summaryrefslogtreecommitdiff
path: root/compiler/InterpreterExpressions.ml
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/InterpreterExpressions.ml')
-rw-r--r--compiler/InterpreterExpressions.ml818
1 files changed, 387 insertions, 431 deletions
diff --git a/compiler/InterpreterExpressions.ml b/compiler/InterpreterExpressions.ml
index 5a4fe7da..2223897c 100644
--- a/compiler/InterpreterExpressions.ml
+++ b/compiler/InterpreterExpressions.ml
@@ -24,76 +24,77 @@ let log = Logging.expressions_log
Note that the place should have been prepared so that there are no remaining
loans.
*)
-let expand_primitively_copyable_at_place (config : config) (meta : Meta.meta)
+let expand_primitively_copyable_at_place (config : config) (span : Meta.span)
(access : access_kind) (p : place) : cm_fun =
- fun cf ctx ->
+ fun ctx ->
(* Small helper *)
let rec expand : cm_fun =
- fun cf ctx ->
- let v = read_place meta access p ctx in
+ fun ctx ->
+ let v = read_place span access p ctx in
match
find_first_primitively_copyable_sv_with_borrows ctx.type_ctx.type_infos v
with
- | None -> cf ctx
+ | None -> (ctx, fun e -> e)
| Some sv ->
- let cc =
- expand_symbolic_value_no_branching config meta sv
- (Some (mk_mplace meta p ctx))
+ let ctx, cc =
+ expand_symbolic_value_no_branching config span sv
+ (Some (mk_mplace span p ctx))
+ ctx
in
- comp cc expand cf ctx
+ comp cc (expand ctx)
in
(* Apply *)
- expand cf ctx
+ expand ctx
-(** Read a place (CPS-style function).
+(** Read a place.
- We also check that the value *doesn't contain bottoms or reserved
+ We check that the value *doesn't contain bottoms or reserved
borrows*.
*)
-let read_place (meta : Meta.meta) (access : access_kind) (p : place)
- (cf : typed_value -> m_fun) : m_fun =
- fun ctx ->
- let v = read_place meta access p ctx in
+let read_place_check (span : Meta.span) (access : access_kind) (p : place)
+ (ctx : eval_ctx) : typed_value =
+ let v = read_place span access p ctx in
(* Check that there are no bottoms in the value *)
cassert __FILE__ __LINE__
(not (bottom_in_value ctx.ended_regions v))
- meta "There should be no bottoms in the value";
+ span "There should be no bottoms in the value";
(* Check that there are no reserved borrows in the value *)
cassert __FILE__ __LINE__
(not (reserved_in_value v))
- meta "There should be no reserved borrows in the value";
- (* Call the continuation *)
- cf v ctx
+ span "There should be no reserved borrows in the value";
+ (* Return *)
+ v
-let access_rplace_reorganize_and_read (config : config) (meta : Meta.meta)
+let access_rplace_reorganize_and_read (config : config) (span : Meta.span)
(expand_prim_copy : bool) (access : access_kind) (p : place)
- (cf : typed_value -> m_fun) : m_fun =
- fun ctx ->
+ (ctx : eval_ctx) : typed_value * eval_ctx * (eval_result -> eval_result) =
(* Make sure we can evaluate the path *)
- let cc = update_ctx_along_read_place config meta access p in
+ let ctx, cc = update_ctx_along_read_place config span access p ctx in
(* End the proper loans at the place itself *)
- let cc = comp cc (end_loans_at_place config meta access p) in
+ let ctx, cc = comp cc (end_loans_at_place config span access p ctx) in
(* Expand the copyable values which contain borrows (which are necessarily shared
* borrows) *)
- let cc =
- if expand_prim_copy then
- comp cc (expand_primitively_copyable_at_place config meta access p)
- else cc
+ let ctx, cc =
+ comp cc
+ (if expand_prim_copy then
+ expand_primitively_copyable_at_place config span access p ctx
+ else (ctx, fun e -> e))
in
(* Read the place - note that this checks that the value doesn't contain bottoms *)
- let read_place = read_place meta access p in
+ let ty_value = read_place_check span access p ctx in
(* Compose *)
- comp cc read_place cf ctx
+ (ty_value, ctx, cc)
-let access_rplace_reorganize (config : config) (meta : Meta.meta)
+let access_rplace_reorganize (config : config) (span : Meta.span)
(expand_prim_copy : bool) (access : access_kind) (p : place) : cm_fun =
- fun cf ctx ->
- access_rplace_reorganize_and_read config meta expand_prim_copy access p
- (fun _v -> cf)
- ctx
+ fun ctx ->
+ let _, ctx, f =
+ access_rplace_reorganize_and_read config span expand_prim_copy access p ctx
+ in
+ (ctx, f)
(** Convert an operand constant operand value to a typed value *)
-let literal_to_typed_value (meta : Meta.meta) (ty : literal_type) (cv : literal)
+let literal_to_typed_value (span : Meta.span) (ty : literal_type) (cv : literal)
: typed_value =
(* Check the type while converting - we actually need some information
* contained in the type *)
@@ -107,11 +108,11 @@ let literal_to_typed_value (meta : Meta.meta) (ty : literal_type) (cv : literal)
| TChar, VChar v -> { value = VLiteral (VChar v); ty = TLiteral ty }
| TInteger int_ty, VScalar v ->
(* Check the type and the ranges *)
- sanity_check __FILE__ __LINE__ (int_ty = v.int_ty) meta;
- sanity_check __FILE__ __LINE__ (check_scalar_value_in_range v) meta;
+ sanity_check __FILE__ __LINE__ (int_ty = v.int_ty) span;
+ sanity_check __FILE__ __LINE__ (check_scalar_value_in_range v) span;
{ value = VLiteral (VScalar v); ty = TLiteral ty }
(* Remaining cases (invalid) *)
- | _, _ -> craise __FILE__ __LINE__ meta "Improperly typed constant value"
+ | _, _ -> craise __FILE__ __LINE__ span "Improperly typed constant value"
(** Copy a value, and return the resulting value.
@@ -124,14 +125,14 @@ let literal_to_typed_value (meta : Meta.meta) (ty : literal_type) (cv : literal)
parameter to control this copy ([allow_adt_copy]). Note that here by ADT we
mean the user-defined ADTs (not tuples or assumed types).
