summaryrefslogtreecommitdiff
path: root/src/Pure.ml
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/Pure.ml81
1 files changed, 66 insertions, 15 deletions
diff --git a/src/Pure.ml b/src/Pure.ml
index e2362338..d8e1cafc 100644
--- a/src/Pure.ml
+++ b/src/Pure.ml
@@ -505,28 +505,79 @@ and meta =
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
}]
+type fun_sig_info = {
+ num_fwd_inputs : int;
+ (** The number of input types for forward computation *)
+ num_back_inputs : int option;
+ (** The number of additional inputs for the backward computation (if pertinent) *)
+ input_state : bool; (** `true` if the function takes a state as input *)
+ output_state : bool;
+ (** `true` if the function outputs a state (it then lives
+ in a state monad) *)
+ can_fail : bool; (** `true` if the return type is a `result` *)
+}
+(** Meta information about a function signature *)
+
type fun_sig = {
type_params : type_var list;
inputs : ty list;
- outputs : ty list;
- (** The list of outputs.
-
- Immediately after the translation from symbolic to pure we have this
- the following:
- In case of a forward function, the list will have length = 1.
- However, in case of backward function, the list may have length > 1.
- If the length is > 1, it gets extracted to a tuple type. Followingly,
- we could not use a list because we can encode tuples, but here we
- want to account for the fact that we immediately deconstruct the tuple
- upon calling the backward function (because the backward function is
- called to update a set of values in the environment).
+ output : ty;
+ doutputs : ty list;
+ (** The "decomposed" list of outputs.
+
+ In case of a forward function, the list has length = 1, for the
+ type of the returned value.
+
+ In case of backward function, the list contains all the types of
+ all the given back values (there is at most one type per forward
+ input argument).
+
+ Ex.:
+ ```
+ fn choose<'a, T>(b : bool, x : &'a mut T, y : &'a mut T) -> &'a mut T;
+ ```
+ Decomposed outputs:
+ - forward function: [T]
+ - backward function: [T; T] (for "x" and "y")
- After the "to monadic" pass, the list has size exactly one (and we
- use the `Result` type).
*)
+ info : fun_sig_info; (** Additional information *)
}
+(** A function signature.
+
+ We have the following cases:
+ - forward function:
+ `in_ty0 -> ... -> in_tyn -> out_ty` (* pure function *)
+ `in_ty0 -> ... -> in_tyn -> result out_ty` (* error-monad *)
+ `in_ty0 -> ... -> in_tyn -> state -> result (state & out_ty)` (* state-error *)
+ - backward function:
+ `in_ty0 -> ... -> in_tyn -> back_in0 -> ... back_inm -> (back_out0 & ... & back_outp)` (* pure function *)
+ `in_ty0 -> ... -> in_tyn -> back_in0 -> ... back_inm ->
+ result (back_out0 & ... & back_outp)` (* error-monad *)
+ `in_ty0 -> ... -> in_tyn -> state -> back_in0 -> ... back_inm ->
+ result (back_out0 & ... & back_outp)` (* state-error *)
+
+ Note that a backward function never returns (i.e., updates) a state: only
+ forward functions do so. Also, the state input parameter is *betwee*
+ the forward inputs and the backward inputs.
+
+ The function's type should be given by `mk_arrows sig.inputs sig.output`.
+ We provide additional meta-information:
+ - we divide between forward inputs and backward inputs (i.e., inputs specific
+ to the forward functions, and additional inputs necessary if the signature is
+ for a backward function)
+ - we have booleans to give us the fact that the function takes a state as
+ input, or can fail, etc. without having to inspect the signature
+ - etc.
+ *)
-type inst_fun_sig = { inputs : ty list; outputs : ty list }
+type inst_fun_sig = {
+ inputs : ty list;
+ output : ty;
+ doutputs : ty list;
+ info : fun_sig_info;
+}
+(** An instantiated function signature. See [fun_sig] *)
type fun_body = {
inputs : var list;