diff options
Diffstat (limited to 'compiler/ExtractToBackend.ml')
-rw-r--r-- | compiler/ExtractToBackend.ml | 1639 |
1 files changed, 1639 insertions, 0 deletions
diff --git a/compiler/ExtractToBackend.ml b/compiler/ExtractToBackend.ml new file mode 100644 index 00000000..fc04ce90 --- /dev/null +++ b/compiler/ExtractToBackend.ml @@ -0,0 +1,1639 @@ +(** Extract to F* *) + +open Utils +open Pure +open PureUtils +open TranslateCore +open PureToExtract +open StringUtils +module F = Format + +(** A qualifier for a type definition. + + Controls whether we should use [type ...] or [and ...] (for mutually + recursive datatypes). + *) +type type_decl_qualif = + | Type (** [type t = ...] *) + | And (** [type t0 = ... and t1 = ...] *) + | AssumeType (** [assume type t] *) + | TypeVal (** In an fsti: [val t : Type0] *) + +(** A qualifier for function definitions. + + Controls whether we should use [let ...], [let rec ...] or [and ...], + or only generate a declaration with [val] or [assume val] + *) +type fun_decl_qualif = Let | LetRec | And | Val | AssumeVal + +let fun_decl_qualif_keyword (qualif : fun_decl_qualif) : string = + match qualif with + | Let -> "let" + | LetRec -> "let rec" + | And -> "and" + | Val -> "val" + | AssumeVal -> "assume val" + +(** Small helper to compute the name of an int type *) +let fstar_int_name (int_ty : integer_type) = + match int_ty with + | Isize -> "isize" + | I8 -> "i8" + | I16 -> "i16" + | I32 -> "i32" + | I64 -> "i64" + | I128 -> "i128" + | Usize -> "usize" + | U8 -> "u8" + | U16 -> "u16" + | U32 -> "u32" + | U64 -> "u64" + | U128 -> "u128" + +(** Small helper to compute the name of a unary operation *) +let fstar_unop_name (unop : unop) : string = + match unop with + | Not -> "not" + | Neg int_ty -> fstar_int_name int_ty ^ "_neg" + | Cast _ -> raise (Failure "Unsupported") + +(** Small helper to compute the name of a binary operation (note that many + binary operations like "less than" are extracted to primitive operations, + like [<]. + *) +let fstar_named_binop_name (binop : E.binop) (int_ty : integer_type) : string = + let binop = + match binop with + | Div -> "div" + | Rem -> "rem" + | Add -> "add" + | Sub -> "sub" + | Mul -> "mul" + | _ -> raise (Failure "Unreachable") + in + fstar_int_name int_ty ^ "_" ^ binop + +(** A list of keywords/identifiers used in F* and with which we want to check + collision. *) +let fstar_keywords = + let named_unops = + fstar_unop_name Not + :: List.map (fun it -> fstar_unop_name (Neg it)) T.all_signed_int_types + in + let named_binops = [ E.Div; Rem; Add; Sub; Mul ] in + let named_binops = + List.concat + (List.map + (fun bn -> + List.map (fun it -> fstar_named_binop_name bn it) T.all_int_types) + named_binops) + in + let misc = + [ + "let"; + "rec"; + "in"; + "fn"; + "val"; + "int"; + "nat"; + "list"; + "FStar"; + "FStar.Mul"; + "type"; + "match"; + "with"; + "assert"; + "assert_norm"; + "assume"; + "Type0"; + "Type"; + "unit"; + "not"; + "scalar_cast"; + ] + in + List.concat [ named_unops; named_binops; misc ] + +let fstar_assumed_adts : (assumed_ty * string) list = + [ (State, "state"); (Result, "result"); (Option, "option"); (Vec, "vec") ] + +let fstar_assumed_structs : (assumed_ty * string) list = [] + +let fstar_assumed_variants : (assumed_ty * VariantId.id * string) list = + [ + (Result, result_return_id, "Return"); + (Result, result_fail_id, "Fail"); + (Option, option_some_id, "Some"); + (Option, option_none_id, "None"); + ] + +let fstar_assumed_llbc_functions : + (A.assumed_fun_id * T.RegionGroupId.id option * string) list = + let rg0 = Some T.RegionGroupId.zero in + [ + (Replace, None, "mem_replace_fwd"); + (Replace, rg0, "mem_replace_back"); + (VecNew, None, "vec_new"); + (VecPush, None, "vec_push_fwd") (* Shouldn't be used *); + (VecPush, rg0, "vec_push_back"); + (VecInsert, None, "vec_insert_fwd") (* Shouldn't be used *); + (VecInsert, rg0, "vec_insert_back"); + (VecLen, None, "vec_len"); + (VecIndex, None, "vec_index_fwd"); + (VecIndex, rg0, "vec_index_back") (* shouldn't be used *); + (VecIndexMut, None, "vec_index_mut_fwd"); + (VecIndexMut, rg0, "vec_index_mut_back"); + ] + +let fstar_assumed_pure_functions : (pure_assumed_fun_id * string) list = + [ (Return, "return"); (Fail, "fail"); (Assert, "massert") ] + +let fstar_names_map_init : names_map_init = + { + keywords = fstar_keywords; + assumed_adts = fstar_assumed_adts; + assumed_structs = fstar_assumed_structs; + assumed_variants = fstar_assumed_variants; + assumed_llbc_functions = fstar_assumed_llbc_functions; + assumed_pure_functions = fstar_assumed_pure_functions; + } + +let fstar_extract_unop (extract_expr : bool -> texpression -> unit) + (fmt : F.formatter) (inside : bool) (unop : unop) (arg : texpression) : unit + = + match unop with + | Not | Neg _ -> + let unop = fstar_unop_name unop in + if inside then F.pp_print_string fmt "("; + F.pp_print_string fmt unop; + F.pp_print_space fmt (); + extract_expr true arg; + if inside then F.pp_print_string fmt ")" + | Cast (src, tgt) -> + (* The source type is an implicit parameter *) + if inside then F.pp_print_string fmt "("; + F.pp_print_string fmt "scalar_cast"; + F.pp_print_space fmt (); + F.pp_print_string fmt + (StringUtils.capitalize_first_letter + (PrintPure.integer_type_to_string src)); + F.pp_print_space fmt (); + F.pp_print_string fmt + (StringUtils.capitalize_first_letter + (PrintPure.integer_type_to_string tgt)); + F.pp_print_space fmt (); + extract_expr true arg; + if inside then F.pp_print_string fmt ")" + +let fstar_extract_binop (extract_expr : bool -> texpression -> unit) + (fmt : F.formatter) (inside : bool) (binop : E.binop) + (int_ty : integer_type) (arg0 : texpression) (arg1 : texpression) : unit = + if inside then F.pp_print_string fmt "("; + (* Some binary operations have a special treatment *) + (match binop with + | Eq | Lt | Le | Ne | Ge | Gt -> + let binop = + match binop with + | Eq -> "=" + | Lt -> "<" + | Le -> "<=" + | Ne -> "<>" + | Ge -> ">=" + | Gt -> ">" + | _ -> raise (Failure "Unreachable") + in + extract_expr false arg0; + F.pp_print_space fmt (); + F.pp_print_string fmt binop; + F.pp_print_space fmt (); + extract_expr false arg1 + | Div | Rem | Add | Sub | Mul -> + let binop = fstar_named_binop_name binop int_ty in + F.pp_print_string fmt binop; + F.pp_print_space fmt (); + extract_expr false arg0; + F.pp_print_space fmt (); + extract_expr false arg1 + | BitXor | BitAnd | BitOr | Shl | Shr -> raise Unimplemented); + if inside then F.pp_print_string fmt ")" + +(** + [ctx]: we use the context to lookup type definitions, to retrieve type names. + This is used to compute variable names, when they have no basenames: in this + case we use the first letter of the type name. + + [variant_concatenate_type_name]: if