*)
-let rec copy_value (meta : Meta.meta) (allow_adt_copy : bool) (config : config)
+let rec copy_value (span : Meta.span) (allow_adt_copy : bool) (config : config)
(ctx : eval_ctx) (v : typed_value) : eval_ctx * typed_value =
log#ldebug
(lazy
("copy_value: "
- ^ typed_value_to_string ~meta:(Some meta) ctx v
+ ^ typed_value_to_string ~span:(Some span) ctx v
^ "\n- context:\n"
- ^ eval_ctx_to_string ~meta:(Some meta) ctx));
+ ^ eval_ctx_to_string ~span:(Some span) ctx));
(* Remark: at some point we rewrote this function to use iterators, but then
* we reverted the changes: the result was less clear actually. In particular,
* the fact that we have exhaustive matches below makes very obvious the cases
@@ -142,12 +143,12 @@ let rec copy_value (meta : Meta.meta) (allow_adt_copy : bool) (config : config)
(* Sanity check *)
(match v.ty with
| TAdt (TAssumed TBox, _) ->
- exec_raise __FILE__ __LINE__ meta
+ exec_raise __FILE__ __LINE__ span
"Can't copy an assumed value other than Option"
| TAdt (TAdtId _, _) as ty ->
sanity_check __FILE__ __LINE__
(allow_adt_copy || ty_is_copyable ty)
- meta
+ span
| TAdt (TTuple, _) -> () (* Ok *)
| TAdt
( TAssumed (TSlice | TArray),
@@ -157,16 +158,16 @@ let rec copy_value (meta : Meta.meta) (allow_adt_copy : bool) (config : config)
const_generics = [];
trait_refs = [];
} ) ->
- exec_assert __FILE__ __LINE__ (ty_is_copyable ty) meta
+ exec_assert __FILE__ __LINE__ (ty_is_copyable ty) span
"The type is not primitively copyable"
- | _ -> exec_raise __FILE__ __LINE__ meta "Unreachable");
+ | _ -> exec_raise __FILE__ __LINE__ span "Unreachable");
let ctx, fields =
List.fold_left_map
- (copy_value meta allow_adt_copy config)
+ (copy_value span allow_adt_copy config)
ctx av.field_values
in
(ctx, { v with value = VAdt { av with field_values = fields } })
- | VBottom -> exec_raise __FILE__ __LINE__ meta "Can't copy ⊥"
+ | VBottom -> exec_raise __FILE__ __LINE__ span "Can't copy ⊥"
| VBorrow bc -> (
(* We can only copy shared borrows *)
match bc with
@@ -174,20 +175,20 @@ let rec copy_value (meta : Meta.meta) (allow_adt_copy : bool) (config : config)
(* We need to create a new borrow id for the copied borrow, and
* update the context accordingly *)
let bid' = fresh_borrow_id () in
- let ctx = InterpreterBorrows.reborrow_shared meta bid bid' ctx in
+ let ctx = InterpreterBorrows.reborrow_shared span bid bid' ctx in
(ctx, { v with value = VBorrow (VSharedBorrow bid') })
| VMutBorrow (_, _) ->
- exec_raise __FILE__ __LINE__ meta "Can't copy a mutable borrow"
+ exec_raise __FILE__ __LINE__ span "Can't copy a mutable borrow"
| VReservedMutBorrow _ ->
- exec_raise __FILE__ __LINE__ meta "Can't copy a reserved mut borrow")
+ exec_raise __FILE__ __LINE__ span "Can't copy a reserved mut borrow")
| VLoan lc -> (
(* We can only copy shared loans *)
match lc with
| VMutLoan _ ->
- exec_raise __FILE__ __LINE__ meta "Can't copy a mutable loan"
+ exec_raise __FILE__ __LINE__ span "Can't copy a mutable loan"
| VSharedLoan (_, sv) ->
(* We don't copy the shared loan: only the shared value inside *)
- copy_value meta allow_adt_copy config ctx sv)
+ copy_value span allow_adt_copy config ctx sv)
| VSymbolic sp ->
(* We can copy only if the type is "primitively" copyable.
* Note that in the general case, copy is a trait: copying values
@@ -195,7 +196,7 @@ let rec copy_value (meta : Meta.meta) (allow_adt_copy : bool) (config : config)
* for very simple types such as integers, shared borrows, etc. *)
cassert __FILE__ __LINE__
(ty_is_copyable (Substitute.erase_regions sp.sv_ty))
- meta "Not primitively copyable";
+ span "Not primitively copyable";
(* If the type is copyable, we simply return the current value. Side
* remark: what is important to look at when copying symbolic values
* is symbolic expansion. The important subcase is the expansion of shared
@@ -220,86 +221,85 @@ let rec copy_value (meta : Meta.meta) (allow_adt_copy : bool) (config : config)
dest <- f(move x, move y);
...
]}
+
Because of the way {!end_borrow} is implemented, when giving back the borrow
- [l0] upon evaluating [move y], we won't notice that [shared_borrow l0] has
- disappeared from the environment (it has been moved and not assigned yet,
- and so is hanging in "thin air").
+ [l0] upon evaluating [move y], if we have already moved the value of x,
+ we won't notice that [shared_borrow l0] has disappeared from the environment
+ (it has been moved and not assigned yet, and so is hanging in "thin air").
By first "preparing" the operands evaluation, we make sure no such thing
happens. To be more precise, we make sure all the updates to borrows triggered
by access *and* move operations have already been applied.
- Rk.: in the formalization, we always have an explicit "reorganization" step
+ Rem.: in the formalization, we always have an explicit "reorganization" step
in the rule premises, before the actual operand evaluation, that allows to
reorganize the environment so that it satisfies the proper conditions. This
function's role is to do the reorganization.
- Rk.: doing this is actually not completely necessary because when
+ Rem.: doing this is actually not completely necessary because when
generating MIR, rustc introduces intermediate assignments for all the function
parameters. Still, it is better for soundness purposes, and corresponds to
what we do in the formalization (because we don't enforce the same constraints
as MIR in the formalization).
