summaryrefslogtreecommitdiff
path: root/compiler/fstar
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/fstar')
-rw-r--r--compiler/fstar/Primitives.fst287
1 files changed, 0 insertions, 287 deletions
diff --git a/compiler/fstar/Primitives.fst b/compiler/fstar/Primitives.fst
deleted file mode 100644
index 96138e46..00000000
--- a/compiler/fstar/Primitives.fst
+++ /dev/null
@@ -1,287 +0,0 @@
-/// This file lists primitive and assumed functions and types
-module Primitives
-open FStar.Mul
-open FStar.List.Tot
-
-#set-options "--z3rlimit 15 --fuel 0 --ifuel 1"
-
-(*** Utilities *)
-val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) :
- ls':list a{
- length ls' = length ls /\
- index ls' i == x
- }
-#push-options "--fuel 1"
-let rec list_update #a ls i x =
- match ls with
- | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x
-#pop-options
-
-(*** Result *)
-type result (a : Type0) : Type0 =
-| Return : v:a -> result a
-| Fail : result a
-
-// Monadic bind and return.
-// Re-definining those allows us to customize the result of the monadic notations
-// like: `y <-- f x;`
-let return (#a : Type0) (x:a) : result a = Return x
-let bind (#a #b : Type0) (m : result a) (f : a -> result b) : result b =
- match m with
- | Return x -> f x
- | Fail -> Fail
-
-// Monadic assert(...)
-let massert (b:bool) : result unit = if b then Return () else Fail
-
-// Normalize and unwrap a successful result (used for globals).
-let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x
-
-(*** Misc *)
-type char = FStar.Char.char
-type string = string
-
-let mem_replace_fwd (a : Type0) (x : a) (y : a) : a = x
-let mem_replace_back (a : Type0) (x : a) (y : a) : a = y
-
-(*** Scalars *)
-/// Rk.: most of the following code was at least partially generated
-
-let isize_min : int = -9223372036854775808 // TODO: should be opaque
-let isize_max : int = 9223372036854775807 // TODO: should be opaque
-let i8_min : int = -128
-let i8_max : int = 127
-let i16_min : int = -32768
-let i16_max : int = 32767
-let i32_min : int = -2147483648
-let i32_max : int = 2147483647
-let i64_min : int = -9223372036854775808
-let i64_max : int = 9223372036854775807
-let i128_min : int = -170141183460469231731687303715884105728
-let i128_max : int = 170141183460469231731687303715884105727
-let usize_min : int = 0
-let usize_max : int = 4294967295 // TODO: should be opaque
-let u8_min : int = 0
-let u8_max : int = 255
-let u16_min : int = 0
-let u16_max : int = 65535
-let u32_min : int = 0
-let u32_max : int = 4294967295
-let u64_min : int = 0
-let u64_max : int = 18446744073709551615
-let u128_min : int = 0
-let u128_max : int = 340282366920938463463374607431768211455
-
-type scalar_ty =
-| Isize
-| I8
-| I16
-| I32
-| I64
-| I128
-| Usize
-| U8
-| U16
-| U32
-| U64
-| U128
-
-let scalar_min (ty : scalar_ty) : int =
- match ty with
- | Isize -> isize_min
- | I8 -> i8_min
- | I16 -> i16_min
- | I32 -> i32_min
- | I64 -> i64_min
- | I128 -> i128_min
- | Usize -> usize_min
- | U8 -> u8_min
- | U16 -> u16_min
- | U32 -> u32_min
- | U64 -> u64_min
- | U128 -> u128_min
-
-let scalar_max (ty : scalar_ty) : int =
- match ty with
- | Isize -> isize_max
- | I8 -> i8_max
- | I16 -> i16_max
- | I32 -> i32_max
- | I64 -> i64_max
- | I128 -> i128_max
- | Usize -> usize_max
- | U8 -> u8_max
- | U16 -> u16_max
- | U32 -> u32_max
- | U64 -> u64_max
- | U128 -> u128_max
-
-type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty}
-
-let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) =
- if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail
-
-let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x)
-
-let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- if y <> 0 then mk_scalar ty (x / y) else Fail
-
-/// The remainder operation
-let int_rem (x : int) (y : int{y <> 0}) : int =
- if x >= 0 then (x % y) else -(x % y)
-
-(* Checking consistency with Rust *)
-let _ = assert_norm(int_rem 1 2 = 1)
-let _ = assert_norm(int_rem (-1) 2 = -1)
-let _ = assert_norm(int_rem 1 (-2) = 1)
-let _ = assert_norm(int_rem (-1) (-2) = -1)
-
-let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- if y <> 0 then mk_scalar ty (int_rem x y) else Fail
-
-let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x + y)
-
-let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x - y)
-
-let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x * y)
-