true, add the type name as a prefix + to the variant names. + Ex.: + In Rust: + {[ + enum List = { + Cons(u32, Box<List>),x + Nil, + } + ]} + + F*, if option activated: + {[ + type list = + | ListCons : u32 -> list -> list + | ListNil : list + ]} + + F*, if option not activated: + {[ + type list = + | Cons : u32 -> list -> list + | Nil : list + ]} + + Rk.: this should be true by default, because in Rust all the variant names + are actively uniquely identifier by the type name [List::Cons(...)], while + in other languages it is not necessarily the case, and thus clashes can mess + up type checking. Note that some languages actually forbids the name clashes + (it is the case of F* ). + *) +let mk_formatter (ctx : trans_ctx) (crate_name : string) + (variant_concatenate_type_name : bool) : formatter = + let int_name = fstar_int_name in + + (* Prepare a name. + * The first id elem is always the crate: if it is the local crate, + * we remove it. + * We also remove all the disambiguators, then convert everything to strings. + * **Rmk:** because we remove the disambiguators, there may be name collisions + * (which is ok, because we check for name collisions and fail if there is any). + *) + let get_name (name : name) : string list = + (* Rmk.: initially we only filtered the disambiguators equal to 0 *) + let name = Names.filter_disambiguators name in + match name with + | Ident crate :: name -> + let name = if crate = crate_name then name else Ident crate :: name in + let name = + List.map + (function + | Names.Ident s -> s + | Disambiguator d -> Names.Disambiguator.to_string d) + name + in + name + | _ -> + raise (Failure ("Unexpected name shape: " ^ Print.name_to_string name)) + in + let get_type_name = get_name in + let type_name_to_camel_case name = + let name = get_type_name name in + let name = List.map to_camel_case name in + String.concat "" name + in + let type_name_to_snake_case name = + let name = get_type_name name in + let name = List.map to_snake_case name in + String.concat "_" name + in + let type_name name = type_name_to_snake_case name ^ "_t" in + let field_name (def_name : name) (field_id : FieldId.id) + (field_name : string option) : string = + let def_name = type_name_to_snake_case def_name ^ "_" in + match field_name with + | Some field_name -> def_name ^ field_name + | None -> def_name ^ FieldId.to_string field_id + in + let variant_name (def_name : name) (variant : string) : string = + let variant = to_camel_case variant in + if variant_concatenate_type_name then + type_name_to_camel_case def_name ^ variant + else variant + in + let struct_constructor (basename : name) : string = + let tname = type_name basename in + "Mk" ^ tname + in + let get_fun_name = get_name in + let fun_name_to_snake_case (fname : fun_name) : string = + let fname = get_fun_name fname in + (* Converting to snake case should be a no-op, but it doesn't cost much *) + let fname = List.map to_snake_case fname in + (* Concatenate the elements *) + String.concat "_" fname + in + let global_name (name : global_name) : string = + (* Converting to snake case also lowercases the letters (in Rust, global + * names are written in capital letters). *) + let parts = List.map to_snake_case (get_name name) in + String.concat "_" parts + in + let fun_name (fname : fun_name) (num_rgs : int) + (rg : region_group_info option) (filter_info : bool * int) : string = + let fname = fun_name_to_snake_case fname in + (* Compute the suffix *) + let suffix = default_fun_suffix num_rgs rg filter_info in + (* Concatenate *) + fname ^ suffix + in + + let decreases_clause_name (_fid : A.FunDeclId.id) (fname : fun_name) : string + = + let fname = fun_name_to_snake_case fname in + (* Compute the suffix *) + let suffix = "_decreases" in + (* Concatenate *) + fname ^ suffix + in + + let var_basename (_varset : StringSet.t) (basename : string option) (ty : ty) + : string = + (* If there is a basename, we use it *) + match basename with + | Some basename -> + (* This should be a no-op *) + to_snake_case basename + | None -> ( + (* No basename: we use the first letter of the type *) + match ty with + | Adt (type_id, tys) -> ( + match type_id with + | Tuple -> + (* The "pair" case is frequent enough to have its special treatment *) + if List.length tys = 2 then "p" else "t" + | Assumed Result -> "r" + | Assumed Option -> "opt" + | Assumed Vec -> "v" + | Assumed State -> "st" + | AdtId adt_id -> + let def = + TypeDeclId.Map.find adt_id ctx.type_context.type_decls + in + (* We do the following: + * - compute the type name, and retrieve the last ident + * - convert this to snake case + * - take the first letter of every "letter group" + * Ex.: ["hashmap"; "HashMap"] ~~> "HashMap" -> "hash_map" -> "hm" + *) + (* Thename shouldn't be empty, and its last element should + * be an ident *) + let cl = List.nth def.name (List.length def.name - 1) in + let cl = to_snake_case (Names.as_ident cl) in + let cl = String.split_on_char '_' cl in + let cl = List.filter (fun s -> String.length s > 0) cl in + assert (List.length cl > 0); + let cl = List.map (fun s -> s.[0]) cl in + StringUtils.string_of_chars cl) + | TypeVar _ -> "x" (* lacking imagination here... *) + | Bool -> "b" + | Char -> "c" + | Integer _ -> "i" + | Str -> "s" + | Arrow _ -> "f" + | Array _ | Slice _ -> raise Unimplemented) + in + let type_var_basename (_varset : StringSet.t) (basename : string) : string = + (* This is *not* a no-op: type variables in Rust often start with + * a capital letter *) + to_snake_case basename + in + let append_index (basename : string) (i : int) : string = + basename ^ string_of_int i + in + + let extract_primitive_value (fmt : F.formatter) (_inside : bool) + (cv : primitive_value) : unit = + match cv with + | Scalar sv -> F.pp_print_string fmt (Z.to_string sv.PV.value) + | Bool b -> + let b = if b then "true" else "false" in + F.pp_print_string fmt b + | Char c -> F.pp_print_string fmt ("'" ^ String.make 1 c ^ "'") + | String s -> + (* We need to replace all the line breaks *) + let s = + StringUtils.map + (fun c -> if c = '\n' then "\n" else String.make 1 c) + s + in + F.pp_print_string fmt ("\"" ^ s ^ "\"") + in + { + bool_name = "bool"; + char_name = "char"; + int_name; + str_name = "string"; + field_name; + variant_name; + struct_constructor; + type_name; + global_name; + fun_name; + decreases_clause_name; + var_basename; + type_var_basename; + append_index; + extract_primitive_value; + extract_unop = fstar_extract_unop; + extract_binop = fstar_extract_binop; + } + +(** [inside] constrols whether we should add parentheses or not around type + applications (if [true] we add parentheses). + *) +let rec extract_ty (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool) + (ty : ty) : unit = + match