*)
-let prepare_eval_operand_reorganize (config : config) (meta : Meta.meta)
+let prepare_eval_operand_reorganize (config : config) (span : Meta.span)
(op : operand) : cm_fun =
- fun cf ctx ->
- let prepare : cm_fun =
- fun cf ctx ->
- match op with
- | Constant _ ->
- (* No need to reorganize the context *)
- cf ctx
- | Copy p ->
- (* Access the value *)
- let access = Read in
- (* Expand the symbolic values, if necessary *)
- let expand_prim_copy = true in
- access_rplace_reorganize config meta expand_prim_copy access p cf ctx
- | Move p ->
- (* Access the value *)
- let access = Move in
- let expand_prim_copy = false in
- access_rplace_reorganize config meta expand_prim_copy access p cf ctx
- in
- (* Apply *)
- prepare cf ctx
+ fun ctx ->
+ match op with
+ | Constant _ ->
+ (* No need to reorganize the context *)
+ (ctx, fun e -> e)
+ | Copy p ->
+ (* Access the value *)
+ let access = Read in
+ (* Expand the symbolic values, if necessary *)
+ let expand_prim_copy = true in
+ access_rplace_reorganize config span expand_prim_copy access p ctx
+ | Move p ->
+ (* Access the value *)
+ let access = Move in
+ let expand_prim_copy = false in
+ access_rplace_reorganize config span expand_prim_copy access p ctx
(** Evaluate an operand, without reorganizing the context before *)
-let eval_operand_no_reorganize (config : config) (meta : Meta.meta)
- (op : operand) (cf : typed_value -> m_fun) : m_fun =
- fun ctx ->
+let eval_operand_no_reorganize (config : config) (span : Meta.span)
+ (op : operand) (ctx : eval_ctx) :
+ typed_value * eval_ctx * (eval_result -> eval_result) =
(* Debug *)
log#ldebug
(lazy
("eval_operand_no_reorganize: op: " ^ operand_to_string ctx op
^ "\n- ctx:\n"
- ^ eval_ctx_to_string ~meta:(Some meta) ctx
+ ^ eval_ctx_to_string ~span:(Some span) ctx
^ "\n"));
(* Evaluate *)
match op with
| Constant cv -> (
match cv.value with
| CLiteral lit ->
- cf (literal_to_typed_value meta (ty_as_literal cv.ty) lit) ctx
- | CTraitConst (trait_ref, const_name) -> (
+ ( literal_to_typed_value span (ty_as_literal cv.ty) lit,
+ ctx,
+ fun e -> e )
+ | CTraitConst (trait_ref, const_name) ->
let ctx0 = ctx in
(* Simply introduce a fresh symbolic value *)
let ty = cv.ty in
- let v = mk_fresh_symbolic_typed_value meta ty in
- (* Continue the evaluation *)
- let e = cf v ctx in
+ let v = mk_fresh_symbolic_typed_value span ty in
(* Wrap the generated expression *)
- match e with
- | None -> None
- | Some e ->
- Some
- (SymbolicAst.IntroSymbolic
- ( ctx0,
- None,
- value_as_symbolic meta v.value,
- SymbolicAst.VaTraitConstValue (trait_ref, const_name),
- e )))
- | CVar vid -> (
+ let cf e =
+ match e with
+ | None -> None
+ | Some e ->
+ Some
+ (SymbolicAst.IntroSymbolic
+ ( ctx0,
+ None,
+ value_as_symbolic span v.value,
+ SymbolicAst.VaTraitConstValue (trait_ref, const_name),
+ e ))
+ in
+ (v, ctx, cf)
+ | CVar vid ->
let ctx0 = ctx in
(* In concrete mode: lookup the const generic value.
In symbolic mode: introduce a fresh symbolic value.
@@ -313,221 +313,200 @@ let eval_operand_no_reorganize (config : config) (meta : Meta.meta)
| ConcreteMode ->
(* Copy the value - this is more of a sanity check *)
let allow_adt_copy = false in
- copy_value meta allow_adt_copy config ctx cv
+ copy_value span allow_adt_copy config ctx cv
| SymbolicMode ->
(* We use the looked up value only for its type *)
- let v = mk_fresh_symbolic_typed_value meta cv.ty in
+ let v = mk_fresh_symbolic_typed_value span cv.ty in
(ctx, v)
in
- (* Continue *)
- let e = cf cv ctx in
- (* If we are synthesizing a symbolic AST, it means that we are in symbolic
- mode: the value of the const generic is necessarily symbolic. *)
- sanity_check __FILE__ __LINE__ (e = None || is_symbolic cv.value) meta;
(* We have to wrap the generated expression *)
- match e with
- | None -> None
- | Some e ->
- (* If we are synthesizing a symbolic AST, it means that we are in symbolic
- mode: the value of the const generic is necessarily symbolic. *)
- sanity_check __FILE__ __LINE__ (is_symbolic cv.value) meta;
- (* *)
- Some
- (SymbolicAst.IntroSymbolic
- ( ctx0,
- None,
- value_as_symbolic meta cv.value,
- SymbolicAst.VaCgValue vid,
- e )))
+ let cf e =
+ match e with
+ | None -> None
+ | Some e ->
+ (* If we are synthesizing a symbolic AST, it means that we are in symbolic
+ mode: the value of the const generic is necessarily symbolic. *)
+ sanity_check __FILE__ __LINE__ (is_symbolic cv.value) span;
+ (* *)
+ Some
+ (SymbolicAst.IntroSymbolic
+ ( ctx0,
+ None,
+ value_as_symbolic span cv.value,
+ SymbolicAst.VaCgValue vid,
+ e ))
+ in
+ (cv, ctx, cf)
| CFnPtr _ ->
- craise __FILE__ __LINE__ meta
+ craise __FILE__ __LINE__ span
"Function pointers are not supported yet")
| Copy p ->
(* Access the value *)
let access = Read in
- let cc = read_place meta access p in
+ let v = read_place_check span access p ctx in
+ (* Sanity checks *)
+ exec_assert __FILE__ __LINE__
+ (not (bottom_in_value ctx.ended_regions v))
+ span "Can not copy a value containing bottom";
+ sanity_check __FILE__ __LINE__
+ (Option.is_none
+ (find_first_primitively_copyable_sv_with_borrows
+ ctx.type_ctx.type_infos v))
+ span;
(* Copy the value *)
- let copy cf v : m_fun =
- fun ctx ->
- (* Sanity checks *)
- exec_assert __FILE__ __LINE__
- (not (bottom_in_value ctx.ended_regions v))
- meta "Can not copy a value containing bottom";
- sanity_check __FILE__ __LINE__
- (Option.is_none
- (find_first_primitively_copyable_sv_with_borrows
- ctx.type_ctx.type_infos v))
- meta;
- (* Actually perform the copy *)
- let allow_adt_copy = false in
- let ctx, v = copy_value meta allow_adt_copy config ctx v in
- (* Continue *)
- cf v ctx
- in
- (* Compose and apply *)
- comp cc copy cf ctx
+ let allow_adt_copy = false in
+ let ctx, v = copy_value span allow_adt_copy config ctx v in
+ (v, ctx, fun e -> e)
| Move p ->
(* Access the value *)
let access = Move in
- let cc = read_place meta access p in
+ let v = read_place_check span access p ctx in
+ (* Check that there are no bottoms in the value we are about to move *)
+ exec_assert __FILE__ __LINE__
+ (not (bottom_in_value ctx.ended_regions v))
+ span "There should be no bottoms in the value we are about to move";
(* Move the value *)
- let move cf v : m_fun =
- fun ctx ->
- (* Check that there are no bottoms in the value we are about to move *)
- exec_assert __FILE__ __LINE__
- (not (bottom_in_value ctx.ended_regions v))
- meta "There should be no bottoms in the value we are about to move";
- let bottom : typed_value = { value = VBottom; ty = v.ty } in
- let ctx = write_place meta access p bottom ctx in
- cf v ctx
- in
- (* Compose and apply *)
- comp cc move cf ctx
+ let bottom : typed_value = { value = VBottom; ty = v.ty } in
+ let ctx = write_place span access p bottom ctx in
+ (v, ctx, fun e -> e)
-let eval_operand (config : config) (meta : Meta.meta) (op : operand)
- (cf : typed_value -> m_fun) : m_fun =
- fun ctx ->
+let eval_operand (config : config) (span : Meta.span) (op : operand)
+ (ctx : eval_ctx) : typed_value * eval_ctx * (eval_result -> eval_result) =
(* Debug *)
log#ldebug
(lazy
("eval_operand: op: " ^ operand_to_string ctx op ^ "\n- ctx:\n"
- ^ eval_ctx_to_string ~meta:(Some meta) ctx
+ ^ eval_ctx_to_string ~span:(Some span) ctx
^ "\n"));
(* We reorganize the context, then evaluate the operand *)
- comp
- (prepare_eval_operand_reorganize config meta op)
- (eval_operand_no_reorganize config meta op)
- cf ctx
+ let ctx, cc = prepare_eval_operand_reorganize config span op ctx in
+ comp2 cc (eval_operand_no_reorganize config span op ctx)
(** Small utility.
