summaryrefslogtreecommitdiff
path: root/src/InterpreterProjectors.ml
diff options
context:
space:
mode:
Diffstat (limited to 'src/InterpreterProjectors.ml')
-rw-r--r--src/InterpreterProjectors.ml511
1 files changed, 511 insertions, 0 deletions
diff --git a/src/InterpreterProjectors.ml b/src/InterpreterProjectors.ml
new file mode 100644
index 00000000..036082eb
--- /dev/null
+++ b/src/InterpreterProjectors.ml
@@ -0,0 +1,511 @@
+module T = Types
+module V = Values
+module E = Expressions
+module C = Contexts
+module Subst = Substitute
+module L = Logging
+open TypesUtils
+open InterpreterUtils
+open InterpreterBorrowsCore
+
+(** A symbolic expansion *)
+type symbolic_expansion =
+ | SeConcrete of V.constant_value
+ | SeAdt of (T.VariantId.id option * V.symbolic_value list)
+ | SeMutRef of V.BorrowId.id * V.symbolic_value
+ | SeSharedRef of V.BorrowId.set_t * V.symbolic_value
+
+(** Auxiliary function.
+
+ Apply a proj_borrows on a shared borrow.
+ In the case of shared borrows, we return [abstract_shared_borrows],
+ not avalues.
+*)
+let rec apply_proj_borrows_on_shared_borrow (ctx : C.eval_ctx)
+ (fresh_reborrow : V.BorrowId.id -> V.BorrowId.id)
+ (regions : T.RegionId.set_t) (v : V.typed_value) (ty : T.rty) :
+ V.abstract_shared_borrows =
+ (* Sanity check - TODO: move this elsewhere (here we perform the check at every
+ * recursive call which is a bit overkill...) *)
+ let ety = Subst.erase_regions ty in
+ assert (ety = v.V.ty);
+ (* Project *)
+ match (v.V.value, ty) with
+ | V.Concrete _, (T.Bool | T.Char | T.Integer _ | T.Str) -> []
+ | V.Adt adt, T.Adt (id, region_params, tys) ->
+ (* Retrieve the types of the fields *)
+ let field_types =
+ Subst.ctx_adt_value_get_instantiated_field_rtypes ctx adt id
+ region_params tys
+ in
+ (* Project over the field values *)
+ let fields_types = List.combine adt.V.field_values field_types in
+ let proj_fields =
+ List.map
+ (fun (fv, fty) ->
+ apply_proj_borrows_on_shared_borrow ctx fresh_reborrow regions fv
+ fty)
+ fields_types
+ in
+ List.concat proj_fields
+ | V.Bottom, _ -> failwith "Unreachable"
+ | V.Borrow bc, T.Ref (r, ref_ty, kind) ->
+ (* Retrieve the bid of the borrow and the asb of the projected borrowed value *)
+ let bid, asb =
+ (* Not in the set: dive *)
+ match (bc, kind) with
+ | V.MutBorrow (bid, bv), T.Mut ->
+ (* Apply the projection on the borrowed value *)
+ let asb =
+ apply_proj_borrows_on_shared_borrow ctx fresh_reborrow regions bv
+ ref_ty
+ in
+ (bid, asb)
+ | V.SharedBorrow bid, T.Shared ->
+ (* Lookup the shared value *)
+ let ek = ek_all in
+ let sv = lookup_loan ek bid ctx in
+ let asb =
+ match sv with
+ | _, Concrete (V.SharedLoan (_, sv))
+ | _, Abstract (V.ASharedLoan (_, sv, _)) ->
+ apply_proj_borrows_on_shared_borrow ctx fresh_reborrow regions
+ sv ref_ty
+ | _ -> failwith "Unexpected"
+ in
+ (bid, asb)
+ | V.InactivatedMutBorrow _, _ ->
+ failwith
+ "Can't apply a proj_borrow over an inactivated mutable borrow"
+ | _ -> failwith "Unreachable"
+ in
+ let asb =
+ (* Check if the region is in the set of projected regions (note that
+ * we never project over static regions) *)
+ if region_in_set r regions then
+ let bid' = fresh_reborrow bid in
+ V.AsbBorrow bid' :: asb
+ else asb
+ in
+ asb
+ | V.Loan _, _ -> failwith "Unreachable"
+ | V.Symbolic s, _ ->
+ (* Check that the projection doesn't contain ended regions *)
+ assert (not (projections_intersect s.V.sv_ty ctx.ended_regions ty regions));
+ [ V.AsbProjReborrows (s, ty) ]
+ | _ -> failwith "Unreachable"
+
+(** Apply (and reduce) a projector over borrows to a value.