ty with + | Adt (type_id, tys) -> ( + match type_id with + | Tuple -> + (* This is a bit annoying, but in F* [()] is not the unit type: + * we have to write [unit]... *) + if tys = [] then F.pp_print_string fmt "unit" + else ( + F.pp_print_string fmt "("; + Collections.List.iter_link + (fun () -> + F.pp_print_space fmt (); + F.pp_print_string fmt "&"; + F.pp_print_space fmt ()) + (extract_ty ctx fmt true) tys; + F.pp_print_string fmt ")") + | AdtId _ | Assumed _ -> + let print_paren = inside && tys <> [] in + if print_paren then F.pp_print_string fmt "("; + F.pp_print_string fmt (ctx_get_type type_id ctx); + if tys <> [] then F.pp_print_space fmt (); + Collections.List.iter_link (F.pp_print_space fmt) + (extract_ty ctx fmt true) tys; + if print_paren then F.pp_print_string fmt ")") + | TypeVar vid -> F.pp_print_string fmt (ctx_get_type_var vid ctx) + | Bool -> F.pp_print_string fmt ctx.fmt.bool_name + | Char -> F.pp_print_string fmt ctx.fmt.char_name + | Integer int_ty -> F.pp_print_string fmt (ctx.fmt.int_name int_ty) + | Str -> F.pp_print_string fmt ctx.fmt.str_name + | Arrow (arg_ty, ret_ty) -> + if inside then F.pp_print_string fmt "("; + extract_ty ctx fmt false arg_ty; + F.pp_print_space fmt (); + F.pp_print_string fmt "->"; + F.pp_print_space fmt (); + extract_ty ctx fmt false ret_ty; + if inside then F.pp_print_string fmt ")" + | Array _ | Slice _ -> raise Unimplemented + +(** Compute the names for all the top-level identifiers used in a type + definition (type name, variant names, field names, etc. but not type + parameters). + + We need to do this preemptively, beforce extracting any definition, + because of recursive definitions. + *) +let extract_type_decl_register_names (ctx : extraction_ctx) (def : type_decl) : + extraction_ctx = + (* Compute and register the type def name *) + let ctx = ctx_add_type_decl def ctx in + (* Compute and register: + * - the variant names, if this is an enumeration + * - the field names, if this is a structure + *) + let ctx = + match def.kind with + | Struct fields -> + (* Add the fields *) + let ctx = + fst + (ctx_add_fields def (FieldId.mapi (fun id f -> (id, f)) fields) ctx) + in + (* Add the constructor name *) + fst (ctx_add_struct def ctx) + | Enum variants -> + fst + (ctx_add_variants def + (VariantId.mapi (fun id v -> (id, v)) variants) + ctx) + | Opaque -> + (* Nothing to do *) + ctx + in + (* Return *) + ctx + +let extract_type_decl_struct_body (ctx : extraction_ctx) (fmt : F.formatter) + (def : type_decl) (fields : field list) : unit = + (* We want to generate a definition which looks like this: + {[ + type t = { x : int; y : bool; } + ]} + + If there isn't enough space on one line: + {[ + type t = + { + x : int; y : bool; + } + ]} + + And if there is even less space: + {[ + type t = + { + x : int; + y : bool; + } + ]} + + Also, in case there are no fields, we need to define the type as [unit] + ([type t = {}] doesn't work in F* ). + *) + (* Note that we already printed: [type t =] *) + if fields = [] then ( + F.pp_print_space fmt (); + F.pp_print_string fmt "unit") + else ( + F.pp_print_space fmt (); + F.pp_print_string fmt "{"; + F.pp_print_break fmt 1 ctx.indent_incr; + (* The body itself *) + F.pp_open_hvbox fmt 0; + (* Print the fields *) + let print_field (field_id : FieldId.id) (f : field) : unit = + let field_name = ctx_get_field (AdtId def.def_id) field_id ctx in + F.pp_open_box fmt ctx.indent_incr; + F.pp_print_string fmt field_name; + F.pp_print_space fmt (); + F.pp_print_string fmt ":"; + F.pp_print_space fmt (); + extract_ty ctx fmt false f.field_ty; + F.pp_print_string fmt ";"; + F.pp_close_box fmt () + in + let fields = FieldId.mapi (fun fid f -> (fid, f)) fields in + Collections.List.iter_link (F.pp_print_space fmt) + (fun (fid, f) -> print_field fid f) + fields; + (* Close *) + F.pp_close_box fmt (); + F.pp_print_space fmt (); + F.pp_print_string fmt "}") + +let extract_type_decl_enum_body (ctx : extraction_ctx) (fmt : F.formatter) + (def : type_decl) (def_name : string) (type_params : string list) + (variants : variant list) : unit = + (* We want to generate a definition which looks like this: + {[ + type list a = | Cons : a -> list a -> list a | Nil : list a + ]} + + If there isn't enough space on one line: + {[ + type s = + | Cons : a -> list a -> list a + | Nil : list a + ]} + + And if we need to write the type of a variant on several lines: + {[ + type s = + | Cons : + a -> + list a -> + list a + | Nil : list a + ]} + + Finally, it is possible to give names to the variant fields in Rust. + In this situation, we generate a definition like this: + {[ + type s = + | Cons : hd:a -> tl:list a -> list a + | Nil : list a + ]} + + Note that we already printed: [type s =] + *) + (* Print the variants *) + let print_variant (variant_id : VariantId.id) (variant : variant) : unit = + let variant_name = ctx_get_variant (AdtId def.def_id) variant_id ctx in + F.pp_print_space fmt (); + F.pp_open_hvbox fmt ctx.indent_incr; + (* variant box *) + (* [| Cons :] + * Note that we really don't want any break above so we print everything + * at once. *) + F.pp_print_string fmt ("| " ^ variant_name ^ " :"); + F.pp_print_space fmt (); + let print_field (fid : FieldId.id) (f : field) (ctx : extraction_ctx) : + extraction_ctx = + (* Open the field box *) + F.pp_open_box fmt ctx.indent_incr; + (* Print the field names + * [ x :] + * Note that when printing fields, we register the field names as + * *variables*: they don't need to be unique at the top level. *) + let ctx = + match f.field_name with + | None -> ctx + | Some field_name -> + let var_id = VarId.of_int (FieldId.to_int fid) in + let field_name = + ctx.fmt.var_basename ctx.names_map.names_set (Some field_name) + f.field_ty + in + let ctx, field_name = ctx_add_var field_name var_id ctx in + F.pp_print_string fmt (field_name ^ " :"); + F.pp_print_space fmt (); + ctx + in + (* Print the field type *) + extract_ty ctx fmt false f.field_ty; + (* Print the arrow [->]*) + F.pp_print_space fmt (); + F.pp_print_string fmt "->"; + (* Close the field box *) + F.pp_close_box fmt (); + F.pp_print_space fmt (); + (* Return *) + ctx + in + (* Print the fields *) + let fields = FieldId.mapi (fun fid f -> (fid, f)) variant.fields in + let _ = + List.fold_left (fun ctx (fid, f) -> print_field fid f ctx) ctx fields + in + (* Print the final type *) + F.pp_open_hovbox fmt 0; + F.pp_print_string fmt def_name; + List.iter + (fun type_param -> + F.pp_print_space fmt (); + F.pp_print_string fmt type_param) + type_params; + F.pp_close_box fmt (); + (* Close the variant box *) + F.pp_close_box fmt () + in + (* Print the variants *) + let variants = VariantId.mapi (fun vid v -> (vid, v)) variants in + List.iter (fun (vid, v) -> print_variant vid