diff options
Diffstat (limited to 'compiler/InterpreterExpressions.ml')
-rw-r--r-- | compiler/InterpreterExpressions.ml | 117 |
1 files changed, 95 insertions, 22 deletions
diff --git a/compiler/InterpreterExpressions.ml b/compiler/InterpreterExpressions.ml index 8b2070c6..29826233 100644 --- a/compiler/InterpreterExpressions.ml +++ b/compiler/InterpreterExpressions.ml @@ -7,6 +7,7 @@ module E = Expressions open Utils module C = Contexts module Subst = Substitute +module Assoc = AssociatedTypes module L = Logging open TypesUtils open ValuesUtils @@ -141,11 +142,18 @@ let rec copy_value (allow_adt_copy : bool) (config : C.config) | V.Adt av -> (* Sanity check *) (match v.V.ty with - | T.Adt (T.Assumed (T.Box | Vec), _, _, _) -> + | T.Adt (T.Assumed (T.Box | Vec), _) -> raise (Failure "Can't copy an assumed value other than Option") - | T.Adt (T.AdtId _, _, _, _) -> assert allow_adt_copy - | T.Adt ((T.Assumed Option | T.Tuple), _, _, _) -> () (* Ok *) - | T.Adt (T.Assumed (Slice | T.Array), [], [ ty ], []) -> + | T.Adt (T.AdtId _, _) -> assert allow_adt_copy + | T.Adt ((T.Assumed Option | T.Tuple), _) -> () (* Ok *) + | T.Adt + ( T.Assumed (Slice | T.Array), + { + regions = []; + types = [ ty ]; + const_generics = []; + trait_refs = []; + } ) -> assert (ty_is_primitively_copyable ty) | _ -> raise (Failure "Unreachable")); let ctx, fields = @@ -230,17 +238,16 @@ let prepare_eval_operand_reorganize (config : C.config) (op : E.operand) : let prepare : cm_fun = fun cf ctx -> match op with - | Expressions.Constant (ty, cv) -> + | E.Constant _ -> (* No need to reorganize the context *) - literal_to_typed_value (TypesUtils.ty_as_literal ty) cv |> ignore; cf ctx - | Expressions.Copy p -> + | E.Copy p -> (* Access the value *) let access = Read in (* Expand the symbolic values, if necessary *) let expand_prim_copy = true in access_rplace_reorganize config expand_prim_copy access p cf ctx - | Expressions.Move p -> + | E.Move p -> (* Access the value *) let access = Move in let expand_prim_copy = false in @@ -260,9 +267,70 @@ let eval_operand_no_reorganize (config : C.config) (op : E.operand) ^ "\n- ctx:\n" ^ eval_ctx_to_string ctx ^ "\n")); (* Evaluate *) match op with - | Expressions.Constant (ty, cv) -> - cf (literal_to_typed_value (TypesUtils.ty_as_literal ty) cv) ctx - | Expressions.Copy p -> + | E.Constant cv -> ( + match cv.value with + | E.CLiteral lit -> + cf (literal_to_typed_value (TypesUtils.ty_as_literal cv.ty) lit) ctx + | E.TraitConst (trait_ref, generics, const_name) -> ( + assert (generics = TypesUtils.mk_empty_generic_args); + match trait_ref.trait_id with + | T.TraitImpl _ -> + (* This shouldn't happen: if we refer to a concrete implementation, we + should directly refer to the top-level constant *) + raise (Failure "Unreachable") + | _ -> ( + (* We refer to a constant defined in a local clause: simply + introduce a fresh symbolic value *) + let ctx0 = ctx in + (* Lookup the trait declaration to retrieve the type of the symbolic value *) + let trait_decl = + C.ctx_lookup_trait_decl ctx + trait_ref.trait_decl_ref.trait_decl_id + in + let _, (ty, _) = + List.find (fun (name, _) -> name = const_name) trait_decl.consts + in + (* Introduce a fresh symbolic value *) + let v = mk_fresh_symbolic_typed_value_from_ety V.TraitConst ty in + (* Continue the evaluation *) + let e = cf v ctx in + (* We have to wrap the generated expression *) + match e with + | None -> None + | Some e -> + Some + (SymbolicAst.IntroSymbolic + ( ctx0, + None, + value_as_symbolic v.value, + SymbolicAst.TraitConstValue + (trait_ref, generics, const_name), + e )))) + | E.CVar vid -> ( + let ctx0 = ctx in + (* Lookup the const generic value *) + let cv = C.ctx_lookup_const_generic_value ctx vid in + (* Copy the value *) + let allow_adt_copy = false in + let ctx, v = copy_value allow_adt_copy config ctx cv in + (* Continue *) + let e = cf v ctx in + (* We have to wrap the generated expression *) + match e with + | None -> None + | Some e -> + (* If we are synthesizing a symbolic AST, it means that we are in symbolic + mode: the value of