summaryrefslogtreecommitdiff
path: root/tests/fstar-split/betree/BetreeMain.Clauses.fst
diff options
context:
space:
mode:
Diffstat (limited to 'tests/fstar-split/betree/BetreeMain.Clauses.fst')
-rw-r--r--tests/fstar-split/betree/BetreeMain.Clauses.fst210
1 files changed, 0 insertions, 210 deletions
diff --git a/tests/fstar-split/betree/BetreeMain.Clauses.fst b/tests/fstar-split/betree/BetreeMain.Clauses.fst
deleted file mode 100644
index 21f953d1..00000000
--- a/tests/fstar-split/betree/BetreeMain.Clauses.fst
+++ /dev/null
@@ -1,210 +0,0 @@
-(** [betree_main]: templates for the decreases clauses *)
-module BetreeMain.Clauses
-open Primitives
-open BetreeMain.Types
-
-#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
-
-(*** Well-founded relations *)
-
-(* We had a few issues when proving termination of the mutually recursive functions:
- * - betree_Internal_flush
- * - betree_Node_apply_messages
- *
- * The quantity which effectively decreases is:
- * (betree_size, messages_length)
- * where messages_length is 0 when there are no messages
- * (and where we use the lexicographic ordering, of course)
- *
- * However, the `%[...]` and `{:well-founded ...} notations are not available outside
- * of `decrease` clauses.
- *
- * We thus resorted to writing and proving correct a well-founded relation over
- * pairs of natural numbers. The trick is that `<<` can be used outside of decrease
- * clauses, and can be used to trigger SMT patterns.
- *
- * What follows is adapted from:
- * https://www.fstar-lang.org/tutorial/book/part2/part2_well_founded.html
- *
- * Also, the following PR might make things easier:
- * https://github.com/FStarLang/FStar/pull/2561
- *)
-
-module P = FStar.Preorder
-module W = FStar.WellFounded
-module L = FStar.LexicographicOrdering
-
-let lt_nat (x y:nat) : Type = x < y == true
-let rec wf_lt_nat (x:nat)
- : W.acc lt_nat x
- = W.AccIntro (fun y _ -> wf_lt_nat y)
-
-// A type abbreviation for a pair of nats
-let nat_pair = (x:nat & nat)
-
-// Making a lexicographic ordering from a pair of nat ordering
-let lex_order_nat_pair : P.relation nat_pair =
- L.lex_t lt_nat (fun _ -> lt_nat)
-
-// The lex order on nat pairs is well-founded, using our general proof
-// of lexicographic composition of well-founded orders
-let lex_order_nat_pair_wf : W.well_founded lex_order_nat_pair =
- L.lex_t_wf wf_lt_nat (fun _ -> wf_lt_nat)
-
-// A utility to introduce lt_nat
-let mk_lt_nat (x:nat) (y:nat { x < y }) : lt_nat x y =
- let _ : equals (x < y) true = Refl in
- ()
-
-// A utility to make a lex ordering of nat pairs
-let mk_lex_order_nat_pair (xy0:nat_pair)
- (xy1:nat_pair {
- let (|x0, y0|) = xy0 in
- let (|x1, y1|) = xy1 in
- x0 < x1 \/ (x0 == x1 /\ y0 < y1)
- }) : lex_order_nat_pair xy0 xy1 =
- let (|x0, y0|) = xy0 in
- let (|x1, y1|) = xy1 in
- if x0 < x1 then L.Left_lex x0 x1 y0 y1 (mk_lt_nat x0 x1)
- else L.Right_lex x0 y0 y1 (mk_lt_nat y0 y1)
-
-let rec coerce #a #r #x (p:W.acc #a r x) : Tot (W.acc r x) (decreases p) =
- W.AccIntro (fun y r -> coerce (p.access_smaller y r))
-
-let coerce_wf #a #r (p: (x:a -> W.acc r x)) : x:a -> W.acc r x =
- fun x -> coerce (p x)
-
-(* We need this axiom, which comes from the following discussion:
- * https://github.com/FStarLang/FStar/issues/1916
- * An issue here is that the `{well-founded ... }` notation
- *)
-assume
-val axiom_well_founded (a : Type) (rel : a -> a -> Type0)
- (rwf : W.well_founded #a rel) (x y : a) :
- Lemma (requires (rel x y)) (ensures (x << y))
-
-(* This lemma has a pattern (which makes it work) *)
-let wf_nat_pair_lem (p0 p1 : nat_pair) :
- Lemma
- (requires (
- let (|x0, y0|) = p0 in
- let (|x1, y1|) = p1 in
- x0 < x1 || (x0 = x1 && y0 < y1)))
- (ensures (p0 << p1))
- [SMTPat (p0 << p1)] =
- let rel = lex_order_nat_pair in
- let rel_wf = lex_order_nat_pair_wf in
- let _ = mk_lex_order_nat_pair p0 p1 in
- assert(rel p0 p1);
- axiom_well_founded nat_pair rel rel_wf p0 p1
-
-(*** Decrease clauses *)
-/// "Standard" decrease clauses
-
-(** [betree_main::betree::List::{1}::len]: decreases clause *)