v) variants + +(** Extract a type declaration. + + Note that all the names used for extraction should already have been + registered. + *) +let extract_type_decl (ctx : extraction_ctx) (fmt : F.formatter) + (qualif : type_decl_qualif) (def : type_decl) : unit = + (* Retrieve the definition name *) + let def_name = ctx_get_local_type def.def_id ctx in + (* Add the type params - note that we need those bindings only for the + * body translation (they are not top-level) *) + let ctx_body, type_params = ctx_add_type_params def.type_params ctx in + (* Add a break before *) + F.pp_print_break fmt 0 0; + (* Print a comment to link the extracted type to its original rust definition *) + F.pp_print_string fmt ("(** [" ^ Print.name_to_string def.name ^ "] *)"); + F.pp_print_space fmt (); + (* Open a box for the definition, so that whenever possible it gets printed on + * one line *) + F.pp_open_hvbox fmt 0; + (* Open a box for "type TYPE_NAME (TYPE_PARAMS) =" *) + F.pp_open_hovbox fmt ctx.indent_incr; + (* > "type TYPE_NAME" *) + let extract_body, qualif = + match qualif with + | Type -> (true, "type") + | And -> (true, "and") + | AssumeType -> (false, "assume type") + | TypeVal -> (false, "val") + in + F.pp_print_string fmt (qualif ^ " " ^ def_name); + (* Print the type parameters *) + if def.type_params <> [] then ( + F.pp_print_space fmt (); + F.pp_print_string fmt "("; + List.iter + (fun (p : type_var) -> + let pname = ctx_get_type_var p.index ctx_body in + F.pp_print_string fmt pname; + F.pp_print_space fmt ()) + def.type_params; + F.pp_print_string fmt ":"; + F.pp_print_space fmt (); + F.pp_print_string fmt "Type0)"); + (* Print the "=" if we extract the body*) + if extract_body then ( + F.pp_print_space fmt (); + F.pp_print_string fmt "=") + else ( + (* Otherwise print ": Type0" *) + F.pp_print_space fmt (); + F.pp_print_string fmt ":"; + F.pp_print_space fmt (); + F.pp_print_string fmt "Type0"); + (* Close the box for "type TYPE_NAME (TYPE_PARAMS) =" *) + F.pp_close_box fmt (); + (if extract_body then + match def.kind with + | Struct fields -> extract_type_decl_struct_body ctx_body fmt def fields + | Enum variants -> + extract_type_decl_enum_body ctx_body fmt def def_name type_params + variants + | Opaque -> raise (Failure "Unreachable")); + (* Close the box for the definition *) + F.pp_close_box fmt (); + (* Add breaks to insert new lines between definitions *) + F.pp_print_break fmt 0 0 + +(** Extract the state type declaration. *) +let extract_state_type (fmt : F.formatter) (ctx : extraction_ctx) + (qualif : type_decl_qualif) : unit = + (* Add a break before *) + F.pp_print_break fmt 0 0; + (* Print a comment *) + F.pp_print_string fmt "(** The state type used in the state-error monad *)"; + F.pp_print_space fmt (); + (* Open a box for the definition, so that whenever possible it gets printed on + * one line *) + F.pp_open_hvbox fmt 0; + (* Retrieve the name *) + let state_name = ctx_get_assumed_type State ctx in + (* The qualif should be [AssumeType] or [TypeVal] *) + (match qualif with + | Type | And -> raise (Failure "Unexpected") + | AssumeType -> + F.pp_print_string fmt "assume"; + F.pp_print_space fmt (); + F.pp_print_string fmt "type"; + F.pp_print_space fmt (); + F.pp_print_string fmt state_name; + F.pp_print_space fmt (); + F.pp_print_string fmt ":"; + F.pp_print_space fmt (); + F.pp_print_string fmt "Type0" + | TypeVal -> + F.pp_print_string fmt "val"; + F.pp_print_space fmt (); + F.pp_print_string fmt state_name; + F.pp_print_space fmt (); + F.pp_print_string fmt ":"; + F.pp_print_space fmt (); + F.pp_print_string fmt "Type0"); + (* Close the box for the definition *) + F.pp_close_box fmt (); + (* Add breaks to insert new lines between definitions *) + F.pp_print_break fmt 0 0 + +(** Compute the names for all the pure functions generated from a rust function + (forward function and backward functions). + *) +let extract_fun_decl_register_names (ctx : extraction_ctx) (keep_fwd : bool) + (has_decreases_clause : bool) (def : pure_fun_translation) : extraction_ctx + = + let fwd, back_ls = def in + (* Register the decrease clause, if necessary *) + let ctx = + if has_decreases_clause then ctx_add_decrases_clause fwd ctx else ctx + in + (* Register the forward function name *) + let ctx = ctx_add_fun_decl (keep_fwd, def) fwd ctx in + (* Register the backward functions' names *) + let ctx = + List.fold_left + (fun ctx back -> ctx_add_fun_decl (keep_fwd, def) back ctx) + ctx back_ls + in + (* Return *) + ctx + +(** Simply add the global name to the context. *) +let extract_global_decl_register_names (ctx : extraction_ctx) + (def : A.global_decl) : extraction_ctx = + ctx_add_global_decl_and_body def ctx + +(** The following function factorizes the extraction of ADT values. + + Note that patterns can introduce new variables: we thus return an extraction + context updated with new bindings. + + TODO: we don't need something very generic anymore + *) +let extract_adt_g_value + (extract_value : extraction_ctx -> bool -> 'v -> extraction_ctx) + (fmt : F.formatter) (ctx : extraction_ctx) (inside : bool) + (variant_id : VariantId.id option) (field_values : 'v list) (ty : ty) : + extraction_ctx = + match ty with + | Adt (Tuple, _) -> + (* Tuple *) + F.pp_print_string fmt "("; + let ctx = + Collections.List.fold_left_link + (fun () -> + F.pp_print_string fmt ","; + F.pp_print_space fmt ()) + (fun ctx v -> extract_value ctx false v) + ctx field_values + in + F.pp_print_string fmt ")"; + ctx + | Adt (adt_id, _) -> + (* "Regular" ADT *) + (* We print something of the form: [Cons field0 ... fieldn]. + * We could update the code to print something of the form: + * [{ field0=...; ...; fieldn=...; }] in case of structures. + *) + let cons = + match variant_id with + | Some vid -> ctx_get_variant adt_id vid ctx + | None -> ctx_get_struct adt_id ctx + in + if inside && field_values <> [] then F.pp_print_string fmt "("; + F.pp_print_string fmt cons; + let ctx = + Collections.List.fold_left + (fun ctx v -> + F.pp_print_space fmt (); + extract_value ctx true v) + ctx field_values + in + if inside && field_values <> [] then F.pp_print_string fmt ")"; + ctx + | _ -> raise (Failure "Inconsistent typed value") + +(* Extract globals in the same way as variables *) +let extract_global (ctx : extraction_ctx) (fmt : F.formatter) + (id : A.GlobalDeclId.id) : unit = + F.pp_print_string fmt (ctx_get_global id ctx) + +(** [inside]: see {!extract_ty}. + + As a pattern can introduce new variables, we return an extraction context + updated with new bindings. + *) +let rec extract_typed_pattern (ctx : extraction_ctx) (fmt : F.formatter) + (inside : bool) (v : typed_pattern) : extraction_ctx = + match v.value with + | PatConstant cv -> + ctx.fmt.extract_primitive_value