See [prepare_eval_operand_reorganize].
*)
-let prepare_eval_operands_reorganize (config : config) (meta : Meta.meta)
+let prepare_eval_operands_reorganize (config : config) (span : Meta.span)
(ops : operand list) : cm_fun =
- fold_left_apply_continuation (prepare_eval_operand_reorganize config meta) ops
+ fold_left_apply_continuation (prepare_eval_operand_reorganize config span) ops
(** Evaluate several operands. *)
-let eval_operands (config : config) (meta : Meta.meta) (ops : operand list)
- (cf : typed_value list -> m_fun) : m_fun =
- fun ctx ->
+let eval_operands (config : config) (span : Meta.span) (ops : operand list)
+ (ctx : eval_ctx) :
+ typed_value list * eval_ctx * (eval_result -> eval_result) =
(* Prepare the operands *)
- let prepare = prepare_eval_operands_reorganize config meta ops in
+ let ctx, cc = prepare_eval_operands_reorganize config span ops ctx in
(* Evaluate the operands *)
- let eval =
- fold_left_list_apply_continuation
- (eval_operand_no_reorganize config meta)
- ops
- in
- (* Compose and apply *)
- comp prepare eval cf ctx
-
-let eval_two_operands (config : config) (meta : Meta.meta) (op1 : operand)
- (op2 : operand) (cf : typed_value * typed_value -> m_fun) : m_fun =
- let eval_op = eval_operands config meta [ op1; op2 ] in
- let use_res cf res =
+ comp2 cc
+ (map_apply_continuation (eval_operand_no_reorganize config span) ops ctx)
+
+let eval_two_operands (config : config) (span : Meta.span) (op1 : operand)
+ (op2 : operand) (ctx : eval_ctx) :
+ (typed_value * typed_value) * eval_ctx * (eval_result -> eval_result) =
+ let res, ctx, cc = eval_operands config span [ op1; op2 ] ctx in
+ let res =
match res with
- | [ v1; v2 ] -> cf (v1, v2)
- | _ -> craise __FILE__ __LINE__ meta "Unreachable"
+ | [ v1; v2 ] -> (v1, v2)
+ | _ -> craise __FILE__ __LINE__ span "Unreachable"
in
- comp eval_op use_res cf
+ (res, ctx, cc)
-let eval_unary_op_concrete (config : config) (meta : Meta.meta) (unop : unop)
- (op : operand) (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
+let eval_unary_op_concrete (config : config) (span : Meta.span) (unop : unop)
+ (op : operand) (ctx : eval_ctx) :
+ (typed_value, eval_error) result * eval_ctx * (eval_result -> eval_result) =
(* Evaluate the operand *)
- let eval_op = eval_operand config meta op in
+ let v, ctx, cc = eval_operand config span op ctx in
(* Apply the unop *)
- let apply cf (v : typed_value) : m_fun =
+ let r =
match (unop, v.value) with
- | Not, VLiteral (VBool b) ->
- cf (Ok { v with value = VLiteral (VBool (not b)) })
+ | Not, VLiteral (VBool b) -> Ok { v with value = VLiteral (VBool (not b)) }
| Neg, VLiteral (VScalar sv) -> (
let i = Z.neg sv.value in
match mk_scalar sv.int_ty i with
- | Error _ -> cf (Error EPanic)
- | Ok sv -> cf (Ok { v with value = VLiteral (VScalar sv) }))
+ | Error _ -> Error EPanic
+ | Ok sv -> Ok { v with value = VLiteral (VScalar sv) })
| ( Cast (CastScalar (TInteger src_ty, TInteger tgt_ty)),
VLiteral (VScalar sv) ) -> (
(* Cast between integers *)
- sanity_check __FILE__ __LINE__ (src_ty = sv.int_ty) meta;
+ sanity_check __FILE__ __LINE__ (src_ty = sv.int_ty) span;
let i = sv.value in
match mk_scalar tgt_ty i with
- | Error _ -> cf (Error EPanic)
+ | Error _ -> Error EPanic
| Ok sv ->
let ty = TLiteral (TInteger tgt_ty) in
let value = VLiteral (VScalar sv) in
- cf (Ok { ty; value }))
+ Ok { ty; value })
| Cast (CastScalar (TBool, TInteger tgt_ty)), VLiteral (VBool sv) -> (
(* Cast bool -> int *)
let i = Z.of_int (if sv then 1 else 0) in
match mk_scalar tgt_ty i with
- | Error _ -> cf (Error EPanic)
+ | Error _ -> Error EPanic
| Ok sv ->
let ty = TLiteral (TInteger tgt_ty) in
let value = VLiteral (VScalar sv) in
- cf (Ok { ty; value }))
+ Ok { ty; value })
| Cast (CastScalar (TInteger _, TBool)), VLiteral (VScalar sv) ->
(* Cast int -> bool *)
let b =
if Z.of_int 0 = sv.value then false
else if Z.of_int 1 = sv.value then true
else
- exec_raise __FILE__ __LINE__ meta
+ exec_raise __FILE__ __LINE__ span
"Conversion from int to bool: out of range"
in
let value = VLiteral (VBool b) in
let ty = TLiteral TBool in
- cf (Ok { ty; value })
- | _ -> exec_raise __FILE__ __LINE__ meta "Invalid input for unop"
+ Ok { ty; value }
+ | _ -> exec_raise __FILE__ __LINE__ span "Invalid input for unop"
in
- comp eval_op apply cf
+ (r, ctx, cc)
-let eval_unary_op_symbolic (config : config) (meta : Meta.meta) (unop : unop)
- (op : operand) (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
- fun ctx ->
+let eval_unary_op_symbolic (config : config) (span : Meta.span) (unop : unop)
+ (op : operand) (ctx : eval_ctx) :
+ (typed_value, eval_error) result * eval_ctx * (eval_result -> eval_result) =
(* Evaluate the operand *)
- let eval_op = eval_operand config meta op in
+ let v, ctx, cc = eval_operand config span op ctx in
(* Generate a fresh symbolic value to store the result *)
- let apply cf (v : typed_value) : m_fun =
- fun ctx ->
- let res_sv_id = fresh_symbolic_value_id () in
- let res_sv_ty =
- match (unop, v.ty) with
- | Not, (TLiteral TBool as lty) -> lty
- | Neg, (TLiteral (TInteger _) as lty) -> lty
- | Cast (CastScalar (_, tgt_ty)), _ -> TLiteral tgt_ty
- | _ -> exec_raise __FILE__ __LINE__ meta "Invalid input for unop"
- in
- let res_sv = { sv_id = res_sv_id; sv_ty = res_sv_ty } in
- (* Call the continuation *)
- let expr = cf (Ok (mk_typed_value_from_symbolic_value res_sv)) ctx in