-(** Cast an integer from a [src_ty] to a [tgt_ty] *)
-// TODO: check the semantics of casts in Rust
-let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) =
- mk_scalar tgt_ty x
-
-/// The scalar types
-type isize : eqtype = scalar Isize
-type i8 : eqtype = scalar I8
-type i16 : eqtype = scalar I16
-type i32 : eqtype = scalar I32
-type i64 : eqtype = scalar I64
-type i128 : eqtype = scalar I128
-type usize : eqtype = scalar Usize
-type u8 : eqtype = scalar U8
-type u16 : eqtype = scalar U16
-type u32 : eqtype = scalar U32
-type u64 : eqtype = scalar U64
-type u128 : eqtype = scalar U128
-
-/// Negation
-let isize_neg = scalar_neg #Isize
-let i8_neg = scalar_neg #I8
-let i16_neg = scalar_neg #I16
-let i32_neg = scalar_neg #I32
-let i64_neg = scalar_neg #I64
-let i128_neg = scalar_neg #I128
-
-/// Division
-let isize_div = scalar_div #Isize
-let i8_div = scalar_div #I8
-let i16_div = scalar_div #I16
-let i32_div = scalar_div #I32
-let i64_div = scalar_div #I64
-let i128_div = scalar_div #I128
-let usize_div = scalar_div #Usize
-let u8_div = scalar_div #U8
-let u16_div = scalar_div #U16
-let u32_div = scalar_div #U32
-let u64_div = scalar_div #U64
-let u128_div = scalar_div #U128
-
-/// Remainder
-let isize_rem = scalar_rem #Isize
-let i8_rem = scalar_rem #I8
-let i16_rem = scalar_rem #I16
-let i32_rem = scalar_rem #I32
-let i64_rem = scalar_rem #I64
-let i128_rem = scalar_rem #I128
-let usize_rem = scalar_rem #Usize
-let u8_rem = scalar_rem #U8
-let u16_rem = scalar_rem #U16
-let u32_rem = scalar_rem #U32
-let u64_rem = scalar_rem #U64
-let u128_rem = scalar_rem #U128
-
-/// Addition
-let isize_add = scalar_add #Isize
-let i8_add = scalar_add #I8
-let i16_add = scalar_add #I16
-let i32_add = scalar_add #I32
-let i64_add = scalar_add #I64
-let i128_add = scalar_add #I128
-let usize_add = scalar_add #Usize
-let u8_add = scalar_add #U8
-let u16_add = scalar_add #U16
-let u32_add = scalar_add #U32
-let u64_add = scalar_add #U64
-let u128_add = scalar_add #U128
-
-/// Substraction
-let isize_sub = scalar_sub #Isize
-let i8_sub = scalar_sub #I8
-let i16_sub = scalar_sub #I16
-let i32_sub = scalar_sub #I32
-let i64_sub = scalar_sub #I64
-let i128_sub = scalar_sub #I128
-let usize_sub = scalar_sub #Usize
-let u8_sub = scalar_sub #U8
-let u16_sub = scalar_sub #U16
-let u32_sub = scalar_sub #U32
-let u64_sub = scalar_sub #U64
-let u128_sub = scalar_sub #U128
-
-/// Multiplication
-let isize_mul = scalar_mul #Isize
-let i8_mul = scalar_mul #I8
-let i16_mul = scalar_mul #I16
-let i32_mul = scalar_mul #I32
-let i64_mul = scalar_mul #I64
-let i128_mul = scalar_mul #I128
-let usize_mul = scalar_mul #Usize
-let u8_mul = scalar_mul #U8
-let u16_mul = scalar_mul #U16
-let u32_mul = scalar_mul #U32
-let u64_mul = scalar_mul #U64
-let u128_mul = scalar_mul #U128
-
-(*** Vector *)
-type vec (a : Type0) = v:list a{length v <= usize_max}
-
-let vec_new (a : Type0) : vec a = assert_norm(length #a [] == 0); []
-let vec_len (a : Type0) (v : vec a) : usize = length v
-
-// The **forward** function shouldn't be used
-let vec_push_fwd (a : Type0) (v : vec a) (x : a) : unit = ()
-let vec_push_back (a : Type0) (v : vec a) (x : a) :
- Pure (result (vec a))
- (requires True)
- (ensures (fun res ->
- match res with
- | Fail -> True
- | Return v' -> length v' = length v + 1)) =
- if length v < usize_max then begin
- (**) assert_norm(length [x] == 1);
- (**) append_length v [x];
- (**) assert(length (append v [x]) = length v + 1);
- Return (append v [x])
- end
- else Fail
-
-// The **forward** function shouldn't be used
-let vec_insert_fwd (a : Type0) (v : vec a) (i : usize) (x : a) : result unit =
- if i < length v then Return () else Fail
-let vec_insert_back (a : Type0) (v : vec a) (i : usize) (x : a) : result (vec a) =
- if i < length v then Return (list_update v i x) else Fail
-
-// The **backward** function shouldn't be used
-let vec_index_fwd (a : Type0) (v : vec a) (i : usize) : result a =
- if i < length v then Return (index v i) else Fail
-let vec_index_back (a : Type0) (v : vec a) (i : usize) (x : a) : result unit =
- if i < length v then Return () else Fail
-
-let vec_index_mut_fwd (a : Type0) (v : vec a) (i : usize) : result a =
- if i < length v then Return (index v i) else Fail
-let vec_index_mut_back (a : Type0) (v : vec a) (i : usize) (nx : a) : result (vec a) =
- if i < length v then Return (list_update v i nx) else Fail
-