summaryrefslogtreecommitdiff
path: root/compiler/InterpreterExpressions.ml
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/InterpreterExpressions.ml')
-rw-r--r--compiler/InterpreterExpressions.ml372
1 files changed, 211 insertions, 161 deletions
diff --git a/compiler/InterpreterExpressions.ml b/compiler/InterpreterExpressions.ml
index afbf4605..48a1cce6 100644
--- a/compiler/InterpreterExpressions.ml
+++ b/compiler/InterpreterExpressions.ml
@@ -11,6 +11,7 @@ open Cps
open InterpreterUtils
open InterpreterExpansion
open InterpreterPaths
+open Errors
(** The local logger *)
let log = Logging.expressions_log
@@ -23,20 +24,21 @@ let log = Logging.expressions_log
Note that the place should have been prepared so that there are no remaining
loans.
*)
-let expand_primitively_copyable_at_place (config : config)
+let expand_primitively_copyable_at_place (config : config) (meta : Meta.meta)
(access : access_kind) (p : place) : cm_fun =
fun cf ctx ->
(* Small helper *)
let rec expand : cm_fun =
fun cf ctx ->
- let v = read_place access p ctx in
+ let v = read_place meta access p ctx in
match
find_first_primitively_copyable_sv_with_borrows ctx.type_ctx.type_infos v
with
| None -> cf ctx
| Some sv ->
let cc =
- expand_symbolic_value_no_branching config sv (Some (mk_mplace p ctx))
+ expand_symbolic_value_no_branching config meta sv
+ (Some (mk_mplace meta p ctx))
in
comp cc expand cf ctx
in
@@ -48,46 +50,51 @@ let expand_primitively_copyable_at_place (config : config)
We also check that the value *doesn't contain bottoms or reserved
borrows*.
*)
-let read_place (access : access_kind) (p : place) (cf : typed_value -> m_fun) :
- m_fun =
+let read_place (meta : Meta.meta) (access : access_kind) (p : place)
+ (cf : typed_value -> m_fun) : m_fun =
fun ctx ->
- let v = read_place access p ctx in
+ let v = read_place meta access p ctx in
(* Check that there are no bottoms in the value *)
- assert (not (bottom_in_value ctx.ended_regions v));
+ cassert __FILE__ __LINE__
+ (not (bottom_in_value ctx.ended_regions v))
+ meta "There should be no bottoms in the value";
(* Check that there are no reserved borrows in the value *)
- assert (not (reserved_in_value v));
+ cassert __FILE__ __LINE__
+ (not (reserved_in_value v))
+ meta "There should be no reserved borrows in the value";
(* Call the continuation *)
cf v ctx
-let access_rplace_reorganize_and_read (config : config)
+let access_rplace_reorganize_and_read (config : config) (meta : Meta.meta)
(expand_prim_copy : bool) (access : access_kind) (p : place)
(cf : typed_value -> m_fun) : m_fun =
fun ctx ->
(* Make sure we can evaluate the path *)
- let cc = update_ctx_along_read_place config access p in
+ let cc = update_ctx_along_read_place config meta access p in
(* End the proper loans at the place itself *)
- let cc = comp cc (end_loans_at_place config access p) in
+ let cc = comp cc (end_loans_at_place config meta access p) in
(* Expand the copyable values which contain borrows (which are necessarily shared
* borrows) *)
let cc =
if expand_prim_copy then
- comp cc (expand_primitively_copyable_at_place config access p)
+ comp cc (expand_primitively_copyable_at_place config meta access p)
else cc
in
(* Read the place - note that this checks that the value doesn't contain bottoms *)
- let read_place = read_place access p in
+ let read_place = read_place meta access p in
(* Compose *)
comp cc read_place cf ctx
-let access_rplace_reorganize (config : config) (expand_prim_copy : bool)
- (access : access_kind) (p : place) : cm_fun =
+let access_rplace_reorganize (config : config) (meta : Meta.meta)
+ (expand_prim_copy : bool) (access : access_kind) (p : place) : cm_fun =
fun cf ctx ->
- access_rplace_reorganize_and_read config expand_prim_copy access p
+ access_rplace_reorganize_and_read config meta expand_prim_copy access p
(fun _v -> cf)
ctx
(** Convert an operand constant operand value to a typed value *)
-let literal_to_typed_value (ty : literal_type) (cv : literal) : typed_value =
+let literal_to_typed_value (meta : Meta.meta) (ty : literal_type) (cv : literal)
+ : typed_value =
(* Check the type while converting - we actually need some information
* contained in the type *)
log#ldebug
@@ -100,11 +107,11 @@ let literal_to_typed_value (ty : literal_type) (cv : literal) : typed_value =
| TChar, VChar v -> { value = VLiteral (VChar v); ty = TLiteral ty }
| TInteger int_ty, VScalar v ->
(* Check the type and the ranges *)
- assert (int_ty = v.int_ty);
- assert (check_scalar_value_in_range v);
+ sanity_check __FILE__ __LINE__ (int_ty = v.int_ty) meta;
+ sanity_check __FILE__ __LINE__ (check_scalar_value_in_range v) meta;
{ value = VLiteral (VScalar v); ty = TLiteral ty }
(* Remaining cases (invalid) *)
- | _, _ -> raise (Failure "Improperly typed constant value")
+ | _, _ -> craise __FILE__ __LINE__ meta "Improperly typed constant value"
(** Copy a value, and return the resulting value.