- (* Synthesize the symbolic AST *)
- synthesize_unary_op ctx unop v
- (mk_opt_place_from_op meta op ctx)
- res_sv None expr
+ let res_sv_id = fresh_symbolic_value_id () in
+ let res_sv_ty =
+ match (unop, v.ty) with
+ | Not, (TLiteral TBool as lty) -> lty
+ | Neg, (TLiteral (TInteger _) as lty) -> lty
+ | Cast (CastScalar (_, tgt_ty)), _ -> TLiteral tgt_ty
+ | _ -> exec_raise __FILE__ __LINE__ span "Invalid input for unop"
in
- (* Compose and apply *)
- comp eval_op apply cf ctx
+ let res_sv = { sv_id = res_sv_id; sv_ty = res_sv_ty } in
+ (* Compute the result *)
+ let res = Ok (mk_typed_value_from_symbolic_value res_sv) in
+ (* Synthesize the symbolic AST *)
+ let cc =
+ cc_comp cc
+ (synthesize_unary_op ctx unop v
+ (mk_opt_place_from_op span op ctx)
+ res_sv None)
+ in
+ (res, ctx, cc)
-let eval_unary_op (config : config) (meta : Meta.meta) (unop : unop)
- (op : operand) (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
+let eval_unary_op (config : config) (span : Meta.span) (unop : unop)
+ (op : operand) (ctx : eval_ctx) :
+ (typed_value, eval_error) result * eval_ctx * (eval_result -> eval_result) =
match config.mode with
- | ConcreteMode -> eval_unary_op_concrete config meta unop op cf
- | SymbolicMode -> eval_unary_op_symbolic config meta unop op cf
+ | ConcreteMode -> eval_unary_op_concrete config span unop op ctx
+ | SymbolicMode -> eval_unary_op_symbolic config span unop op ctx
(** Small helper for [eval_binary_op_concrete]: computes the result of applying
the binop *after* the operands have been successfully evaluated
*)
-let eval_binary_op_concrete_compute (meta : Meta.meta) (binop : binop)
+let eval_binary_op_concrete_compute (span : Meta.span) (binop : binop)
(v1 : typed_value) (v2 : typed_value) : (typed_value, eval_error) result =
(* Equality check binops (Eq, Ne) accept values from a wide variety of types.
* The remaining binops only operate on scalars. *)
if binop = Eq || binop = Ne then (
(* Equality operations *)
- exec_assert __FILE__ __LINE__ (v1.ty = v2.ty) meta
+ exec_assert __FILE__ __LINE__ (v1.ty = v2.ty) span
"The arguments given to the binop don't have the same type";
(* Equality/inequality check is primitive only for a subset of types *)
- exec_assert __FILE__ __LINE__ (ty_is_copyable v1.ty) meta
+ exec_assert __FILE__ __LINE__ (ty_is_copyable v1.ty) span
"Type is not primitively copyable";
let b = v1 = v2 in
Ok { value = VLiteral (VBool b); ty = TLiteral TBool })
@@ -543,7 +522,7 @@ let eval_binary_op_concrete_compute (meta : Meta.meta) (binop : binop)
match binop with
| Lt | Le | Ge | Gt ->
(* The two operands must have the same type and the result is a boolean *)
- sanity_check __FILE__ __LINE__ (sv1.int_ty = sv2.int_ty) meta;
+ sanity_check __FILE__ __LINE__ (sv1.int_ty = sv2.int_ty) span;
let b =
match binop with
| Lt -> Z.lt sv1.value sv2.value
@@ -552,14 +531,14 @@ let eval_binary_op_concrete_compute (meta : Meta.meta) (binop : binop)
| Gt -> Z.gt sv1.value sv2.value
| Div | Rem | Add | Sub | Mul | BitXor | BitAnd | BitOr | Shl
| Shr | Ne | Eq | CheckedAdd | CheckedSub | CheckedMul ->
- craise __FILE__ __LINE__ meta "Unreachable"
+ craise __FILE__ __LINE__ span "Unreachable"
in
Ok
({ value = VLiteral (VBool b); ty = TLiteral TBool }
: typed_value)
| Div | Rem | Add | Sub | Mul | BitXor | BitAnd | BitOr -> (
(* The two operands must have the same type and the result is an integer *)
- sanity_check __FILE__ __LINE__ (sv1.int_ty = sv2.int_ty) meta;
+ sanity_check __FILE__ __LINE__ (sv1.int_ty = sv2.int_ty) span;
let res =
match binop with
| Div ->
@@ -577,7 +556,7 @@ let eval_binary_op_concrete_compute (meta : Meta.meta) (binop : binop)
| BitOr -> raise Unimplemented
| Lt | Le | Ge | Gt | Shl | Shr | Ne | Eq | CheckedAdd
| CheckedSub | CheckedMul ->
- craise __FILE__ __LINE__ meta "Unreachable"
+ craise __FILE__ __LINE__ span "Unreachable"
in
match res with
| Error _ -> Error EPanic
@@ -588,183 +567,167 @@ let eval_binary_op_concrete_compute (meta : Meta.meta) (binop : binop)
ty = TLiteral (TInteger sv1.int_ty);
})
| Shl | Shr | CheckedAdd | CheckedSub | CheckedMul ->
- craise __FILE__ __LINE__ meta "Unimplemented binary operation"
- | Ne | Eq -> craise __FILE__ __LINE__ meta "Unreachable")
- | _ -> craise __FILE__ __LINE__ meta "Invalid inputs for binop"
+ craise __FILE__ __LINE__ span "Unimplemented binary operation"
+ | Ne | Eq -> craise __FILE__ __LINE__ span "Unreachable")
+ | _ -> craise __FILE__ __LINE__ span "Invalid inputs for binop"
-let eval_binary_op_concrete (config : config) (meta : Meta.meta) (binop : binop)
- (op1 : operand) (op2 : operand)
- (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
+let eval_binary_op_concrete (config : config) (span : Meta.span) (binop : binop)
+ (op1 : operand) (op2 : operand) (ctx : eval_ctx) :
+ (typed_value, eval_error) result * eval_ctx * (eval_result -> eval_result) =
(* Evaluate the operands *)
- let eval_ops = eval_two_operands config meta op1 op2 in
+ let (v1, v2), ctx, cc = eval_two_operands config span op1 op2 ctx in
(* Compute the result of the binop *)
- let compute cf (res : typed_value * typed_value) =
- let v1, v2 = res in
- cf (eval_binary_op_concrete_compute meta binop v1 v2)
- in
- (* Compose and apply *)
- comp eval_ops compute cf
+ let r = eval_binary_op_concrete_compute span binop v1 v2 in