-unfold
-let betree_List_len_decreases (t : Type0) (self : betree_List_t t) : betree_List_t t =
- self
-
-(** [betree_main::betree::List::{1}::split_at]: decreases clause *)
-unfold
-let betree_List_split_at_decreases (t : Type0) (self : betree_List_t t)
- (n : u64) : nat =
- n
-
-(** [betree_main::betree::List::{2}::partition_at_pivot]: decreases clause *)
-unfold
-let betree_ListTupleU64T_partition_at_pivot_decreases (t : Type0)
- (self : betree_List_t (u64 & t)) (pivot : u64) : betree_List_t (u64 & t) =
- self
-
-(** [betree_main::betree::Node::{5}::lookup_in_bindings]: decreases clause *)
-unfold
-let betree_Node_lookup_in_bindings_decreases (key : u64)
- (bindings : betree_List_t (u64 & u64)) : betree_List_t (u64 & u64) =
- bindings
-
-(** [betree_main::betree::Node::{5}::lookup_first_message_for_key]: decreases clause *)
-unfold
-let betree_Node_lookup_first_message_for_key_decreases (key : u64)
- (msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) =
- msgs
-
-(** [betree_main::betree::Node::{5}::apply_upserts]: decreases clause *)
-unfold
-let betree_Node_apply_upserts_decreases
- (msgs : betree_List_t (u64 & betree_Message_t)) (prev : option u64)
- (key : u64) (st : state) : betree_List_t (u64 & betree_Message_t) =
- msgs
-
-(** [betree_main::betree::Internal::{4}::lookup_in_children]: decreases clause *)
-unfold
-let betree_Internal_lookup_in_children_decreases (self : betree_Internal_t)
- (key : u64) (st : state) : betree_Internal_t =
- self
-
-(** [betree_main::betree::Node::{5}::lookup]: decreases clause *)
-unfold
-let betree_Node_lookup_decreases (self : betree_Node_t) (key : u64)
- (st : state) : betree_Node_t =
- self
-
-(** [betree_main::betree::Node::{5}::lookup_mut_in_bindings]: decreases clause *)
-unfold
-let betree_Node_lookup_mut_in_bindings_decreases (key : u64)
- (bindings : betree_List_t (u64 & u64)) : betree_List_t (u64 & u64) =
- bindings
-
-unfold
-let betree_Node_apply_messages_to_leaf_decreases
- (bindings : betree_List_t (u64 & u64))
- (new_msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) =
- new_msgs
-
-(** [betree_main::betree::Node::{5}::filter_messages_for_key]: decreases clause *)
-unfold
-let betree_Node_filter_messages_for_key_decreases (key : u64)
- (msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) =
- msgs
-
-(** [betree_main::betree::Node::{5}::lookup_first_message_after_key]: decreases clause *)
-unfold
-let betree_Node_lookup_first_message_after_key_decreases (key : u64)
- (msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) =
- msgs
-
-let betree_Node_apply_messages_to_internal_decreases
- (msgs : betree_List_t (u64 & betree_Message_t))
- (new_msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) =
- new_msgs
-
-(*** Decrease clauses - nat_pair *)
-/// The following decrease clauses use the [nat_pair] definition and the well-founded
-/// relation proven above.
-
-let rec betree_size (bt : betree_Node_t) : nat =
- match bt with
- | Betree_Node_Internal node -> 1 + betree_Internal_size node
- | Betree_Node_Leaf _ -> 1
-
-and betree_Internal_size (node : betree_Internal_t) : nat =
- 1 + betree_size node.left + betree_size node.right
-
-let rec betree_List_len (#a : Type0) (ls : betree_List_t a) : nat =
- match ls with
- | Betree_List_Cons _ tl -> 1 + betree_List_len tl
- | Betree_List_Nil -> 0
-
-(** [betree_main::betree::Internal::{4}::flush]: decreases clause *)
-unfold
-let betree_Internal_flush_decreases (self : betree_Internal_t)
- (params : betree_Params_t) (node_id_cnt : betree_NodeIdCounter_t)
- (content : betree_List_t (u64 & betree_Message_t)) (st : state) : nat_pair =
- (|betree_Internal_size self, 0|)
-
-(** [betree_main::betree::Node::{5}::apply_messages]: decreases clause *)
-unfold
-let betree_Node_apply_messages_decreases (self : betree_Node_t)
- (params : betree_Params_t) (node_id_cnt : betree_NodeIdCounter_t)
- (msgs : betree_List_t (u64 & betree_Message_t)) (st : state) : nat_pair =
- (|betree_size self, betree_List_len msgs|)