@@ -117,13 +124,14 @@ let literal_to_typed_value (ty : literal_type) (cv : literal) : typed_value =
parameter to control this copy ([allow_adt_copy]). Note that here by ADT we
mean the user-defined ADTs (not tuples or assumed types).
*)
-let rec copy_value (allow_adt_copy : bool) (config : config) (ctx : eval_ctx)
- (v : typed_value) : eval_ctx * typed_value =
+let rec copy_value (meta : Meta.meta) (allow_adt_copy : bool) (config : config)
+ (ctx : eval_ctx) (v : typed_value) : eval_ctx * typed_value =
log#ldebug
(lazy
("copy_value: "
- ^ typed_value_to_string ctx v
- ^ "\n- context:\n" ^ eval_ctx_to_string ctx));
+ ^ typed_value_to_string ~meta:(Some meta) ctx v
+ ^ "\n- context:\n"
+ ^ eval_ctx_to_string ~meta:(Some meta) ctx));
(* Remark: at some point we rewrote this function to use iterators, but then
* we reverted the changes: the result was less clear actually. In particular,
* the fact that we have exhaustive matches below makes very obvious the cases
@@ -134,9 +142,12 @@ let rec copy_value (allow_adt_copy : bool) (config : config) (ctx : eval_ctx)
(* Sanity check *)
(match v.ty with
| TAdt (TAssumed TBox, _) ->
- raise (Failure "Can't copy an assumed value other than Option")
+ exec_raise __FILE__ __LINE__ meta
+ "Can't copy an assumed value other than Option"
| TAdt (TAdtId _, _) as ty ->
- assert (allow_adt_copy || ty_is_primitively_copyable ty)
+ sanity_check __FILE__ __LINE__
+ (allow_adt_copy || ty_is_primitively_copyable ty)
+ meta
| TAdt (TTuple, _) -> () (* Ok *)
| TAdt
( TAssumed (TSlice | TArray),
@@ -146,15 +157,17 @@ let rec copy_value (allow_adt_copy : bool) (config : config) (ctx : eval_ctx)
const_generics = [];
trait_refs = [];
} ) ->
- assert (ty_is_primitively_copyable ty)
- | _ -> raise (Failure "Unreachable"));
+ exec_assert __FILE__ __LINE__
+ (ty_is_primitively_copyable ty)
+ meta "The type is not primitively copyable"
+ | _ -> exec_raise __FILE__ __LINE__ meta "Unreachable");
let ctx, fields =
List.fold_left_map
- (copy_value allow_adt_copy config)
+ (copy_value meta allow_adt_copy config)
ctx av.field_values
in
(ctx, { v with value = VAdt { av with field_values = fields } })
- | VBottom -> raise (Failure "Can't copy ⊥")
+ | VBottom -> exec_raise __FILE__ __LINE__ meta "Can't copy ⊥"
| VBorrow bc -> (
(* We can only copy shared borrows *)
match bc with
@@ -162,24 +175,28 @@ let rec copy_value (allow_adt_copy : bool) (config : config) (ctx : eval_ctx)
(* We need to create a new borrow id for the copied borrow, and
* update the context accordingly *)
let bid' = fresh_borrow_id () in
- let ctx = InterpreterBorrows.reborrow_shared bid bid' ctx in
+ let ctx = InterpreterBorrows.reborrow_shared meta bid bid' ctx in
(ctx, { v with value = VBorrow (VSharedBorrow bid') })
- | VMutBorrow (_, _) -> raise (Failure "Can't copy a mutable borrow")
+ | VMutBorrow (_, _) ->
+ exec_raise __FILE__ __LINE__ meta "Can't copy a mutable borrow"
| VReservedMutBorrow _ ->
- raise (Failure "Can't copy a reserved mut borrow"))
+ exec_raise __FILE__ __LINE__ meta "Can't copy a reserved mut borrow")
| VLoan lc -> (
(* We can only copy shared loans *)
match lc with
- | VMutLoan _ -> raise (Failure "Can't copy a mutable loan")
+ | VMutLoan _ ->
+ exec_raise __FILE__ __LINE__ meta "Can't copy a mutable loan"
| VSharedLoan (_, sv) ->
(* We don't copy the shared loan: only the shared value inside *)
- copy_value allow_adt_copy config ctx sv)
+ copy_value meta allow_adt_copy config ctx sv)
| VSymbolic sp ->
(* We can copy only if the type is "primitively" copyable.
* Note that in the general case, copy is a trait: copying values
* thus requires calling the proper function. Here, we copy values
* for very simple types such as integers, shared borrows, etc. *)
- assert (ty_is_primitively_copyable (Substitute.erase_regions sp.sv_ty));
+ cassert __FILE__ __LINE__
+ (ty_is_primitively_copyable (Substitute.erase_regions sp.sv_ty))
+ meta "Not primitively copyable";
(* If the type is copyable, we simply return the current value. Side
* remark: what is important to look at when copying symbolic values
* is symbolic expansion. The important subcase is the expansion of shared
@@ -224,7 +241,8 @@ let rec copy_value (allow_adt_copy : bool) (config : config) (ctx : eval_ctx)
what we do in the formalization (because we don't enforce the same constraints
as MIR in the formalization).