+ (* Return *)
+ (r, ctx, cc)
-let eval_binary_op_symbolic (config : config) (meta : Meta.meta) (binop : binop)
- (op1 : operand) (op2 : operand)
- (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
- fun ctx ->
+let eval_binary_op_symbolic (config : config) (span : Meta.span) (binop : binop)
+ (op1 : operand) (op2 : operand) (ctx : eval_ctx) :
+ (typed_value, eval_error) result * eval_ctx * (eval_result -> eval_result) =
(* Evaluate the operands *)
- let eval_ops = eval_two_operands config meta op1 op2 in
- (* Compute the result of applying the binop *)
- let compute cf ((v1, v2) : typed_value * typed_value) : m_fun =
- fun ctx ->
- (* Generate a fresh symbolic value to store the result *)
- let res_sv_id = fresh_symbolic_value_id () in
- let res_sv_ty =
- if binop = Eq || binop = Ne then (
- (* Equality operations *)
- sanity_check __FILE__ __LINE__ (v1.ty = v2.ty) meta;
- (* Equality/inequality check is primitive only for a subset of types *)
- exec_assert __FILE__ __LINE__ (ty_is_copyable v1.ty) meta
- "The type is not primitively copyable";
- TLiteral TBool)
- else
- (* Other operations: input types are integers *)
- match (v1.ty, v2.ty) with
- | TLiteral (TInteger int_ty1), TLiteral (TInteger int_ty2) -> (
- match binop with
- | Lt | Le | Ge | Gt ->
- sanity_check __FILE__ __LINE__ (int_ty1 = int_ty2) meta;
- TLiteral TBool
- | Div | Rem | Add | Sub | Mul | BitXor | BitAnd | BitOr ->
- sanity_check __FILE__ __LINE__ (int_ty1 = int_ty2) meta;
- TLiteral (TInteger int_ty1)
- (* These return `(int, bool)` which isn't a literal type *)
- | CheckedAdd | CheckedSub | CheckedMul ->
- craise __FILE__ __LINE__ meta
- "Checked operations are not implemented"
- | Shl | Shr ->
- (* The number of bits can be of a different integer type
- than the operand *)
- TLiteral (TInteger int_ty1)
- | Ne | Eq -> craise __FILE__ __LINE__ meta "Unreachable")
- | _ -> craise __FILE__ __LINE__ meta "Invalid inputs for binop"
- in
- let res_sv = { sv_id = res_sv_id; sv_ty = res_sv_ty } in
- (* Call the continuattion *)
- let v = mk_typed_value_from_symbolic_value res_sv in
- let expr = cf (Ok v) ctx in
- (* Synthesize the symbolic AST *)
- let p1 = mk_opt_place_from_op meta op1 ctx in
- let p2 = mk_opt_place_from_op meta op2 ctx in
- synthesize_binary_op ctx binop v1 p1 v2 p2 res_sv None expr
+ let (v1, v2), ctx, cc = eval_two_operands config span op1 op2 ctx in
+ (* Generate a fresh symbolic value to store the result *)
+ let res_sv_id = fresh_symbolic_value_id () in
+ let res_sv_ty =
+ if binop = Eq || binop = Ne then (
+ (* Equality operations *)
+ sanity_check __FILE__ __LINE__ (v1.ty = v2.ty) span;
+ (* Equality/inequality check is primitive only for a subset of types *)
+ exec_assert __FILE__ __LINE__ (ty_is_copyable v1.ty) span
+ "The type is not primitively copyable";
+ TLiteral TBool)
+ else
+ (* Other operations: input types are integers *)
+ match (v1.ty, v2.ty) with
+ | TLiteral (TInteger int_ty1), TLiteral (TInteger int_ty2) -> (
+ match binop with
+ | Lt | Le | Ge | Gt ->
+ sanity_check __FILE__ __LINE__ (int_ty1 = int_ty2) span;
+ TLiteral TBool
+ | Div | Rem | Add | Sub | Mul | BitXor | BitAnd | BitOr ->
+ sanity_check __FILE__ __LINE__ (int_ty1 = int_ty2) span;
+ TLiteral (TInteger int_ty1)
+ (* These return `(int, bool)` which isn't a literal type *)
+ | CheckedAdd | CheckedSub | CheckedMul ->
+ craise __FILE__ __LINE__ span
+ "Checked operations are not implemented"
+ | Shl | Shr ->
+ (* The number of bits can be of a different integer type
+ than the operand *)
+ TLiteral (TInteger int_ty1)
+ | Ne | Eq -> craise __FILE__ __LINE__ span "Unreachable")
+ | _ -> craise __FILE__ __LINE__ span "Invalid inputs for binop"
+ in
+ let res_sv = { sv_id = res_sv_id; sv_ty = res_sv_ty } in
+ let v = mk_typed_value_from_symbolic_value res_sv in
+ (* Synthesize the symbolic AST *)
+ let p1 = mk_opt_place_from_op span op1 ctx in
+ let p2 = mk_opt_place_from_op span op2 ctx in
+ let cc =
+ cc_comp cc (synthesize_binary_op ctx binop v1 p1 v2 p2 res_sv None)
in
(* Compose and apply *)
- comp eval_ops compute cf ctx
+ (Ok v, ctx, cc)
-let eval_binary_op (config : config) (meta : Meta.meta) (binop : binop)
- (op1 : operand) (op2 : operand)
- (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
+let eval_binary_op (config : config) (span : Meta.span) (binop : binop)
+ (op1 : operand) (op2 : operand) (ctx : eval_ctx) :
+ (typed_value, eval_error) result * eval_ctx * (eval_result -> eval_result) =
match config.mode with
- | ConcreteMode -> eval_binary_op_concrete config meta binop op1 op2 cf
- | SymbolicMode -> eval_binary_op_symbolic config meta binop op1 op2 cf
-
-let eval_rvalue_ref (config : config) (meta : Meta.meta) (p : place)
- (bkind : borrow_kind) (cf : typed_value -> m_fun) : m_fun =
- fun ctx ->
+ | ConcreteMode -> eval_binary_op_concrete config span binop op1 op2 ctx
+ | SymbolicMode -> eval_binary_op_symbolic config span binop op1 op2 ctx
+
+(** Evaluate an rvalue which creates a reference (i.e., an rvalue which is
+ `&p` or `&mut p` or `&two-phase p`) *)
+let eval_rvalue_ref (config : config) (span : Meta.span) (p : place)
+ (bkind : borrow_kind) (ctx : eval_ctx) :
+ typed_value * eval_ctx * (eval_result -> eval_result) =
match bkind with
| BShared | BTwoPhaseMut | BShallow ->
(* **REMARK**: we initially treated shallow borrows like shared borrows.