fmt inside cv; + ctx + | PatVar (v, _) -> + let vname = + ctx.fmt.var_basename ctx.names_map.names_set v.basename v.ty + in + let ctx, vname = ctx_add_var vname v.id ctx in + F.pp_print_string fmt vname; + ctx + | PatDummy -> + F.pp_print_string fmt "_"; + ctx + | PatAdt av -> + let extract_value ctx inside v = extract_typed_pattern ctx fmt inside v in + extract_adt_g_value extract_value fmt ctx inside av.variant_id + av.field_values v.ty + +(** [inside]: controls the introduction of parentheses. See [extract_ty] + + TODO: replace the formatting boolean [inside] with something more general? + Also, it seems we don't really use it... + Cases to consider: + - right-expression in a let: [let x = re in _] (never parentheses?) + - next expression in a let: [let x = _ in next_e] (never parentheses?) + - application argument: [f (exp)] + - match/if scrutinee: [if exp then _ else _]/[match exp | _ -> _] + *) +let rec extract_texpression (ctx : extraction_ctx) (fmt : F.formatter) + (inside : bool) (e : texpression) : unit = + match e.e with + | Var var_id -> + let var_name = ctx_get_var var_id ctx in + F.pp_print_string fmt var_name + | Const cv -> ctx.fmt.extract_primitive_value fmt inside cv + | App _ -> + let app, args = destruct_apps e in + extract_App ctx fmt inside app args + | Abs _ -> + let xl, e = destruct_abs_list e in + extract_Abs ctx fmt inside xl e + | Qualif _ -> + (* We use the app case *) + extract_App ctx fmt inside e [] + | Let (monadic, lv, re, next_e) -> + extract_Let ctx fmt inside monadic lv re next_e + | Switch (scrut, body) -> extract_Switch ctx fmt inside scrut body + | Meta (_, e) -> extract_texpression ctx fmt inside e + +(* Extract an application *or* a top-level qualif (function extraction has + * to handle top-level qualifiers, so it seemed more natural to merge the + * two cases) *) +and extract_App (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool) + (app : texpression) (args : texpression list) : unit = + (* We don't do the same thing if the app is a top-level identifier (function, + * ADT constructor...) or a "regular" expression *) + match app.e with + | Qualif qualif -> ( + (* Top-level qualifier *) + match qualif.id with + | FunOrOp fun_id -> + extract_function_call ctx fmt inside fun_id qualif.type_args args + | Global global_id -> extract_global ctx fmt global_id + | AdtCons adt_cons_id -> + extract_adt_cons ctx fmt inside adt_cons_id qualif.type_args args + | Proj proj -> + extract_field_projector ctx fmt inside app proj qualif.type_args args) + | _ -> + (* "Regular" expression *) + (* Open parentheses *) + if inside then F.pp_print_string fmt "("; + (* Open a box for the application *) + F.pp_open_hovbox fmt ctx.indent_incr; + (* Print the app expression *) + let app_inside = (inside && args = []) || args <> [] in + extract_texpression ctx fmt app_inside app; + (* Print the arguments *) + List.iter + (fun ve -> + F.pp_print_space fmt (); + extract_texpression ctx fmt true ve) + args; + (* Close the box for the application *) + F.pp_close_box fmt (); + (* Close parentheses *) + if inside then F.pp_print_string fmt ")" + +(** Subcase of the app case: function call *) +and extract_function_call (ctx : extraction_ctx) (fmt : F.formatter) + (inside : bool) (fid : fun_or_op_id) (type_args : ty list) + (args : texpression list) : unit = + match (fid, args) with + | Unop unop, [ arg ] -> + (* A unop can have *at most* one argument (the result can't be a function!). + * Note that the way we generate the translation, we shouldn't get the + * case where we have no argument (all functions are fully instantiated, + * and no AST transformation introduces partial calls). *) + ctx.fmt.extract_unop (extract_texpression ctx fmt) fmt inside unop arg + | Binop (binop, int_ty), [ arg0; arg1 ] -> + (* Number of arguments: similar to unop *) + ctx.fmt.extract_binop + (extract_texpression ctx fmt) + fmt inside binop int_ty arg0 arg1 + | Fun fun_id, _ -> + if inside then F.pp_print_string fmt "("; + (* Open a box for the function call *) + F.pp_open_hovbox fmt ctx.indent_incr; + (* Print the function name *) + let fun_name = ctx_get_function fun_id ctx in + F.pp_print_string fmt fun_name; + (* Print the type parameters *) + List.iter + (fun ty -> + F.pp_print_space fmt (); + extract_ty ctx fmt true ty) + type_args; + (* Print the arguments *) + List.iter + (fun ve -> + F.pp_print_space fmt (); + extract_texpression ctx fmt true ve) + args; + (* Close the box for the function call *) + F.pp_close_box fmt (); + (* Return *) + if inside then F.pp_print_string fmt ")" + | (Unop _ | Binop _), _ -> + raise + (Failure + ("Unreachable:\n" ^ "Function: " ^ show_fun_or_op_id fid + ^ ",\nNumber of arguments: " + ^ string_of_int (List.length args) + ^ ",\nArguments: " + ^ String.concat " " (List.map show_texpression args))) + +(** Subcase of the app case: ADT constructor *) +and extract_adt_cons (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool) + (adt_cons : adt_cons_id) (type_args : ty list) (args : texpression list) : + unit = + match adt_cons.adt_id with + | Tuple -> + (* Tuple *) + (* For now, we only support fully applied tuple constructors *) + assert (List.length type_args = List.length args); + F.pp_print_string fmt "("; + Collections.List.iter_link + (fun () -> + F.pp_print_string fmt ","; + F.pp_print_space fmt ()) + (fun v -> extract_texpression ctx fmt false v) + args; + F.pp_print_string fmt ")" + | _ -> + (* "Regular" ADT *) + (* We print something of the form: [Cons field0 ... fieldn]. + * We could update the code to print something of the form: + * [{ field0=...; ...; fieldn=...; }] in case of fully + * applied structure constructors. + *) + let cons = + match adt_cons.variant_id with + | Some vid -> ctx_get_variant adt_cons.adt_id vid ctx + | None -> ctx_get_struct adt_cons.adt_id ctx + in + let use_parentheses = inside && args <> [] in + if use_parentheses then F.pp_print_string fmt "("; + F.pp_print_string fmt cons; + Collections.List.iter + (fun v -> + F.pp_print_space fmt (); + extract_texpression ctx fmt true v) + args; + if use_parentheses then F.pp_print_string fmt ")" + +(** Subcase of the app case: ADT field projector. *) +and extract_field_projector (ctx : extraction_ctx) (fmt : F.formatter) + (inside : bool) (original_app : texpression) (proj : projection) + (_proj_type_params : ty list) (args : texpression list) : unit = + (* We isolate the first argument (if there is), in order to pretty print the + * projection ([x.field] instead of [MkAdt?.field x] *) + match args with + | [ arg ] -> + (* Exactly one argument: pretty-print *) + let field_name = ctx_get_field proj.adt_id proj.field_id ctx in + (* Open a box *) + F.pp_open_hovbox fmt ctx.indent_incr; + (* Extract the expression *) + extract_texpression ctx fmt true arg; + (* We allow to break where the "." appears *) + F.pp_print_break fmt 0 0; + F.pp_print_string fmt "."; + F.pp_print_string fmt field_name; + (* Close the box *) + F.pp_close_box fmt () + | arg :: args -> + (* Call extract_App again, but in such a way that the first argument is + * isolated *) + extract_App ctx fmt inside (mk_app original_app arg) args + | [] -> + (* No argument: shouldn't happen *) + raise (Failure "Unreachable") + +and extract_Abs (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool) + (xl : typed_pattern list) (e : texpression) : unit = + (* Open a box for the abs expression *) + F.pp_open_hovbox fmt ctx.indent_incr; + (* Open parentheses *) + if inside then F.pp_print_string fmt "("; + (* Print the lambda - note that there should always be at least one variable *) + assert (xl <> []); + F.pp_print_string fmt "fun"; + let ctx = + List.fold_left + (fun ctx x -> + F.pp_print_space fmt (); + extract_typed_pattern ctx fmt true x) + ctx xl + in + F.pp_print_space fmt (); + F.pp_print_string fmt "->"; + F.pp_print_space fmt (); + (* Print the body *) + extract_texpression ctx fmt false e; + (* Close parentheses *) + if inside then F.pp_print_string fmt ")"; + (* Close the box for the abs expression *) + F.pp_close_box fmt () + +and extract_Let (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool) + (monadic : bool) (lv : typed_pattern) (re : texpression) + (next_e : texpression) : unit = + (* Open a box for the whole expression *) + F.pp_open_hvbox fmt 0; + (* Open parentheses *) + if inside then F.pp_print_string fmt "("; + (* Open a box for the let-binding *) + F.pp_open_hovbox fmt ctx.indent_incr; + let ctx = + if monadic then ( + (* Note that in F*, the left value of a monadic let-binding can only be + * a variable *) + let ctx = extract_typed_pattern ctx fmt true lv in + F.pp_print_space fmt (); + F.pp_print_string fmt "<--"; + F.pp_print_space fmt (); + extract_texpression ctx fmt false re; + F.pp_print_string fmt ";"; + ctx) + else ( + F.pp_print_string fmt "let"; + F.pp_print_space fmt (); + let ctx = extract_typed_pattern ctx fmt true lv in + F.pp_print_space fmt (); + F.pp_print_string fmt "="; + F.pp_print_space fmt (); + extract_texpression ctx fmt false re; + F.pp_print_space fmt (); + F.pp_print_string fmt "in"; + ctx) + in + (* Close the box for the let-binding *) + F.pp_close_box fmt (); + (* Print the next expression *) + F.pp_print_space fmt (); + extract_texpression ctx fmt false next_e; + (* Close parentheses *) + if inside then F.pp_print_string fmt ")"; + (* Close the box for the whole expression *) + F.pp_close_box fmt () + +and extract_Switch (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool) + (scrut : texpression) (body : switch_body) : unit = + (* Open a box for the whole expression *) + F.pp_open_hvbox fmt 0; + (* Open parentheses *) + if inside then F.pp_print_string fmt "("; + (* Extract the switch *) + (match body with + | If (e_then, e_else) -> + (* Open a box for the [if] *) + F.pp_open_hovbox fmt ctx.indent_incr; + F.pp_print_string fmt "if"; + F.pp_print_space fmt (); + let scrut_inside = PureUtils.let_group_requires_parentheses scrut in + extract_texpression ctx fmt scrut_inside scrut; + (* Close the box for the [if] *) + F.pp_close_box fmt (); + (* Extract the branches *) + let extract_branch (is_then : bool) (e_branch : texpression) : unit = + F.pp_print_space fmt (); + (* Open a box for the then/else+branch *) + F.pp_open_hovbox fmt ctx.indent_incr; + let then_or_else = if is_then then "then" else "else" in + F.pp_print_string fmt then_or_else; + F.pp_print_space fmt (); + (* Open a box for the branch *) + F.pp_open_hovbox fmt ctx.indent_incr; + (* Print the [begin] if necessary *) + let parenth = PureUtils.let_group_requires_parentheses e_branch in + if parenth then ( + F.pp_print_string fmt "begin"; + F.pp_print_space fmt ()); + (* Print the branch expression *) + extract_texpression ctx fmt false e_branch; + (* Close the [begin ... end ] *) + if parenth then ( + F.pp_print_space fmt (); + F.pp_print_string fmt "end"); + (* Close the box for the branch *) + F.pp_close_box fmt (); + (* Close the box for the then/else+branch *) + F.pp_close_box fmt () + in + + extract_branch true e_then; + extract_branch false e_else + | Match branches -> + (* Open a box for the [match ... with] *) + F.pp_open_hovbox fmt ctx.indent_incr; + (* Print the [match ... with] *) + F.pp_print_string fmt "begin match"; + F.pp_print_space fmt (); + let scrut_inside = PureUtils.let_group_requires_parentheses scrut in + extract_texpression ctx fmt scrut_inside scrut; + F.pp_print_space fmt (); + F.pp_print_string fmt "with"; + (* Close the box for the [match ... with] *) + F.pp_close_box fmt (); + + (* Extract the branches *) + let extract_branch (br : match_branch) : unit = + F.pp_print_space fmt (); + (* Open a box for the pattern+branch *) + F.pp_open_hovbox fmt ctx.indent_incr; + F.pp_print_string fmt "|"; + (* Print the pattern *) + F.pp_print_space fmt (); + let ctx = extract_typed_pattern ctx fmt false br.pat in + F.pp_print_space fmt (); + F.pp_print_string fmt "->"; + F.pp_print_space fmt (); + (* Open a box for the branch *) + F.pp_open_hovbox fmt ctx.indent_incr; + (* Print the branch itself *) + extract_texpression ctx fmt false br.branch; + (* Close the box for the branch *) + F.pp_close_box fmt (); + (* Close the box for the pattern+branch *) + F.pp_close_box fmt () + in + + List.iter extract_branch branches; + + (* End the match *) + F.pp_print_space fmt (); + F.pp_print_string fmt "end"); + (* Close parentheses *) + if inside then F.pp_print_string fmt ")"; + (* Close the box for the whole expression *) + F.pp_close_box fmt () + +(** A small utility to print the parameters of a function signature. + + We return two contexts: + - the context augmented with bindings for the type parameters + - the previous context augmented with bindings for the input values + *) +let extract_fun_parameters (ctx : extraction_ctx) (fmt : F.formatter) + (def : fun_decl) : extraction_ctx * extraction_ctx = + (* Add the type parameters - note that we need those bindings only for the + * body translation (they are not top-level) *) + let ctx, _ = ctx_add_type_params def.signature.type_params ctx in + (* Print the parameters - rk.: we should have filtered the functions + * with no input parameters *) + (* The type parameters *) + if def.signature.type_params <> [] then ( + (* Open a box for the type parameters *) + F.pp_open_hovbox fmt 0; + F.pp_print_string fmt "("; + List.iter + (fun (p : type_var) -> + let pname = ctx_get_type_var p.index ctx in + F.pp_print_string fmt pname; + F.pp_print_space fmt ()) + def.signature.type_params; + F.pp_print_string fmt ":"; + F.pp_print_space fmt (); + F.pp_print_string fmt "Type0)"; + (* Close the box for the type parameters *) + F.pp_close_box fmt (); + F.pp_print_space fmt ()); + (* The input parameters - note that doing this adds bindings to the context *) + let ctx_body = + match def.body with + | None -> ctx + | Some body -> + List.fold_left + (fun ctx (lv : typed_pattern) -> + (* Open a box for the input parameter *) + F.pp_open_hovbox fmt 0; + F.pp_print_string fmt "("; + let ctx = extract_typed_pattern ctx fmt false lv in + F.pp_print_space fmt (); + F.pp_print_string fmt ":"; + F.pp_print_space fmt (); + extract_ty ctx fmt false lv.ty; + F.pp_print_string fmt ")"; + (* Close the box for the input parameters *) + F.pp_close_box fmt (); + F.pp_print_space fmt (); + ctx) + ctx body.inputs_lvs + in + (ctx, ctx_body) + +(** A small utility to print the types of the input parameters in the form: + [u32 -> list u32 -> ...] + (we don't print the return type of the function) + + This is used for opaque function declarations, in particular. + *) +let extract_fun_input_parameters_types (ctx : extraction_ctx) + (fmt : F.formatter) (def : fun_decl) : unit = + let extract_param (ty : ty) : unit = + let inside = false in + extract_ty ctx fmt inside ty; + F.pp_print_space fmt (); + F.pp_print_string fmt "->"; + F.pp_print_space fmt () + in + List.iter extract_param def.signature.inputs + +(** Extract a decrease clause function template body. + + In order to help the user, we can generate a template for the functions + required by the decreases clauses. We simply generate definitions of + the following form in a separate file: + {[ + let f_decrease (t : Type0) (x : t) : nat = admit() + ]} + + Where the translated functions for [f] look like this: + {[ + let f_fwd (t : Type0) (x : t) : Tot ... (decreases (f_decrease t x)) = ... + ]} + *) +let extract_template_decreases_clause (ctx : extraction_ctx) (fmt : F.formatter) + (def : fun_decl) : unit = + (* Retrieve the function name *) + let def_name = ctx_get_decreases_clause def.def_id ctx in + (* Add a break before *) + F.pp_print_break fmt 0 0; + (* Print a comment to link the extracted type to its original rust definition *) + F.pp_print_string fmt + ("(** [" ^ Print.fun_name_to_string def.basename ^ "]: decreases clause *)"); + F.pp_print_space fmt (); + (* Open a box for the definition, so that whenever possible it gets printed on + * one line *) + F.pp_open_hvbox fmt 0; + (* Add the [unfold] keyword *) + F.pp_print_string fmt "unfold"; + F.pp_print_space fmt (); + (* Open a box for "let FUN_NAME (PARAMS) : EFFECT = admit()" *) + F.pp_open_hvbox fmt ctx.indent_incr; + (* Open a box for "let FUN_NAME (PARAMS) : EFFECT =" *) + F.pp_open_hovbox fmt ctx.indent_incr; + (* > "let FUN_NAME" *) + F.pp_print_string fmt ("let " ^ def_name); + F.pp_print_space fmt (); + (* Extract the parameters *) + let _, _ = extract_fun_parameters ctx fmt def in + F.pp_print_string fmt ":"; + (* Print the signature *) + F.pp_print_space fmt (); + F.pp_print_string fmt "nat"; + (* Print the "=" *) + F.pp_print_space fmt (); + F.pp_print_string fmt "="; + (* Close the box for "let FUN_NAME (PARAMS) : EFFECT =" *) + F.pp_close_box fmt (); + F.pp_print_space fmt (); + (* Print the "admit ()" *) + F.pp_print_string fmt "admit ()"; + (* Close the box for "let FUN_NAME (PARAMS) : EFFECT = admit()" *) + F.pp_close_box fmt (); + (* Close the box for the whole definition *) + F.pp_close_box fmt (); + (* Add breaks to insert new lines between definitions *) + F.pp_print_break fmt 0 0 + +(** Extract a function declaration. + + Note that all the names used for extraction should already have been + registered. + + We take the definition of the forward translation as parameter (which is + equal to the definition to extract, if we extract a forward function) because + it is useful for the decrease clause. + *) +let extract_fun_decl (ctx : extraction_ctx) (fmt : F.formatter) + (qualif : fun_decl_qualif) (has_decreases_clause : bool) (def : fun_decl) : + unit = + assert (not def.is_global_decl_body); + (* Retrieve the function name *) + let def_name = ctx_get_local_function def.def_id def.back_id ctx in + (* (* Add the type parameters - note that we need those bindings only for the + * body translation (they are not top-level) *) + let ctx, _ = ctx_add_type_params def.signature.type_params ctx in *) + (* Add a break before *) + F.pp_print_break fmt 0 0; + (* Print a comment to link the extracted type to its original rust definition *) + F.pp_print_string fmt + ("(** [" ^ Print.fun_name_to_string def.basename ^ "] *)"); + F.pp_print_space fmt (); + (* Open a box for the definition, so that whenever possible it gets printed on + * one line *) + F.pp_open_hvbox fmt ctx.indent_incr; + (* Open a box for "let FUN_NAME (PARAMS) : EFFECT =" *) + F.pp_open_hovbox fmt ctx.indent_incr; + (* > "let FUN_NAME" *) + let is_opaque = Option.is_none def.body in + let qualif = fun_decl_qualif_keyword qualif in + F.pp_print_string fmt (qualif ^ " " ^ def_name); + F.pp_print_space fmt (); + (* Open a box for "(PARAMS) : EFFECT =" *) + F.pp_open_hvbox fmt 0; + (* Open a box for "(PARAMS)" *) + F.pp_open_hovbox fmt 0; + let ctx, ctx_body = extract_fun_parameters ctx fmt def in + (* Close the box for "(PARAMS)" *) + F.pp_close_box fmt (); + (* Print the return type - note that we have to be careful when + * printing the input values for the decrease clause, because + * it introduces bindings in the context... We thus "forget" + * the bindings we introduced above. + * TODO: figure out a cleaner way *) + let _ = + F.pp_print_string fmt ":"; + F.pp_print_space fmt (); + (* Open a box for the EFFECT *) + F.pp_open_hvbox fmt 0; + (* Open a box for the return type *) + F.pp_open_hovbox fmt ctx.indent_incr; + (* Print the return type *) + (* For opaque definitions, as we don't have named parameters under the hand, + * we don't print parameters in the form [(x : a) (y : b) ...] above, + * but wait until here to print the types: [a -> b -> ...]