*)
-let prepare_eval_operand_reorganize (config : config) (op : operand) : cm_fun =
+let prepare_eval_operand_reorganize (config : config) (meta : Meta.meta)
+ (op : operand) : cm_fun =
fun cf ctx ->
let prepare : cm_fun =
fun cf ctx ->
@@ -237,36 +255,38 @@ let prepare_eval_operand_reorganize (config : config) (op : operand) : cm_fun =
let access = Read in
(* Expand the symbolic values, if necessary *)
let expand_prim_copy = true in
- access_rplace_reorganize config expand_prim_copy access p cf ctx
+ access_rplace_reorganize config meta expand_prim_copy access p cf ctx
| Move p ->
(* Access the value *)
let access = Move in
let expand_prim_copy = false in
- access_rplace_reorganize config expand_prim_copy access p cf ctx
+ access_rplace_reorganize config meta expand_prim_copy access p cf ctx
in
(* Apply *)
prepare cf ctx
(** Evaluate an operand, without reorganizing the context before *)
-let eval_operand_no_reorganize (config : config) (op : operand)
- (cf : typed_value -> m_fun) : m_fun =
+let eval_operand_no_reorganize (config : config) (meta : Meta.meta)
+ (op : operand) (cf : typed_value -> m_fun) : m_fun =
fun ctx ->
(* Debug *)
log#ldebug
(lazy
("eval_operand_no_reorganize: op: " ^ operand_to_string ctx op
- ^ "\n- ctx:\n" ^ eval_ctx_to_string ctx ^ "\n"));
+ ^ "\n- ctx:\n"
+ ^ eval_ctx_to_string ~meta:(Some meta) ctx
+ ^ "\n"));
(* Evaluate *)
match op with
| Constant cv -> (
match cv.value with
| CLiteral lit ->
- cf (literal_to_typed_value (ty_as_literal cv.ty) lit) ctx
+ cf (literal_to_typed_value meta (ty_as_literal cv.ty) lit) ctx
| CTraitConst (trait_ref, const_name) -> (
let ctx0 = ctx in
(* Simply introduce a fresh symbolic value *)
let ty = cv.ty in
- let v = mk_fresh_symbolic_typed_value ty in
+ let v = mk_fresh_symbolic_typed_value meta ty in
(* Continue the evaluation *)
let e = cf v ctx in
(* Wrap the generated expression *)
@@ -277,7 +297,7 @@ let eval_operand_no_reorganize (config : config) (op : operand)
(SymbolicAst.IntroSymbolic
( ctx0,
None,
- value_as_symbolic v.value,
+ value_as_symbolic meta v.value,
SymbolicAst.VaTraitConstValue (trait_ref, const_name),
e )))
| CVar vid -> (
@@ -294,49 +314,54 @@ let eval_operand_no_reorganize (config : config) (op : operand)
| ConcreteMode ->
(* Copy the value - this is more of a sanity check *)
let allow_adt_copy = false in
- copy_value allow_adt_copy config ctx cv
+ copy_value meta allow_adt_copy config ctx cv
| SymbolicMode ->
(* We use the looked up value only for its type *)
- let v = mk_fresh_symbolic_typed_value cv.ty in
+ let v = mk_fresh_symbolic_typed_value meta cv.ty in
(ctx, v)
in
(* Continue *)
let e = cf cv ctx in
(* If we are synthesizing a symbolic AST, it means that we are in symbolic
mode: the value of the const generic is necessarily symbolic. *)
- assert (e = None || is_symbolic cv.value);
+ sanity_check __FILE__ __LINE__ (e = None || is_symbolic cv.value) meta;
(* We have to wrap the generated expression *)
match e with
| None -> None
| Some e ->
(* If we are synthesizing a symbolic AST, it means that we are in symbolic
mode: the value of the const generic is necessarily symbolic. *)
- assert (is_symbolic cv.value);
+ sanity_check __FILE__ __LINE__ (is_symbolic cv.value) meta;
(* *)
Some
(SymbolicAst.IntroSymbolic
( ctx0,
None,
- value_as_symbolic cv.value,
+ value_as_symbolic meta cv.value,
SymbolicAst.VaCgValue vid,
e )))
- | CFnPtr _ -> raise (Failure "TODO"))
+ | CFnPtr _ ->
+ craise __FILE__ __LINE__ meta
+ "Function pointers are not supported yet")
| Copy p ->
(* Access the value *)
let access = Read in
- let cc = read_place access p in
+ let cc = read_place meta access p in
(* Copy the value *)
let copy cf v : m_fun =
fun ctx ->
(* Sanity checks *)
- assert (not (bottom_in_value ctx.ended_regions v));
- assert (
- Option.is_none
- (find_first_primitively_copyable_sv_with_borrows
- ctx.type_ctx.type_infos v));
+ exec_assert __FILE__ __LINE__
+ (not (bottom_in_value ctx.ended_regions v))
+ meta "Can not copy a value containing bottom";
+ sanity_check __FILE__ __LINE__
+ (Option.is_none
+ (find_first_primitively_copyable_sv_with_borrows
+ ctx.type_ctx.type_infos v))
+ meta;
(* Actually perform the copy *)
let allow_adt_copy = false in
- let ctx, v = copy_value allow_adt_copy config ctx v in
+ let ctx, v = copy_value meta allow_adt_copy config ctx v in
(* Continue *)
cf v ctx
in
@@ -345,68 +370,73 @@ let eval_operand_no_reorganize (config : config) (op : operand)