In practice this restricted the behaviour too much, so for now we
- forbid them.
+ forbid them and remove them in the prepasses (see the comments there
+ as to why this is sound).
*)
- sanity_check __FILE__ __LINE__ (bkind <> BShallow) meta;
+ sanity_check __FILE__ __LINE__ (bkind <> BShallow) span;
(* Access the value *)
let access =
match bkind with
| BShared | BShallow -> Read
| BTwoPhaseMut -> Write
- | _ -> craise __FILE__ __LINE__ meta "Unreachable"
+ | _ -> craise __FILE__ __LINE__ span "Unreachable"
in
let expand_prim_copy = false in
- let prepare =
- access_rplace_reorganize_and_read config meta expand_prim_copy access p
+ let v, ctx, cc =
+ access_rplace_reorganize_and_read config span expand_prim_copy access p
+ ctx
in
- (* Evaluate the borrowing operation *)
- let eval (cf : typed_value -> m_fun) (v : typed_value) : m_fun =
- fun ctx ->
- (* Generate the fresh borrow id *)
- let bid = fresh_borrow_id () in
- (* Compute the loan value, with which to replace the value at place p *)
- let nv =
- match v.value with
- | VLoan (VSharedLoan (bids, sv)) ->
- (* Shared loan: insert the new borrow id *)
- let bids1 = BorrowId.Set.add bid bids in
- { v with value = VLoan (VSharedLoan (bids1, sv)) }
- | _ ->
- (* Not a shared loan: add a wrapper *)
- let v' = VLoan (VSharedLoan (BorrowId.Set.singleton bid, v)) in
- { v with value = v' }
- in
- (* Update the borrowed value in the context *)
- let ctx = write_place meta access p nv ctx in
- (* Compute the rvalue - simply a shared borrow with a the fresh id.
- * Note that the reference is *mutable* if we do a two-phase borrow *)
- let ref_kind =
- match bkind with
- | BShared | BShallow -> RShared
- | BTwoPhaseMut -> RMut
- | _ -> craise __FILE__ __LINE__ meta "Unreachable"
- in
- let rv_ty = TRef (RErased, v.ty, ref_kind) in
- let bc =
- match bkind with
- | BShared | BShallow ->
- (* See the remark at the beginning of the match branch: we
- handle shallow borrows like shared borrows *)
- VSharedBorrow bid
- | BTwoPhaseMut -> VReservedMutBorrow bid
- | _ -> craise __FILE__ __LINE__ meta "Unreachable"
- in
- let rv : typed_value = { value = VBorrow bc; ty = rv_ty } in
- (* Continue *)
- cf rv ctx
+ (* Generate the fresh borrow id *)
+ let bid = fresh_borrow_id () in
+ (* Compute the loan value, with which to replace the value at place p *)
+ let nv =
+ match v.value with
+ | VLoan (VSharedLoan (bids, sv)) ->
+ (* Shared loan: insert the new borrow id *)
+ let bids1 = BorrowId.Set.add bid bids in
+ { v with value = VLoan (VSharedLoan (bids1, sv)) }
+ | _ ->
+ (* Not a shared loan: add a wrapper *)
+ let v' = VLoan (VSharedLoan (BorrowId.Set.singleton bid, v)) in
+ { v with value = v' }
+ in
+ (* Update the value in the context to replace it with the loan *)
+ let ctx = write_place span access p nv ctx in
+ (* Compute the rvalue - simply a shared borrow with the fresh id.
+ * Note that the reference is *mutable* if we do a two-phase borrow *)
+ let ref_kind =
+ match bkind with
+ | BShared | BShallow -> RShared
+ | BTwoPhaseMut -> RMut
+ | _ -> craise __FILE__ __LINE__ span "Unreachable"
+ in
+ let rv_ty = TRef (RErased, v.ty, ref_kind) in
+ let bc =
+ match bkind with
+ | BShared | BShallow ->
+ (* See the remark at the beginning of the match branch: we
+ handle shallow borrows like shared borrows *)
+ VSharedBorrow bid
+ | BTwoPhaseMut -> VReservedMutBorrow bid
+ | _ -> craise __FILE__ __LINE__ span "Unreachable"
in
- (* Compose and apply *)
- comp prepare eval cf ctx
+ let rv : typed_value = { value = VBorrow bc; ty = rv_ty } in
+ (* Return *)
+ (rv, ctx, cc)
| BMut ->
(* Access the value *)
let access = Write in
let expand_prim_copy = false in
- let prepare =
- access_rplace_reorganize_and_read config meta expand_prim_copy access p
+ let v, ctx, cc =
+ access_rplace_reorganize_and_read config span expand_prim_copy access p
+ ctx
in
- (* Evaluate the borrowing operation *)
- let eval (cf : typed_value -> m_fun) (v : typed_value) : m_fun =
- fun ctx ->
- (* Compute the rvalue - wrap the value in a mutable borrow with a fresh id *)
- let bid = fresh_borrow_id () in
- let rv_ty = TRef (RErased, v.ty, RMut) in
- let rv : typed_value =
- { value = VBorrow (VMutBorrow (bid, v)); ty = rv_ty }
- in
- (* Compute the value with which to replace the value at place p *)
- let nv = { v with value = VLoan (VMutLoan bid) } in
- (* Update the value in the context *)
- let ctx = write_place meta access p nv ctx in
- (* Continue *)
- cf rv ctx
+ (* Compute the rvalue - wrap the value in a mutable borrow with a fresh id *)
+ let bid = fresh_borrow_id () in
+ let rv_ty = TRef (RErased, v.ty, RMut) in
+ let rv : typed_value =
+ { value = VBorrow (VMutBorrow (bid, v)); ty = rv_ty }
in
- (* Compose and apply *)
- comp prepare eval cf ctx
-
-let eval_rvalue_aggregate (config : config) (meta : Meta.meta)
- (aggregate_kind : aggregate_kind) (ops : operand list)
- (cf : typed_value -> m_fun) : m_fun =
+ (* Compute the loan value with which to replace the value at place p *)
+ let nv = { v with value = VLoan (VMutLoan bid) } in
+ (* Update the value in the context to replace it with the loan *)
+ let ctx = write_place span access p nv ctx in
+ (* Return *)
+ (rv, ctx, cc)
+
+let eval_rvalue_aggregate (config : config) (span : Meta.span)
+ (aggregate_kind : aggregate_kind) (ops : operand list) (ctx : eval_ctx) :
+ typed_value * eval_ctx * (eval_result -> eval_result) =
(* Evaluate the operands *)
- let eval_ops = eval_operands config meta ops in
+ let values, ctx, cc = eval_operands config span ops ctx in
(* Compute the value *)
- let compute (cf : typed_value -> m_fun) (values : typed_value list) : m_fun =
- fun ctx ->
+ let v, cf_compute =
(* Match on the aggregate kind *)