. *) + if is_opaque then extract_fun_input_parameters_types ctx fmt def; + (* [Tot] *) + if has_decreases_clause then ( + F.pp_print_string fmt "Tot"; + F.pp_print_space fmt ()); + extract_ty ctx fmt has_decreases_clause def.signature.output; + (* Close the box for the return type *) + F.pp_close_box fmt (); + (* Print the decrease clause - rk.: a function with a decreases clause + * is necessarily a transparent function *) + if has_decreases_clause then ( + F.pp_print_space fmt (); + (* Open a box for the decrease clause *) + F.pp_open_hovbox fmt 0; + (* *) + F.pp_print_string fmt "(decreases"; + F.pp_print_space fmt (); + F.pp_print_string fmt "("; + (* The name of the decrease clause *) + let decr_name = ctx_get_decreases_clause def.def_id ctx in + F.pp_print_string fmt decr_name; + (* Print the type parameters *) + List.iter + (fun (p : type_var) -> + let pname = ctx_get_type_var p.index ctx in + F.pp_print_space fmt (); + F.pp_print_string fmt pname) + def.signature.type_params; + (* Print the input values: we have to be careful here to print + * only the input values which are in common with the *forward* + * function (the additional input values "given back" to the + * backward functions have no influence on termination: we thus + * share the decrease clauses between the forward and the backward + * functions - we also ignore the additional state received by the + * backward function, if there is one). + *) + let inputs_lvs = + let all_inputs = (Option.get def.body).inputs_lvs in + let num_fwd_inputs = def.signature.info.num_fwd_inputs_with_state in + Collections.List.prefix num_fwd_inputs all_inputs + in + let _ = + List.fold_left + (fun ctx (lv : typed_pattern) -> + F.pp_print_space fmt (); + let ctx = extract_typed_pattern ctx fmt false lv in + ctx) + ctx inputs_lvs + in + F.pp_print_string fmt "))"; + (* Close the box for the decrease clause *) + F.pp_close_box fmt ()); + (* Close the box for the EFFECT *) + F.pp_close_box fmt () + in + (* Print the "=" *) + if not is_opaque then ( + F.pp_print_space fmt (); + F.pp_print_string fmt "="); + (* Close the box for "(PARAMS) : EFFECT =" *) + F.pp_close_box fmt (); + (* Close the box for "let FUN_NAME (PARAMS) : EFFECT =" *) + F.pp_close_box fmt (); + if not is_opaque then ( + F.pp_print_space fmt (); + (* Open a box for the body *) + F.pp_open_hvbox fmt 0; + (* Extract the body *) + let _ = extract_texpression ctx_body fmt false (Option.get def.body).body in + (* Close the box for the body *) + F.pp_close_box fmt ()); + (* Close the box for the definition *) + F.pp_close_box fmt (); + (* Add breaks to insert new lines between definitions *) + F.pp_print_break fmt 0 0 + +(** Extract a global declaration body of the shape "QUALIF NAME : TYPE = BODY" with a custom body extractor *) +let extract_global_decl_body (ctx : extraction_ctx) (fmt : F.formatter) + (qualif : fun_decl_qualif) (name : string) (ty : ty) + (extract_body : (F.formatter -> unit) Option.t) : unit = + let is_opaque = Option.is_none extract_body in + + (* Open the definition box (depth=0) *) + F.pp_open_hvbox fmt ctx.indent_incr; + + (* Open "QUALIF NAME : TYPE =" box (depth=1) *) + F.pp_open_hovbox fmt ctx.indent_incr; + (* Print "QUALIF NAME " *) + F.pp_print_string fmt (fun_decl_qualif_keyword qualif ^ " " ^ name); + F.pp_print_space fmt (); + + (* Open ": TYPE =" box (depth=2) *) + F.pp_open_hvbox fmt 0; + (* Print ": " *) + F.pp_print_string fmt ":"; + F.pp_print_space fmt (); + + (* Open "TYPE" box (depth=3) *) + F.pp_open_hovbox fmt ctx.indent_incr; + (* Print "TYPE" *) + extract_ty ctx fmt false ty; + (* Close "TYPE" box (depth=3) *) + F.pp_close_box fmt (); + + if not is_opaque then ( + (* Print " =" *) + F.pp_print_space fmt (); + F.pp_print_string fmt "="); + (* Close ": TYPE =" box (depth=2) *) + F.pp_close_box fmt (); + (* Close "QUALIF NAME : TYPE =" box (depth=1) *) + F.pp_close_box fmt (); + + if not is_opaque then ( + F.pp_print_space fmt (); + (* Open "BODY" box (depth=1) *) + F.pp_open_hvbox fmt 0; + (* Print "BODY" *) + (Option.get extract_body) fmt; + (* Close "BODY" box (depth=1) *) + F.pp_close_box fmt ()); + (* Close the definition box (depth=0) *) + F.pp_close_box fmt () + +(** Extract a global declaration. + We generate the body which computes the global value separately from the value declaration itself. + + For example in Rust, + [static X: u32 = 3;] + + will be translated to: + [let x_body : result u32 = Return 3] + [let x_c : u32 = eval_global x_body] + *) +let extract_global_decl (ctx : extraction_ctx) (fmt : F.formatter) + (global : A.global_decl) (body : fun_decl) (interface : bool) : unit = + assert body.is_global_decl_body; + assert (Option.is_none body.back_id); + assert (List.length body.signature.inputs = 0); + assert (List.length body.signature.doutputs = 1); + assert (List.length body.signature.type_params = 0); + + (* Add a break then the name of the corresponding LLBC declaration *) + F.pp_print_break fmt 0 0; + F.pp_print_string fmt + ("(** [" ^ Print.global_name_to_string global.name ^ "] *)"); + F.pp_print_space fmt (); + + let decl_name = ctx_get_global global.def_id ctx in + let body_name = + ctx_get_function (FromLlbc (Regular global.body_id, None)) ctx + in + + let decl_ty, body_ty = + let ty = body.signature.output in + if body.signature.info.effect_info.can_fail then (unwrap_result_ty ty, ty) + else (ty, mk_result_ty ty) + in + match body.body with + | None -> + let qualif = if interface then Val else AssumeVal in + extract_global_decl_body ctx fmt qualif decl_name decl_ty None + | Some body -> + extract_global_decl_body ctx fmt Let body_name body_ty + (Some (fun fmt -> extract_texpression ctx fmt false body.body)); + F.pp_print_break fmt 0 0; + extract_global_decl_body ctx fmt Let decl_name decl_ty + (Some (fun fmt -> F.pp_print_string fmt ("eval_global " ^ body_name))); + F.pp_print_break fmt 0 0 + +(** Extract a unit test, if the function is a unit function (takes no + parameters, returns unit). + + A unit test simply checks that the function normalizes to [Return ()]: + {[ + let _ = assert_norm (FUNCTION () = Return ()) + ]} + *) +let extract_unit_test_if_unit_fun (ctx : extraction_ctx) (fmt : F.formatter) + (def : fun_decl) : unit = + (* We only insert unit tests for forward functions *) + assert (def.back_id = None); + (* Check if this is a unit function *) + let sg = def.signature in + if + sg.type_params = [] + && (sg.inputs = [ mk_unit_ty ] || sg.inputs = []) + && sg.output = mk_result_ty mk_unit_ty + then ( + (* Add a break before *) + F.pp_print_break fmt 0 0; + (* Print a comment *) + F.pp_print_string fmt + ("(** Unit test for [" ^ Print.fun_name_to_string def.basename ^ "] *)"); + F.pp_print_space fmt (); + (* Open a box for the test *) + F.pp_open_hovbox fmt ctx.indent_incr; + (* Print the test *) + F.pp_print_string fmt "let _ ="; + F.pp_print_space fmt (); + F.pp_print_string fmt "assert_norm"; + F.pp_print_space fmt (); + F.pp_print_string fmt "("; + let fun_name = ctx_get_local_function def.def_id def.back_id ctx in + F.pp_print_string fmt fun_name; + if sg.inputs <> [] then ( + F.pp_print_space fmt (); + F.pp_print_string fmt "()"); + F.pp_print_space fmt (); + F.pp_print_string fmt "="; + F.pp_print_space fmt (); + let success = ctx_get_variant (Assumed Result) result_return_id ctx in + F.pp_print_string fmt (success ^ " ())"); + (* Close the box for the test *) + F.pp_close_box fmt (); + (* Add a break after *) + F.pp_print_break fmt 0 0) + else (* Do nothing *) + () |