| Move p ->
(* Access the value *)
let access = Move in
- let cc = read_place access p in
+ let cc = read_place meta access p in
(* Move the value *)
let move cf v : m_fun =
fun ctx ->
(* Check that there are no bottoms in the value we are about to move *)
- assert (not (bottom_in_value ctx.ended_regions v));
+ exec_assert __FILE__ __LINE__
+ (not (bottom_in_value ctx.ended_regions v))
+ meta "There should be no bottoms in the value we are about to move";
let bottom : typed_value = { value = VBottom; ty = v.ty } in
- let ctx = write_place access p bottom ctx in
+ let ctx = write_place meta access p bottom ctx in
cf v ctx
in
(* Compose and apply *)
comp cc move cf ctx
-let eval_operand (config : config) (op : operand) (cf : typed_value -> m_fun) :
- m_fun =
+let eval_operand (config : config) (meta : Meta.meta) (op : operand)
+ (cf : typed_value -> m_fun) : m_fun =
fun ctx ->
(* Debug *)
log#ldebug
(lazy
("eval_operand: op: " ^ operand_to_string ctx op ^ "\n- ctx:\n"
- ^ eval_ctx_to_string ctx ^ "\n"));
+ ^ eval_ctx_to_string ~meta:(Some meta) ctx
+ ^ "\n"));
(* We reorganize the context, then evaluate the operand *)
comp
- (prepare_eval_operand_reorganize config op)
- (eval_operand_no_reorganize config op)
+ (prepare_eval_operand_reorganize config meta op)
+ (eval_operand_no_reorganize config meta op)
cf ctx
(** Small utility.
See [prepare_eval_operand_reorganize].
*)
-let prepare_eval_operands_reorganize (config : config) (ops : operand list) :
- cm_fun =
- fold_left_apply_continuation (prepare_eval_operand_reorganize config) ops
+let prepare_eval_operands_reorganize (config : config) (meta : Meta.meta)
+ (ops : operand list) : cm_fun =
+ fold_left_apply_continuation (prepare_eval_operand_reorganize config meta) ops
(** Evaluate several operands. *)
-let eval_operands (config : config) (ops : operand list)
+let eval_operands (config : config) (meta : Meta.meta) (ops : operand list)
(cf : typed_value list -> m_fun) : m_fun =
fun ctx ->
(* Prepare the operands *)
- let prepare = prepare_eval_operands_reorganize config ops in
+ let prepare = prepare_eval_operands_reorganize config meta ops in
(* Evaluate the operands *)
let eval =
- fold_left_list_apply_continuation (eval_operand_no_reorganize config) ops
+ fold_left_list_apply_continuation
+ (eval_operand_no_reorganize config meta)
+ ops
in
(* Compose and apply *)
comp prepare eval cf ctx
-let eval_two_operands (config : config) (op1 : operand) (op2 : operand)
- (cf : typed_value * typed_value -> m_fun) : m_fun =
- let eval_op = eval_operands config [ op1; op2 ] in
+let eval_two_operands (config : config) (meta : Meta.meta) (op1 : operand)
+ (op2 : operand) (cf : typed_value * typed_value -> m_fun) : m_fun =
+ let eval_op = eval_operands config meta [ op1; op2 ] in
let use_res cf res =
match res with
| [ v1; v2 ] -> cf (v1, v2)
- | _ -> raise (Failure "Unreachable")
+ | _ -> craise __FILE__ __LINE__ meta "Unreachable"
in
comp eval_op use_res cf
-let eval_unary_op_concrete (config : config) (unop : unop) (op : operand)
- (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
+let eval_unary_op_concrete (config : config) (meta : Meta.meta) (unop : unop)
+ (op : operand) (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
(* Evaluate the operand *)
- let eval_op = eval_operand config op in
+ let eval_op = eval_operand config meta op in
(* Apply the unop *)
let apply cf (v : typed_value) : m_fun =
match (unop, v.value) with
@@ -420,7 +450,7 @@ let eval_unary_op_concrete (config : config) (unop : unop) (op : operand)
| ( Cast (CastScalar (TInteger src_ty, TInteger tgt_ty)),
VLiteral (VScalar sv) ) -> (
(* Cast between integers *)
- assert (src_ty = sv.int_ty);
+ sanity_check __FILE__ __LINE__ (src_ty = sv.int_ty) meta;
let i = sv.value in
match mk_scalar tgt_ty i with
| Error _ -> cf (Error EPanic)
@@ -442,20 +472,22 @@ let eval_unary_op_concrete (config : config) (unop : unop) (op : operand)
let b =
if Z.of_int 0 = sv.value then false
else if Z.of_int 1 = sv.value then true
- else raise (Failure "Conversion from int to bool: out of range")
+ else
+ exec_raise __FILE__ __LINE__ meta
+ "Conversion from int to bool: out of range"
in
let value = VLiteral (VBool b) in
let ty = TLiteral TBool in
cf (Ok { ty; value })
- | _ -> raise (Failure "Invalid input for unop")
+ | _ -> exec_raise __FILE__ __LINE__ meta "Invalid input for unop"
in
comp eval_op apply cf
