64) (st : state) : betree_list_t (u64 & betree_message_t) = + msgs + +(** [betree_main::betree::Internal::{4}::lookup_in_children]: decreases clause *) +unfold +let betree_internal_lookup_in_children_decreases (self : betree_internal_t) + (key : u64) (st : state) : betree_internal_t = + self + +(** [betree_main::betree::Node::{5}::lookup]: decreases clause *) +unfold +let betree_node_lookup_decreases (self : betree_node_t) (key : u64) + (st : state) : betree_node_t = + self + +(** [betree_main::betree::Node::{5}::lookup_mut_in_bindings]: decreases clause *) +unfold +let betree_node_lookup_mut_in_bindings_decreases (key : u64) + (bindings : betree_list_t (u64 & u64)) : betree_list_t (u64 & u64) = + bindings + +unfold +let betree_node_apply_messages_to_leaf_decreases + (bindings : betree_list_t (u64 & u64)) + (new_msgs : betree_list_t (u64 & betree_message_t)) : betree_list_t (u64 & betree_message_t) = + new_msgs + +(** [betree_main::betree::Node::{5}::filter_messages_for_key]: decreases clause *) +unfold +let betree_node_filter_messages_for_key_decreases (key : u64) + (msgs : betree_list_t (u64 & betree_message_t)) : betree_list_t (u64 & betree_message_t) = + msgs + +(** [betree_main::betree::Node::{5}::lookup_first_message_after_key]: decreases clause *) +unfold +let betree_node_lookup_first_message_after_key_decreases (key : u64) + (msgs : betree_list_t (u64 & betree_message_t)) : betree_list_t (u64 & betree_message_t) = + msgs + +let betree_node_apply_messages_to_internal_decreases + (msgs : betree_list_t (u64 & betree_message_t)) + (new_msgs : betree_list_t (u64 & betree_message_t)) : betree_list_t (u64 & betree_message_t) = + new_msgs + +(*** Decrease clauses - nat_pair *) +/// The following decrease clauses use the [nat_pair] definition and the well-founded +/// relation proven above. + +let rec betree_size (bt : betree_node_t) : nat = + match bt with + | BetreeNodeInternal node -> 1 + betree_internal_size node + | BetreeNodeLeaf _ -> 1 + +and betree_internal_size (node : betree_internal_t) : nat = + 1 + betree_size node.betree_internal_left + betree_size node.betree_internal_right + +let rec betree_list_len (#a : Type0) (ls : betree_list_t a) : nat = + match ls with + | BetreeListCons _ tl -> 1 + betree_list_len tl + | BetreeListNil -> 0 + +(** [betree_main::betree::Internal::{4}::flush]: decreases clause *) +unfold +let betree_internal_flush_decreases (self : betree_internal_t) + (params : betree_params_t) (node_id_cnt : betree_node_id_counter_t) + (content : betree_list_t (u64 & betree_message_t)) (st : state) : nat_pair = + (|betree_internal_size self, 0|) + +(** [betree_main::betree::Node::{5}::apply_messages]: decreases clause *) +unfold +let betree_node_apply_messages_decreases (self : betree_node_t) + (params : betree_params_t) (node_id_cnt : betree_node_id_counter_t) + (msgs : betree_list_t (u64 & betree_message_t)) (st : state) : nat_pair = + (|betree_size self, betree_list_len msgs|) |