the const generic is necessarily symbolic. *) + assert (is_symbolic cv.V.value); + (* *) + Some + (SymbolicAst.IntroSymbolic + ( ctx0, + None, + value_as_symbolic v.value, + SymbolicAst.ConstGenericValue vid, + e )))) + | E.Copy p -> (* Access the value *) let access = Read in let cc = read_place access p in @@ -283,7 +351,7 @@ let eval_operand_no_reorganize (config : C.config) (op : E.operand) in (* Compose and apply *) comp cc copy cf ctx - | Expressions.Move p -> + | E.Move p -> (* Access the value *) let access = Move in let cc = read_place access p in @@ -656,7 +724,8 @@ let eval_rvalue_aggregate (config : C.config) | E.AggregatedTuple -> let tys = List.map (fun (v : V.typed_value) -> v.V.ty) values in let v = V.Adt { variant_id = None; field_values = values } in - let ty = T.Adt (T.Tuple, [], tys, []) in + let generics = TypesUtils.mk_generic_args [] tys [] [] in + let ty = T.Adt (T.Tuple, generics) in let aggregated : V.typed_value = { V.value = v; ty } in (* Call the continuation *) cf aggregated ctx @@ -667,20 +736,22 @@ let eval_rvalue_aggregate (config : C.config) assert (List.length values = 1) else raise (Failure "Unreachable"); (* Construt the value *) - let aty = T.Adt (T.Assumed T.Option, [], [ ty ], []) in + let generics = TypesUtils.mk_generic_args [] [ ty ] [] [] in + let aty = T.Adt (T.Assumed T.Option, generics) in let av : V.adt_value = { V.variant_id = Some variant_id; V.field_values = values } in let aggregated : V.typed_value = { V.value = Adt av; ty = aty } in (* Call the continuation *) cf aggregated ctx - | E.AggregatedAdt (def_id, opt_variant_id, regions, types, cgs) -> + | E.AggregatedAdt (def_id, opt_variant_id, generics) -> (* Sanity checks *) let type_decl = C.ctx_lookup_type_decl ctx def_id in - assert (List.length type_decl.region_params = List.length regions); + assert ( + List.length type_decl.generics.regions = List.length generics.regions); let expected_field_types = - Subst.ctx_adt_get_instantiated_field_etypes ctx def_id opt_variant_id - types cgs + Assoc.ctx_adt_get_inst_norm_field_etypes ctx def_id opt_variant_id + generics in assert ( expected_field_types @@ -689,7 +760,7 @@ let eval_rvalue_aggregate (config : C.config) let av : V.adt_value = { V.variant_id = opt_variant_id; V.field_values = values } in - let aty = T.Adt (T.AdtId def_id, regions, types, cgs) in + let aty = T.Adt (T.AdtId def_id, generics) in let aggregated : V.typed_value = { V.value = Adt av; ty = aty } in (* Call the continuation *) cf aggregated ctx @@ -709,7 +780,8 @@ let eval_rvalue_aggregate (config : C.config) let av : V.adt_value = { V.variant_id = None; V.field_values = values } in - let aty = T.Adt (T.Assumed T.Range, [], [ ety ], []) in + let generics = TypesUtils.mk_generic_args_from_types [ ety ] in + let aty = T.Adt (T.Assumed T.Range, generics) in let aggregated : V.typed_value = { V.value = Adt av; ty = aty } in (* Call the continuation *) cf aggregated ctx @@ -719,7 +791,8 @@ let eval_rvalue_aggregate (config : C.config) (* Sanity check: the number of values is consistent with the length *) let len = (literal_as_scalar (const_generic_as_literal cg)).value in assert (len = Z.of_int (List.length values)); - let ty = T.Adt (T.Assumed T.Array, [], [ ety ], [ cg ]) in + let generics = TypesUtils.mk_generic_args [] [ ety ] [ cg ] [] in + let ty = T.Adt (T.Assumed T.Array, generics) in (* In order to generate a better AST, we introduce a symbolic value equal to the array. The reason is that otherwise, the array we introduce here might be duplicated in the generated @@ -752,7 +825,7 @@ let eval_rvalue_not_global (config : C.config) (rvalue : E.rvalue) (* Delegate to the proper auxiliary function *) match rvalue with | E.Use op -> comp_wrap (eval_operand config op) ctx - | E.Ref (p, bkind) -> comp_wrap (eval_rvalue_ref config p bkind) ctx + | E.RvRef (p, bkind) -> comp_wrap (eval_rvalue_ref config p bkind) ctx | E.UnaryOp (unop, op) -> eval_unary_op config unop op cf ctx | E.BinaryOp (binop, op1, op2) -> eval_binary_op config binop op1 op2 cf ctx | E.Aggregate (aggregate_kind, ops) -> |