-let eval_unary_op_symbolic (config : config) (unop : unop) (op : operand)
- (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
+let eval_unary_op_symbolic (config : config) (meta : Meta.meta) (unop : unop)
+ (op : operand) (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
fun ctx ->
(* Evaluate the operand *)
- let eval_op = eval_operand config op in
+ let eval_op = eval_operand config meta op in
(* Generate a fresh symbolic value to store the result *)
let apply cf (v : typed_value) : m_fun =
fun ctx ->
@@ -465,37 +497,40 @@ let eval_unary_op_symbolic (config : config) (unop : unop) (op : operand)
| Not, (TLiteral TBool as lty) -> lty
| Neg, (TLiteral (TInteger _) as lty) -> lty
| Cast (CastScalar (_, tgt_ty)), _ -> TLiteral tgt_ty
- | _ -> raise (Failure "Invalid input for unop")
+ | _ -> exec_raise __FILE__ __LINE__ meta "Invalid input for unop"
in
let res_sv = { sv_id = res_sv_id; sv_ty = res_sv_ty } in
(* Call the continuation *)
let expr = cf (Ok (mk_typed_value_from_symbolic_value res_sv)) ctx in
(* Synthesize the symbolic AST *)
synthesize_unary_op ctx unop v
- (mk_opt_place_from_op op ctx)
+ (mk_opt_place_from_op meta op ctx)
res_sv None expr
in
(* Compose and apply *)
comp eval_op apply cf ctx
-let eval_unary_op (config : config) (unop : unop) (op : operand)
- (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
+let eval_unary_op (config : config) (meta : Meta.meta) (unop : unop)
+ (op : operand) (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
match config.mode with
- | ConcreteMode -> eval_unary_op_concrete config unop op cf
- | SymbolicMode -> eval_unary_op_symbolic config unop op cf
+ | ConcreteMode -> eval_unary_op_concrete config meta unop op cf
+ | SymbolicMode -> eval_unary_op_symbolic config meta unop op cf
(** Small helper for [eval_binary_op_concrete]: computes the result of applying
the binop *after* the operands have been successfully evaluated
*)
-let eval_binary_op_concrete_compute (binop : binop) (v1 : typed_value)
- (v2 : typed_value) : (typed_value, eval_error) result =
+let eval_binary_op_concrete_compute (meta : Meta.meta) (binop : binop)
+ (v1 : typed_value) (v2 : typed_value) : (typed_value, eval_error) result =
(* Equality check binops (Eq, Ne) accept values from a wide variety of types.
* The remaining binops only operate on scalars. *)
if binop = Eq || binop = Ne then (
(* Equality operations *)
- assert (v1.ty = v2.ty);
+ exec_assert __FILE__ __LINE__ (v1.ty = v2.ty) meta
+ "The arguments given to the binop don't have the same type";
(* Equality/inequality check is primitive only for a subset of types *)
- assert (ty_is_primitively_copyable v1.ty);
+ exec_assert __FILE__ __LINE__
+ (ty_is_primitively_copyable v1.ty)
+ meta "Type is not primitively copyable";
let b = v1 = v2 in
Ok { value = VLiteral (VBool b); ty = TLiteral TBool })
else
@@ -510,7 +545,7 @@ let eval_binary_op_concrete_compute (binop : binop) (v1 : typed_value)
match binop with
| Lt | Le | Ge | Gt ->
(* The two operands must have the same type and the result is a boolean *)
- assert (sv1.int_ty = sv2.int_ty);
+ sanity_check __FILE__ __LINE__ (sv1.int_ty = sv2.int_ty) meta;
let b =
match binop with
| Lt -> Z.lt sv1.value sv2.value
@@ -519,14 +554,14 @@ let eval_binary_op_concrete_compute (binop : binop) (v1 : typed_value)
| Gt -> Z.gt sv1.value sv2.value
| Div | Rem | Add | Sub | Mul | BitXor | BitAnd | BitOr | Shl
| Shr | Ne | Eq ->
- raise (Failure "Unreachable")
+ craise __FILE__ __LINE__ meta "Unreachable"
in
Ok
({ value = VLiteral (VBool b); ty = TLiteral TBool }
: typed_value)
| Div | Rem | Add | Sub | Mul | BitXor | BitAnd | BitOr -> (
(* The two operands must have the same type and the result is an integer *)
- assert (sv1.int_ty = sv2.int_ty);
+ sanity_check __FILE__ __LINE__ (sv1.int_ty = sv2.int_ty) meta;
let res =
match binop with
| Div ->
@@ -543,7 +578,7 @@ let eval_binary_op_concrete_compute (binop : binop) (v1 : typed_value)
| BitAnd -> raise Unimplemented
| BitOr -> raise Unimplemented
| Lt | Le | Ge | Gt | Shl | Shr | Ne | Eq ->
- raise (Failure "Unreachable")
+ craise __FILE__ __LINE__ meta "Unreachable"
in
match res with
| Error _ -> Error EPanic
@@ -554,26 +589,28 @@ let eval_binary_op_concrete_compute (binop : binop) (v1 : typed_value)
ty = TLiteral (TInteger sv1.int_ty);
})
| Shl | Shr -> raise Unimplemented
- | Ne | Eq -> raise (Failure "Unreachable"))
- | _ -> raise (Failure "Invalid inputs for binop")