+
+ - [regions]: the regions we project
+ - [v]: the value over which we project
+ - [ty]: the projection type (is used to map borrows to regions, or to
+ interpret the borrows as belonging to some regions...). Remember that
+ `v` doesn't contain region information.
+ For instance, if we have:
+ `v <: ty` where:
+ - `v = mut_borrow l ...`
+ - `ty = Ref (r, ...)`
+ then we interpret the borrow `l` as belonging to region `r`
+
+ Also, when applying projections on shared values, we need to apply
+ reborrows. This is a bit annoying because, with the way we compute
+ the projection on borrows, we can't update the context immediately.
+ Instead, we remember the list of borrows we have to insert in the
+ context *afterwards*.
+
+ [check_symbolic_no_ended] controls whether we check or not whether
+ symbolic values don't contain already ended regions.
+ This check is activated when applying projectors upon calling a function
+ (because we need to check that function arguments don't contain ⊥),
+ but deactivated when expanding symbolic values:
+ ```
+ fn f<'a,'b>(x : &'a mut u32, y : &'b mut u32) -> (&'a mut u32, &'b mut u32);
+
+ let p = f(&mut x, &mut y); // p -> @s0
+ assert(x == ...); // end 'a
+ let z = p.1; // HERE: the symbolic expansion of @s0 contains ended regions
+ ```
+*)
+let rec apply_proj_borrows (check_symbolic_no_ended : bool) (ctx : C.eval_ctx)
+ (fresh_reborrow : V.BorrowId.id -> V.BorrowId.id)
+ (regions : T.RegionId.set_t) (v : V.typed_value) (ty : T.rty) :
+ V.typed_avalue =
+ (* Sanity check - TODO: move this elsewhere (here we perform the check at every
+ * recursive call which is a bit overkill...) *)
+ let ety = Substitute.erase_regions ty in
+ assert (ety = v.V.ty);
+ (* Match *)
+ let value : V.avalue =
+ match (v.V.value, ty) with
+ | V.Concrete cv, (T.Bool | T.Char | T.Integer _ | T.Str) -> V.AConcrete cv
+ | V.Adt adt, T.Adt (id, region_params, tys) ->
+ (* Retrieve the types of the fields *)
+ let field_types =
+ Subst.ctx_adt_value_get_instantiated_field_rtypes ctx adt id
+ region_params tys
+ in
+ (* Project over the field values *)
+ let fields_types = List.combine adt.V.field_values field_types in
+ let proj_fields =
+ List.map
+ (fun (fv, fty) ->
+ apply_proj_borrows check_symbolic_no_ended ctx fresh_reborrow
+ regions fv fty)
+ fields_types
+ in
+ V.AAdt { V.variant_id = adt.V.variant_id; field_values = proj_fields }
+ | V.Bottom, _ -> failwith "Unreachable"
+ | V.Borrow bc, T.Ref (r, ref_ty, kind) ->
+ if
+ (* Check if the region is in the set of projected regions (note that
+ * we never project over static regions) *)
+ region_in_set r regions
+ then
+ (* In the set *)
+ let bc =
+ match (bc, kind) with
+ | V.MutBorrow (bid, bv), T.Mut ->
+ (* Apply the projection on the borrowed value *)
+ let bv =
+ apply_proj_borrows check_symbolic_no_ended ctx fresh_reborrow
+ regions bv ref_ty
+ in
+ V.AMutBorrow (bid, bv)
+ | V.SharedBorrow bid, T.Shared -> V.ASharedBorrow bid
+ | V.InactivatedMutBorrow _, _ ->
+ failwith
+ "Can't apply a proj_borrow over an inactivated mutable borrow"
+ | _ -> failwith "Unreachable"
+ in
+ V.ABorrow bc
+ else
+ (* Not in the set: ignore *)
+ let bc =
+ match (bc, kind) with
+ | V.MutBorrow (_bid, bv), T.Mut ->
+ (* Apply the projection on the borrowed value *)
+ let bv =
+ apply_proj_borrows check_symbolic_no_ended ctx fresh_reborrow
+ regions bv ref_ty
+ in
+ V.AIgnoredMutBorrow bv
+ | V.SharedBorrow bid, T.Shared ->
+ (* Lookup the shared value *)
+ let ek = ek_all in
+ let sv = lookup_loan ek bid ctx in
+ let asb =
+ match sv with
+ | _, Concrete (V.SharedLoan (_, sv))
+ | _, Abstract (V.ASharedLoan (_, sv, _)) ->
+ apply_proj_borrows_on_shared_borrow ctx fresh_reborrow
+ regions sv ref_ty
+ | _ -> failwith "Unexpected"
+ in
+ V.AProjSharedBorrow asb