match aggregate_kind with
| AggregatedAdt (type_id, opt_variant_id, generics) -> (
@@ -775,23 +738,22 @@ let eval_rvalue_aggregate (config : config) (meta : Meta.meta)
let generics = mk_generic_args [] tys [] [] in
let ty = TAdt (TTuple, generics) in
let aggregated : typed_value = { value = v; ty } in
- (* Call the continuation *)
- cf aggregated ctx
+ (aggregated, fun e -> e)
| TAdtId def_id ->
(* Sanity checks *)
let type_decl = ctx_lookup_type_decl ctx def_id in
sanity_check __FILE__ __LINE__
(List.length type_decl.generics.regions
= List.length generics.regions)
- meta;
+ span;
let expected_field_types =
- AssociatedTypes.ctx_adt_get_inst_norm_field_etypes meta ctx def_id
+ AssociatedTypes.ctx_adt_get_inst_norm_field_etypes span ctx def_id
opt_variant_id generics
in
sanity_check __FILE__ __LINE__
(expected_field_types
= List.map (fun (v : typed_value) -> v.ty) values)
- meta;
+ span;
(* Construct the value *)
let av : adt_value =
{ variant_id = opt_variant_id; field_values = values }
@@ -799,18 +761,18 @@ let eval_rvalue_aggregate (config : config) (meta : Meta.meta)
let aty = TAdt (TAdtId def_id, generics) in
let aggregated : typed_value = { value = VAdt av; ty = aty } in
(* Call the continuation *)
- cf aggregated ctx
- | TAssumed _ -> craise __FILE__ __LINE__ meta "Unreachable")
- | AggregatedArray (ety, cg) -> (
+ (aggregated, fun e -> e)
+ | TAssumed _ -> craise __FILE__ __LINE__ span "Unreachable")
+ | AggregatedArray (ety, cg) ->
(* Sanity check: all the values have the proper type *)
sanity_check __FILE__ __LINE__
(List.for_all (fun (v : typed_value) -> v.ty = ety) values)
- meta;
+ span;
(* Sanity check: the number of values is consistent with the length *)
let len = (literal_as_scalar (const_generic_as_literal cg)).value in
sanity_check __FILE__ __LINE__
(len = Z.of_int (List.length values))
- meta;
+ span;
let generics = TypesUtils.mk_generic_args [] [ ety ] [ cg ] [] in
let ty = TAdt (TAssumed TArray, generics) in
(* In order to generate a better AST, we introduce a symbolic
@@ -818,56 +780,50 @@ let eval_rvalue_aggregate (config : config) (meta : Meta.meta)
array we introduce here might be duplicated in the generated
code: by introducing a symbolic value we introduce a let-binding
in the generated code. *)
- let saggregated = mk_fresh_symbolic_typed_value meta ty in
- (* Call the continuation *)
- match cf saggregated ctx with
- | None -> None
- | Some e ->
- (* Introduce the symbolic value in the AST *)
- let sv = ValuesUtils.value_as_symbolic meta saggregated.value in
- Some (SymbolicAst.IntroSymbolic (ctx, None, sv, VaArray values, e)))
+ let saggregated = mk_fresh_symbolic_typed_value span ty in
+ (* Update the symbolic ast *)
+ let cf e =
+ match e with
+ | None -> None
+ | Some e ->
+ (* Introduce the symbolic value in the AST *)
+ let sv = ValuesUtils.value_as_symbolic span saggregated.value in
+ Some
+ (SymbolicAst.IntroSymbolic (ctx, None, sv, VaArray values, e))
+ in
+ (saggregated, cf)
| AggregatedClosure _ ->
- craise __FILE__ __LINE__ meta "Closures are not supported yet"
+ craise __FILE__ __LINE__ span "Closures are not supported yet"
in
- (* Compose and apply *)
- comp eval_ops compute cf
+ (v, ctx, cc_comp cc cf_compute)
-let eval_rvalue_not_global (config : config) (meta : Meta.meta)
- (rvalue : rvalue) (cf : (typed_value, eval_error) result -> m_fun) : m_fun =
- fun ctx ->
+let eval_rvalue_not_global (config : config) (span : Meta.span)
+ (rvalue : rvalue) (ctx : eval_ctx) :
+ (typed_value, eval_error) result * eval_ctx * (eval_result -> eval_result) =
log#ldebug (lazy "eval_rvalue");
- (* Small helpers *)
- let wrap_in_result (cf : (typed_value, eval_error) result -> m_fun)
- (v : typed_value) : m_fun =
- cf (Ok v)
- in
- let comp_wrap f = comp f wrap_in_result cf in
+ (* Small helper *)
+ let wrap_in_result (v, ctx, cc) = (Ok v, ctx, cc) in
(* Delegate to the proper auxiliary function *)
match rvalue with
- | Use op -> comp_wrap (eval_operand config meta op) ctx
- | RvRef (p, bkind) -> comp_wrap (eval_rvalue_ref config meta p bkind) ctx
- | UnaryOp (unop, op) -> eval_unary_op config meta unop op cf ctx
- | BinaryOp (binop, op1, op2) ->
- eval_binary_op config meta binop op1 op2 cf ctx
+ | Use op -> wrap_in_result (eval_operand config span op ctx)
+ | RvRef (p, bkind) -> wrap_in_result (eval_rvalue_ref config span p bkind ctx)
+ | UnaryOp (unop, op) -> eval_unary_op config span unop op ctx
+ | BinaryOp (binop, op1, op2) -> eval_binary_op config span binop op1 op2 ctx
| Aggregate (aggregate_kind, ops) ->
- comp_wrap (eval_rvalue_aggregate config meta aggregate_kind ops) ctx
+ wrap_in_result (eval_rvalue_aggregate config span aggregate_kind ops ctx)
| Discriminant _ ->
- craise __FILE__ __LINE__ meta
+ craise __FILE__ __LINE__ span
"Unreachable: discriminant reads should have been eliminated from the \
AST"
- | Global _ -> craise __FILE__ __LINE__ meta "Unreachable"
+ | Global _ -> craise __FILE__ __LINE__ span "Unreachable"
-let eval_fake_read (config : config) (meta : Meta.meta) (p : place) : cm_fun =
- fun cf ctx ->
+let eval_fake_read (config : config) (span : Meta.span) (p : place) : cm_fun =
+ fun ctx ->
let expand_prim_copy = false in
- let cf_prepare cf =
- access_rplace_reorganize_and_read config meta expand_prim_copy Read p cf
+ let v, ctx, cc =
+ access_rplace_reorganize_and_read config span expand_prim_copy Read p ctx
in
- let cf_continue cf v : m_fun =
- fun ctx ->
- cassert __FILE__ __LINE__
- (not (bottom_in_value ctx.ended_regions v))
- meta "Fake read: the value contains bottom";
- cf ctx
- in
- comp cf_prepare cf_continue cf ctx
+ cassert __FILE__ __LINE__
+ (not (bottom_in_value ctx.ended_regions v))
+ span "Fake read: the value contains bottom";
+ (ctx, cc)