+ | Ne | Eq -> craise __FILE__ __LINE__ meta "Unreachable")
+ | _ -> craise __FILE__ __LINE__ meta "Invalid inputs for binop"
-let eval_binary_op_concrete (config : config) (binop : binop) (op1 : operand)
- (op2 : operand) (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
+let eval_binary_op_concrete (config : config) (meta : Meta.meta) (binop : binop)
+ (op1 : operand) (op2 : operand)
+ (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
(* Evaluate the operands *)
- let eval_ops = eval_two_operands config op1 op2 in
+ let eval_ops = eval_two_operands config meta op1 op2 in
(* Compute the result of the binop *)
let compute cf (res : typed_value * typed_value) =
let v1, v2 = res in
- cf (eval_binary_op_concrete_compute binop v1 v2)
+ cf (eval_binary_op_concrete_compute meta binop v1 v2)
in
(* Compose and apply *)
comp eval_ops compute cf
-let eval_binary_op_symbolic (config : config) (binop : binop) (op1 : operand)
- (op2 : operand) (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
+let eval_binary_op_symbolic (config : config) (meta : Meta.meta) (binop : binop)
+ (op1 : operand) (op2 : operand)
+ (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
fun ctx ->
(* Evaluate the operands *)
- let eval_ops = eval_two_operands config op1 op2 in
+ let eval_ops = eval_two_operands config meta op1 op2 in
(* Compute the result of applying the binop *)
let compute cf ((v1, v2) : typed_value * typed_value) : m_fun =
fun ctx ->
@@ -582,9 +619,11 @@ let eval_binary_op_symbolic (config : config) (binop : binop) (op1 : operand)
let res_sv_ty =
if binop = Eq || binop = Ne then (
(* Equality operations *)
- assert (v1.ty = v2.ty);
+ sanity_check __FILE__ __LINE__ (v1.ty = v2.ty) meta;
(* Equality/inequality check is primitive only for a subset of types *)
- assert (ty_is_primitively_copyable v1.ty);
+ exec_assert __FILE__ __LINE__
+ (ty_is_primitively_copyable v1.ty)
+ meta "The type is not primitively copyable";
TLiteral TBool)
else
(* Other operations: input types are integers *)
@@ -592,38 +631,39 @@ let eval_binary_op_symbolic (config : config) (binop : binop) (op1 : operand)
| TLiteral (TInteger int_ty1), TLiteral (TInteger int_ty2) -> (
match binop with
| Lt | Le | Ge | Gt ->
- assert (int_ty1 = int_ty2);
+ sanity_check __FILE__ __LINE__ (int_ty1 = int_ty2) meta;
TLiteral TBool
| Div | Rem | Add | Sub | Mul | BitXor | BitAnd | BitOr ->
- assert (int_ty1 = int_ty2);
+ sanity_check __FILE__ __LINE__ (int_ty1 = int_ty2) meta;
TLiteral (TInteger int_ty1)
| Shl | Shr ->
(* The number of bits can be of a different integer type
than the operand *)
TLiteral (TInteger int_ty1)
- | Ne | Eq -> raise (Failure "Unreachable"))
- | _ -> raise (Failure "Invalid inputs for binop")
+ | Ne | Eq -> craise __FILE__ __LINE__ meta "Unreachable")
+ | _ -> craise __FILE__ __LINE__ meta "Invalid inputs for binop"
in
let res_sv = { sv_id = res_sv_id; sv_ty = res_sv_ty } in
(* Call the continuattion *)
let v = mk_typed_value_from_symbolic_value res_sv in
let expr = cf (Ok v) ctx in
(* Synthesize the symbolic AST *)
- let p1 = mk_opt_place_from_op op1 ctx in
- let p2 = mk_opt_place_from_op op2 ctx in
+ let p1 = mk_opt_place_from_op meta op1 ctx in
+ let p2 = mk_opt_place_from_op meta op2 ctx in
synthesize_binary_op ctx binop v1 p1 v2 p2 res_sv None expr
in
(* Compose and apply *)
comp eval_ops compute cf ctx
-let eval_binary_op (config : config) (binop : binop) (op1 : operand)
- (op2 : operand) (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
+let eval_binary_op (config : config) (meta : Meta.meta) (binop : binop)
+ (op1 : operand) (op2 : operand)
+ (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
match config.mode with
- | ConcreteMode -> eval_binary_op_concrete config binop op1 op2 cf
- | SymbolicMode -> eval_binary_op_symbolic config binop op1 op2 cf
+ | ConcreteMode -> eval_binary_op_concrete config meta binop op1 op2 cf
+ | SymbolicMode -> eval_binary_op_symbolic config meta binop op1 op2 cf
-let eval_rvalue_ref (config : config) (p : place) (bkind : borrow_kind)
- (cf : typed_value -> m_fun) : m_fun =
+let eval_rvalue_ref (config : config) (meta : Meta.meta) (p : place)
+ (bkind : borrow_kind) (cf : typed_value -> m_fun) : m_fun =
fun ctx ->
match bkind with
| BShared | BTwoPhaseMut | BShallow ->
@@ -631,19 +671,19 @@ let eval_rvalue_ref (config : config) (p : place) (bkind : borrow_kind)
In practice this restricted the behaviour too much, so for now we
forbid them.
