diff options
Diffstat (limited to 'tests/betree/BetreeMain.Clauses.fst')
-rw-r--r-- | tests/betree/BetreeMain.Clauses.fst | 210 |
1 files changed, 0 insertions, 210 deletions
diff --git a/tests/betree/BetreeMain.Clauses.fst b/tests/betree/BetreeMain.Clauses.fst deleted file mode 100644 index 07484711..00000000 --- a/tests/betree/BetreeMain.Clauses.fst +++ /dev/null @@ -1,210 +0,0 @@ -(** [betree_main]: templates for the decreases clauses *) -module BetreeMain.Clauses -open Primitives -open BetreeMain.Types - -#set-options "--z3rlimit 50 --fuel 0 --ifuel 1" - -(*** Well-founded relations *) - -(* We had a few issues when proving termination of the mutually recursive functions: - * - betree_internal_flush - * - betree_node_apply_messages - * - * The quantity which effectively decreases is: - * (betree_size, messages_length) - * where messages_length is 0 when there are no messages - * (and where we use the lexicographic ordering, of course) - * - * However, the `%[...]` and `{:well-founded ...} notations are not available outside - * of `decrease` clauses. - * - * We thus resorted to writing and proving correct a well-founded relation over - * pairs of natural numbers. The trick is that `<<` can be used outside of decrease - * clauses, and can be used to trigger SMT patterns. - * - * What follows is adapted from: - * https://www.fstar-lang.org/tutorial/book/part2/part2_well_founded.html - * - * Also, the following PR might make things easier: - * https://github.com/FStarLang/FStar/pull/2561 - *) - -module P = FStar.Preorder -module W = FStar.WellFounded -module L = FStar.LexicographicOrdering - -let lt_nat (x y:nat) : Type = x < y == true -let rec wf_lt_nat (x:nat) - : W.acc lt_nat x - = W.AccIntro (fun y _ -> wf_lt_nat y) - -// A type abbreviation for a pair of nats -let nat_pair = (x:nat & nat) - -// Making a lexicographic ordering from a pair of nat ordering -let lex_order_nat_pair : P.relation nat_pair = - L.lex_t lt_nat (fun _ -> lt_nat) - -// The lex order on nat pairs is well-founded, using our general proof -// of lexicographic composition of well-founded orders -let lex_order_nat_pair_wf : W.well_founded lex_order_nat_pair = - L.lex_t_wf wf_lt_nat (fun _ -> wf_lt_nat) - -// A utility to introduce lt_nat -let mk_lt_nat (x:nat) (y:nat { x < y }) : lt_nat x y = - let _ : equals (x < y) true = Refl in - () - -// A utility to make a lex ordering of nat pairs -let mk_lex_order_nat_pair (xy0:nat_pair) - (xy1:nat_pair { - let (|x0, y0|) = xy0 in - let (|x1, y1|) = xy1 in - x0 < x1 \/ (x0 == x1 /\ y0 < y1) - }) : lex_order_nat_pair xy0 xy1 = - let (|x0, y0|) = xy0 in - let (|x1, y1|) = xy1 in - if x0 < x1 then L.Left_lex x0 x1 y0 y1 (mk_lt_nat x0 x1) - else L.Right_lex x0 y0 y1 (mk_lt_nat y0 y1) - -let rec coerce #a #r #x (p:W.acc #a r x) : Tot (W.acc r x) (decreases p) = - W.AccIntro (fun y r -> coerce (p.access_smaller y r)) - -let coerce_wf #a #r (p: (x:a -> W.acc r x)) : x:a -> W.acc r x = - fun x -> coerce (p x) - -(* We need this axiom, which comes from the following discussion: - * https://github.com/FStarLang/FStar/issues/1916 - * An issue here is that the `{well-founded ... }` notation - *) -assume -val axiom_well_founded (a : Type) (rel : a -> a -> Type0) - (rwf : W.well_founded #a rel) (x y : a) : - Lemma (requires (rel x y)) (ensures (x << y)) - -(* This lemma has a pattern (which makes it work) *) -let wf_nat_pair_lem (p0 p1 : nat_pair) : - Lemma - (requires ( - let (|x0, y0|) = p0 in - let (|x1, y1|) = p1 in - x0 < x1 || (x0 = x1 && y0 < y1))) - (ensures (p0 << p1)) - [SMTPat (p0 << p1)] = - let rel = lex_order_nat_pair in - let rel_wf = lex_order_nat_pair_wf in - let _ = mk_lex_order_nat_pair p0 p1 in - assert(rel p0 p1); - axiom_well_founded nat_pair rel rel_wf p0 p1 - -(*** Decrease clauses *) -/// "Standard" decrease clauses - -(** [betree_main::betree::List::{1}::len]: decreases clause *) -unfold -let betree_list_len_decreases (t : Type0) (self : betree_list_t t) : betree_list_t t = - self - -(** [betree_main::betree::List::{1}::split_at]: decreases clause *) -unfold -let betree_list_split_at_decreases (t : Type0) (self : betree_list_t t) - (n : u64) : nat = - n - -(** [betree_main::betree::List::{2}::partition_at_pivot]: decreases clause *) -unfold -let betree_list_partition_at_pivot_decreases (t : Type0) - (self : betree_list_t (u64 & t)) (pivot : u64) : betree_list_t (u64 & t) = - self - -(** [betree_main::betree::Node::{5}::lookup_in_bindings]: decreases clause *) -unfold -let betree_node_lookup_in_bindings_decreases (key : u64) - (bindings : betree_list_t (u64 & u64)) : betree_list_t (u64 & u64) = - bindings - -(** [betree_main::betree::Node::{5}::lookup_first_message_for_key]: decreases clause *) -unfold -let betree_node_lookup_first_message_for_key_decreases (key : u64) - (msgs : betree_list_t (u64 & betree_message_t)) : betree_list_t (u64 & betree_message_t) = - msgs - -(** [betree_main::betree::Node::{5}::apply_upserts]: decreases clause *) -unfold -let betree_node_apply_upserts_decreases - (msgs : betree_list_t (u64 & betree_message_t)) (prev : option u64) - (key : u64) (st : state) : betree_list_t (u64 & betree_message_t) = - msgs - -(** [betree_main::betree::Internal::{4}::lookup_in_children]: decreases clause *) -unfold -let betree_internal_lookup_in_children_decreases (self : betree_internal_t) - (key : u64) (st : state) : betree_internal_t = - self - -(** [betree_main::betree::Node::{5}::lookup]: decreases clause *) -unfold -let betree_node_lookup_decreases (self : betree_node_t) (key : u64) - (st : state) : betree_node_t = - self - -(** [betree_main::betree::Node::{5}::lookup_mut_in_bindings]: decreases clause *) -unfold -let betree_node_lookup_mut_in_bindings_decreases (key : u64) - (bindings : betree_list_t (u64 & u64)) : betree_list_t (u64 & u64) = - bindings - -unfold -let betree_node_apply_messages_to_leaf_decreases - (bindings : betree_list_t (u64 & u64)) - (new_msgs : betree_list_t (u64 & betree_message_t)) : betree_list_t (u64 & betree_message_t) = - new_msgs - -(** [betree_main::betree::Node::{5}::filter_messages_for_key]: decreases clause *) -unfold -let betree_node_filter_messages_for_key_decreases (key : u64) - (msgs : betree_list_t (u64 & betree_message_t)) : betree_list_t (u64 & betree_message_t) = - msgs - -(** [betree_main::betree::Node::{5}::lookup_first_message_after_key]: decreases clause *) -unfold -let betree_node_lookup_first_message_after_key_decreases (key : u64) - (msgs : betree_list_t (u64 & betree_message_t)) : betree_list_t (u64 & betree_message_t) = - msgs - -let betree_node_apply_messages_to_internal_decreases - (msgs : betree_list_t (u64 & betree_message_t)) - (new_msgs : betree_list_t (u64 & betree_message_t)) : betree_list_t (u64 & betree_message_t) = - new_msgs - -(*** Decrease clauses - nat_pair *) -/// The following decrease clauses use the [nat_pair] definition and the well-founded -/// relation proven above. - -let rec betree_size (bt : betree_node_t) : nat = - match bt with - | BetreeNodeInternal node -> 1 + betree_internal_size node - | BetreeNodeLeaf _ -> 1 - -and betree_internal_size (node : betree_internal_t) : nat = - 1 + betree_size node.betree_internal_left + betree_size node.betree_internal_right - -let rec betree_list_len (#a : Type0) (ls : betree_list_t a) : nat = - match ls with - | BetreeListCons _ tl -> 1 + betree_list_len tl - | BetreeListNil -> 0 - -(** [betree_main::betree::Internal::{4}::flush]: decreases clause *) -unfold -let betree_internal_flush_decreases (self : betree_internal_t) - (params : betree_params_t) (node_id_cnt : betree_node_id_counter_t) - (content : betree_list_t (u64 & betree_message_t)) (st : state) : nat_pair = - (|betree_internal_size self, 0|) - -(** [betree_main::betree::Node::{5}::apply_messages]: decreases clause *) -unfold -let betree_node_apply_messages_decreases (self : betree_node_t) - (params : betree_params_t) (node_id_cnt : betree_node_id_counter_t) - (msgs : betree_list_t (u64 & betree_message_t)) (st : state) : nat_pair = - (|betree_size self, betree_list_len msgs|) |