+ | V.InactivatedMutBorrow _, _ ->
+ failwith
+ "Can't apply a proj_borrow over an inactivated mutable borrow"
+ | _ -> failwith "Unreachable"
+ in
+ V.ABorrow bc
+ | V.Loan _, _ -> failwith "Unreachable"
+ | V.Symbolic s, _ ->
+ (* Check that the projection doesn't contain already ended regions,
+ * if necessary *)
+ if check_symbolic_no_ended then
+ assert (
+ not (projections_intersect s.V.sv_ty ctx.ended_regions ty regions));
+ V.ASymbolic (V.AProjBorrows (s, ty))
+ | _ -> failwith "Unreachable"
+ in
+ { V.value; V.ty }
+
+(** Convert a symbolic expansion *which is not a borrow* to a value *)
+let symbolic_expansion_non_borrow_to_value (sv : V.symbolic_value)
+ (see : symbolic_expansion) : V.typed_value =
+ let ty = Subst.erase_regions sv.V.sv_ty in
+ let value =
+ match see with
+ | SeConcrete cv -> V.Concrete cv
+ | SeAdt (variant_id, field_values) ->
+ let field_values =
+ List.map mk_typed_value_from_symbolic_value field_values
+ in
+ V.Adt { V.variant_id; V.field_values }
+ | SeMutRef (_, _) | SeSharedRef (_, _) ->
+ failwith "Unexpected symbolic reference expansion"
+ in
+ { V.value; V.ty }
+
+(** Convert a symbolic expansion to a value.
+
+ If the expansion is a mutable reference expansion, it converts it to a borrow.
+ This function is meant to be used when reducing projectors over borrows,
+ during a symbolic expansion.
+ *)
+let symbolic_expansion_non_shared_borrow_to_value (sv : V.symbolic_value)
+ (see : symbolic_expansion) : V.typed_value =
+ match see with
+ | SeMutRef (bid, bv) ->
+ let ty = Subst.erase_regions sv.V.sv_ty in
+ let bv = mk_typed_value_from_symbolic_value bv in
+ let value = V.Borrow (V.MutBorrow (bid, bv)) in
+ { V.value; ty }
+ | SeSharedRef (_, _) ->
+ failwith "Unexpected symbolic shared reference expansion"
+ | _ -> symbolic_expansion_non_borrow_to_value sv see
+
+(** Apply (and reduce) a projector over loans to a value.
+
+ TODO: detailed comments. See [apply_proj_borrows]
+*)
+let apply_proj_loans_on_symbolic_expansion (regions : T.RegionId.set_t)
+ (see : symbolic_expansion) (original_sv_ty : T.rty) : V.typed_avalue =
+ (* Match *)
+ let (value, ty) : V.avalue * T.rty =
+ match (see, original_sv_ty) with
+ | SeConcrete cv, (T.Bool | T.Char | T.Integer _ | T.Str) ->
+ (V.AConcrete cv, original_sv_ty)
+ | SeAdt (variant_id, field_values), T.Adt (_id, _region_params, _tys) ->
+ (* Project over the field values *)
+ let field_values =
+ List.map mk_aproj_loans_from_symbolic_value field_values
+ in
+ (V.AAdt { V.variant_id; field_values }, original_sv_ty)
+ | SeMutRef (bid, spc), T.Ref (r, ref_ty, T.Mut) ->
+ (* Sanity check *)
+ assert (spc.V.sv_ty = ref_ty);
+ (* Apply the projector to the borrowed value *)
+ let child_av = mk_aproj_loans_from_symbolic_value spc in
+ (* Check if the region is in the set of projected regions (note that
+ * we never project over static regions) *)
+ if region_in_set r regions then
+ (* In the set: keep *)
+ (V.ALoan (V.AMutLoan (bid, child_av)), ref_ty)
+ else
+ (* Not in the set: ignore *)
+ (V.ALoan (V.AIgnoredMutLoan (bid, child_av)), ref_ty)
+ | SeSharedRef (bids, spc), T.Ref (r, ref_ty, T.Shared) ->
+ (* Sanity check *)
+ assert (spc.V.sv_ty = ref_ty);
+ (* Apply the projector to the borrowed value *)
+ let child_av = mk_aproj_loans_from_symbolic_value spc in
+ (* Check if the region is in the set of projected regions (note that
+ * we never project over static regions) *)
+ if region_in_set r regions then
+ (* In the set: keep *)
+ let shared_value = mk_typed_value_from_symbolic_value spc in
+ (V.ALoan (V.ASharedLoan (bids, shared_value, child_av)), ref_ty)
+ else
+ (* Not in the set: ignore *)
+ (V.ALoan (V.AIgnoredSharedLoan child_av), ref_ty)
+ | _ -> failwith "Unreachable"
+ in
+ { V.value; V.ty }
+
+(** Auxiliary function. See [give_back_value].