*)
- assert (bkind <> BShallow);
+ sanity_check __FILE__ __LINE__ (bkind <> BShallow) meta;
(* Access the value *)
let access =
match bkind with
| BShared | BShallow -> Read
| BTwoPhaseMut -> Write
- | _ -> raise (Failure "Unreachable")
+ | _ -> craise __FILE__ __LINE__ meta "Unreachable"
in
let expand_prim_copy = false in
let prepare =
- access_rplace_reorganize_and_read config expand_prim_copy access p
+ access_rplace_reorganize_and_read config meta expand_prim_copy access p
in
(* Evaluate the borrowing operation *)
let eval (cf : typed_value -> m_fun) (v : typed_value) : m_fun =
@@ -663,14 +703,14 @@ let eval_rvalue_ref (config : config) (p : place) (bkind : borrow_kind)
{ v with value = v' }
in
(* Update the borrowed value in the context *)
- let ctx = write_place access p nv ctx in
+ let ctx = write_place meta access p nv ctx in
(* Compute the rvalue - simply a shared borrow with a the fresh id.
* Note that the reference is *mutable* if we do a two-phase borrow *)
let ref_kind =
match bkind with
| BShared | BShallow -> RShared
| BTwoPhaseMut -> RMut
- | _ -> raise (Failure "Unreachable")
+ | _ -> craise __FILE__ __LINE__ meta "Unreachable"
in
let rv_ty = TRef (RErased, v.ty, ref_kind) in
let bc =
@@ -680,7 +720,7 @@ let eval_rvalue_ref (config : config) (p : place) (bkind : borrow_kind)
handle shallow borrows like shared borrows *)
VSharedBorrow bid
| BTwoPhaseMut -> VReservedMutBorrow bid
- | _ -> raise (Failure "Unreachable")
+ | _ -> craise __FILE__ __LINE__ meta "Unreachable"
in
let rv : typed_value = { value = VBorrow bc; ty = rv_ty } in
(* Continue *)
@@ -693,7 +733,7 @@ let eval_rvalue_ref (config : config) (p : place) (bkind : borrow_kind)
let access = Write in
let expand_prim_copy = false in
let prepare =
- access_rplace_reorganize_and_read config expand_prim_copy access p
+ access_rplace_reorganize_and_read config meta expand_prim_copy access p
in
(* Evaluate the borrowing operation *)
let eval (cf : typed_value -> m_fun) (v : typed_value) : m_fun =
@@ -707,17 +747,18 @@ let eval_rvalue_ref (config : config) (p : place) (bkind : borrow_kind)
(* Compute the value with which to replace the value at place p *)
let nv = { v with value = VLoan (VMutLoan bid) } in
(* Update the value in the context *)
- let ctx = write_place access p nv ctx in
+ let ctx = write_place meta access p nv ctx in
(* Continue *)
cf rv ctx
in
(* Compose and apply *)
comp prepare eval cf ctx
-let eval_rvalue_aggregate (config : config) (aggregate_kind : aggregate_kind)
- (ops : operand list) (cf : typed_value -> m_fun) : m_fun =
+let eval_rvalue_aggregate (config : config) (meta : Meta.meta)
+ (aggregate_kind : aggregate_kind) (ops : operand list)
+ (cf : typed_value -> m_fun) : m_fun =
(* Evaluate the operands *)
- let eval_ops = eval_operands config ops in
+ let eval_ops = eval_operands config meta ops in
(* Compute the value *)
let compute (cf : typed_value -> m_fun) (values : typed_value list) : m_fun =
fun ctx ->
@@ -736,16 +777,18 @@ let eval_rvalue_aggregate (config : config) (aggregate_kind : aggregate_kind)
| TAdtId def_id ->
(* Sanity checks *)
let type_decl = ctx_lookup_type_decl ctx def_id in
- assert (
- List.length type_decl.generics.regions
- = List.length generics.regions);
+ sanity_check __FILE__ __LINE__
+ (List.length type_decl.generics.regions
+ = List.length generics.regions)
+ meta;
let expected_field_types =
- AssociatedTypes.ctx_adt_get_inst_norm_field_etypes ctx def_id
+ AssociatedTypes.ctx_adt_get_inst_norm_field_etypes meta ctx def_id
opt_variant_id generics
in
- assert (
- expected_field_types
- = List.map (fun (v : typed_value) -> v.ty) values);
+ sanity_check __FILE__ __LINE__
+ (expected_field_types
+ = List.map (fun (v : typed_value) -> v.ty) values)
+ meta;
(* Construct the value *)
let av : adt_value =
{ variant_id = opt_variant_id; field_values = values }
@@ -754,13 +797,17 @@ let eval_rvalue_aggregate (config : config) (aggregate_kind : aggregate_kind)
let aggregated : typed_value = { value = VAdt av; ty = aty } in