+
+ Apply reborrows to a context.
+
+ The [reborrows] input is a list of pairs (shared loan id, id to insert
+ in the shared loan).
+ This function is used when applying projectors on shared borrows: when
+ doing so, we might need to reborrow subvalues from the shared value.
+ For instance:
+ ```
+ fn f<'a,'b,'c>(x : &'a 'b 'c u32)
+ ```
+ When introducing the abstractions for 'a, 'b and 'c, we apply a projector
+ on some value `shared_borrow l : &'a &'b &'c u32`.
+ In the 'a abstraction, this shared borrow gets projected. However, when
+ reducing the projectors for the 'b and 'c abstractions, we need to make
+ sure that the borrows living in regions 'b and 'c live as long as those
+ regions. This is done by looking up the shared value and applying reborrows
+ on the borrows we find there (note that those reborrows apply on shared
+ borrows - easy - and mutable borrows - in this case, we reborrow the whole
+ borrow: `mut_borrow ... ~~> shared_loan {...} (mut_borrow ...)`).
+*)
+let apply_reborrows (reborrows : (V.BorrowId.id * V.BorrowId.id) list)
+ (ctx : C.eval_ctx) : C.eval_ctx =
+ (* This is a bit brutal, but whenever we insert a reborrow, we remove
+ * it from the list. This allows us to check that all the reborrows were
+ * applied before returning.
+ * We might reimplement that in a more efficient manner by using maps. *)
+ let reborrows = ref reborrows in
+
+ (* Check if a value is a mutable borrow, and return its identifier if
+ it is the case *)
+ let get_borrow_in_mut_borrow (v : V.typed_value) : V.BorrowId.id option =
+ match v.V.value with
+ | V.Borrow lc -> (
+ match lc with
+ | V.SharedBorrow _ | V.InactivatedMutBorrow _ -> None
+ | V.MutBorrow (id, _) -> Some id)
+ | _ -> None
+ in
+
+ (* Add the proper reborrows to a set of borrow ids (for a shared loan) *)
+ let insert_reborrows bids =
+ (* Find the reborrows to apply *)
+ let insert, reborrows' =
+ List.partition (fun (bid, _) -> V.BorrowId.Set.mem bid bids) !reborrows
+ in
+ reborrows := reborrows';
+ let insert = List.map snd insert in
+ (* Insert the borrows *)
+ List.fold_left (fun bids bid -> V.BorrowId.Set.add bid bids) bids insert
+ in
+
+ (* Get the list of reborrows for a given borrow id *)
+ let get_reborrows_for_bid bid =
+ (* Find the reborrows to apply *)
+ let insert, reborrows' =
+ List.partition (fun (bid', _) -> bid' = bid) !reborrows
+ in
+ reborrows := reborrows';
+ List.map snd insert
+ in
+
+ let borrows_to_set bids =
+ List.fold_left
+ (fun bids bid -> V.BorrowId.Set.add bid bids)
+ V.BorrowId.Set.empty bids
+ in
+
+ (* Insert reborrows for a given borrow id into a given set of borrows *)
+ let insert_reborrows_for_bid bids bid =
+ (* Find the reborrows to apply *)
+ let insert = get_reborrows_for_bid bid in
+ (* Insert the borrows *)
+ List.fold_left (fun bids bid -> V.BorrowId.Set.add bid bids) bids insert
+ in
+
+ let obj =
+ object
+ inherit [_] C.map_eval_ctx as super
+
+ method! visit_typed_value env v =
+ match v.V.value with
+ | V.Borrow (V.MutBorrow (bid, bv)) ->
+ let insert = get_reborrows_for_bid bid in
+ let nbc = super#visit_MutBorrow env bid bv in
+ let nbc = { v with V.value = V.Borrow nbc } in
+ if insert = [] then (* No reborrows: do nothing special *)
+ nbc
+ else
+ (* There are reborrows: insert a shared loan *)
+ let insert = borrows_to_set insert in
+ let value = V.Loan (V.SharedLoan (insert, nbc)) in
+ let ty = v.V.ty in
+ { V.value; ty }
+ | _ -> super#visit_typed_value env v
+ (** We may need to reborrow mutable borrows. Note that this doesn't
+ happen for aborrows *)
+
+ method! visit_loan_content env lc =
+ match lc with
+ | V.SharedLoan (bids, sv) ->
+ (* Insert the reborrows *)
+ let bids = insert_reborrows bids in
+ (* Check if the contained value is a mutable borrow, in which
+ * case we might need to reborrow it by adding more borrow ids
+ * to the current set of borrows - by doing this small
+ * manipulation here, we accumulate the borrow ids in the same
+ * shared loan, right above the mutable borrow, and avoid
+ * stacking shared loans (note that doing this is not a problem
+ * from a soundness point of view, but it is a bit ugly...) *)
+ let bids =
+ match get_borrow_in_mut_borrow sv with
+ | None -> bids
+ | Some bid -> insert_reborrows_for_bid bids bid
+ in
+ (* Update and explore *)
+ super#visit_SharedLoan env bids sv
+ | V.MutLoan bid ->
+ (* Nothing special to do *)
+ super#visit_MutLoan env bid
+ (** We reimplement [visit_loan_content] (rather than one of the sub-
+ functions) on purpose: exhaustive matches are good for maintenance *)
+
+ method! visit_aloan_content env lc =
+ match lc with
+ | V.ASharedLoan (bids, sv, av) ->
+ (* Insert the reborrows *)
+ let bids = insert_reborrows bids in
+ (* Similarly to the non-abstraction case: check if the shared
+ * value is a mutable borrow, to eventually insert more reborrows *)
+ (* Update and explore *)
+ let bids =
+ match get_borrow_in_mut_borrow sv with
+ | None -> bids
+ | Some bid -> insert_reborrows_for_bid bids bid
+ in
+ (* Update and explore *)
+ super#visit_ASharedLoan env bids sv av
+ | V.AIgnoredSharedLoan _
+ | V.AMutLoan (_, _)
+ | V.AEndedMutLoan { given_back = _; child = _ }
+ | V.AEndedSharedLoan (_, _)
+ | V.AIgnoredMutLoan (_, _)
+ | V.AEndedIgnoredMutLoan { given_back = _; child = _ } ->
+ (* Nothing particular to do *)
+ super#visit_aloan_content env lc
+ end
+ in
+
+ (* Visit *)
+ let ctx = obj#visit_eval_ctx () ctx in
+ (* Check that there are no reborrows remaining *)
+ assert (!reborrows = []);
+ (* Return *)
+ ctx
+
+(** Auxiliary function to prepare reborrowing operations (used when
+ applying projectors).
+
+ Returns two functions:
+ - a function to generate fresh re-borrow ids, and register the reborrows
+ - a function to apply the reborrows in a context
+ Those functions are of course stateful.
+ *)
+let prepare_reborrows (config : C.config) (allow_reborrows : bool) :
+ (V.BorrowId.id -> V.BorrowId.id) * (C.eval_ctx -> C.eval_ctx) =
+ let reborrows : (V.BorrowId.id * V.BorrowId.id) list ref = ref [] in
+ (* The function to generate and register fresh reborrows *)
+ let fresh_reborrow (bid : V.BorrowId.id) : V.BorrowId.id =
+ if allow_reborrows then (
+ let bid' = C.fresh_borrow_id () in
+ reborrows := (bid, bid') :: !reborrows;
+ bid')
+ else failwith "Unexpected reborrow"
+ in
+ (* The function to apply the reborrows in a context *)
+ let apply_registered_reborrows (ctx : C.eval_ctx) : C.eval_ctx =
+ match config.C.mode with
+ | C.ConcreteMode ->
+ assert (!reborrows = []);
+ ctx
+ | C.SymbolicMode ->
+ (* Apply the reborrows *)
+ apply_reborrows !reborrows ctx
+ in
+ (fresh_reborrow, apply_registered_reborrows)
+
+let apply_proj_borrows_on_input_value (config : C.config) (ctx : C.eval_ctx)
+ (regions : T.RegionId.set_t) (v : V.typed_value) (ty : T.rty) :
+ C.eval_ctx * V.typed_avalue =
+ let check_symbolic_no_ended = true in
+ let allow_reborrows = true in
+ (* Prepare the reborrows *)
+ let fresh_reborrow, apply_registered_reborrows =
+ prepare_reborrows config allow_reborrows
+ in
+ (* Apply the projector *)
+ let av =
+ apply_proj_borrows check_symbolic_no_ended ctx fresh_reborrow regions v ty
+ in
+ (* Apply the reborrows *)
+ let ctx = apply_registered_reborrows ctx in
+ (* Return *)
+ (ctx, av)