(* Call the continuation *)
cf aggregated ctx
- | TAssumed _ -> raise (Failure "Unreachable"))
+ | TAssumed _ -> craise __FILE__ __LINE__ meta "Unreachable")
| AggregatedArray (ety, cg) -> (
(* Sanity check: all the values have the proper type *)
- assert (List.for_all (fun (v : typed_value) -> v.ty = ety) values);
+ sanity_check __FILE__ __LINE__
+ (List.for_all (fun (v : typed_value) -> v.ty = ety) values)
+ meta;
(* Sanity check: the number of values is consistent with the length *)
let len = (literal_as_scalar (const_generic_as_literal cg)).value in
- assert (len = Z.of_int (List.length values));
+ sanity_check __FILE__ __LINE__
+ (len = Z.of_int (List.length values))
+ meta;
let generics = TypesUtils.mk_generic_args [] [ ety ] [ cg ] [] in
let ty = TAdt (TAssumed TArray, generics) in
(* In order to generate a better AST, we introduce a symbolic
@@ -768,21 +815,22 @@ let eval_rvalue_aggregate (config : config) (aggregate_kind : aggregate_kind)
array we introduce here might be duplicated in the generated
code: by introducing a symbolic value we introduce a let-binding
in the generated code. *)
- let saggregated = mk_fresh_symbolic_typed_value ty in
+ let saggregated = mk_fresh_symbolic_typed_value meta ty in
(* Call the continuation *)
match cf saggregated ctx with
| None -> None
| Some e ->
(* Introduce the symbolic value in the AST *)
- let sv = ValuesUtils.value_as_symbolic saggregated.value in
+ let sv = ValuesUtils.value_as_symbolic meta saggregated.value in
Some (SymbolicAst.IntroSymbolic (ctx, None, sv, VaArray values, e)))
- | AggregatedClosure _ -> raise (Failure "Closures are not supported yet")
+ | AggregatedClosure _ ->
+ craise __FILE__ __LINE__ meta "Closures are not supported yet"
in
(* Compose and apply *)
comp eval_ops compute cf
-let eval_rvalue_not_global (config : config) (rvalue : rvalue)
- (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
+let eval_rvalue_not_global (config : config) (meta : Meta.meta)
+ (rvalue : rvalue) (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
fun ctx ->
log#ldebug (lazy "eval_rvalue");
(* Small helpers *)
@@ -793,28 +841,30 @@ let eval_rvalue_not_global (config : config) (rvalue : rvalue)
let comp_wrap f = comp f wrap_in_result cf in
(* Delegate to the proper auxiliary function *)
match rvalue with
- | Use op -> comp_wrap (eval_operand config op) ctx
- | RvRef (p, bkind) -> comp_wrap (eval_rvalue_ref config p bkind) ctx
- | UnaryOp (unop, op) -> eval_unary_op config unop op cf ctx
- | BinaryOp (binop, op1, op2) -> eval_binary_op config binop op1 op2 cf ctx
+ | Use op -> comp_wrap (eval_operand config meta op) ctx
+ | RvRef (p, bkind) -> comp_wrap (eval_rvalue_ref config meta p bkind) ctx
+ | UnaryOp (unop, op) -> eval_unary_op config meta unop op cf ctx
+ | BinaryOp (binop, op1, op2) ->
+ eval_binary_op config meta binop op1 op2 cf ctx
| Aggregate (aggregate_kind, ops) ->
- comp_wrap (eval_rvalue_aggregate config aggregate_kind ops) ctx
+ comp_wrap (eval_rvalue_aggregate config meta aggregate_kind ops) ctx
| Discriminant _ ->
- raise
- (Failure
- "Unreachable: discriminant reads should have been eliminated from \
- the AST")
- | Global _ -> raise (Failure "Unreachable")
+ craise __FILE__ __LINE__ meta
+ "Unreachable: discriminant reads should have been eliminated from the \
+ AST"
+ | Global _ -> craise __FILE__ __LINE__ meta "Unreachable"
-let eval_fake_read (config : config) (p : place) : cm_fun =
+let eval_fake_read (config : config) (meta : Meta.meta) (p : place) : cm_fun =
fun cf ctx ->
let expand_prim_copy = false in
let cf_prepare cf =
- access_rplace_reorganize_and_read config expand_prim_copy Read p cf
+ access_rplace_reorganize_and_read config meta expand_prim_copy Read p cf
in
let cf_continue cf v : m_fun =
fun ctx ->
- assert (not (bottom_in_value ctx.ended_regions v));
+ cassert __FILE__ __LINE__
+ (not (bottom_in_value ctx.ended_regions v))
+ meta "Fake read: the value contains bottom";
cf ctx
in
comp cf_prepare cf_continue cf ctx