summaryrefslogtreecommitdiff
path: root/compiler/Cps.ml
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/Cps.ml')
-rw-r--r--compiler/Cps.ml262
1 files changed, 101 insertions, 161 deletions
diff --git a/compiler/Cps.ml b/compiler/Cps.ml
index a3c8f1e1..3f2e2eaa 100644
--- a/compiler/Cps.ml
+++ b/compiler/Cps.ml
@@ -3,6 +3,7 @@
open Values
open Contexts
+open Errors
(** TODO: change the name *)
type eval_error = EPanic
@@ -36,172 +37,111 @@ type statement_eval_res =
type eval_result = SymbolicAst.expression option
-(** Continuation function *)
-type m_fun = eval_ctx -> eval_result
-
-(** Continuation taking another continuation as parameter *)
-type cm_fun = m_fun -> m_fun
-
-(** Continuation taking a typed value as parameter - TODO: use more *)
-type typed_value_m_fun = typed_value -> m_fun
-
-(** Continuation taking another continuation as parameter and a typed
- value as parameter.
- *)
-type typed_value_cm_fun = typed_value -> cm_fun
-
-(** Type of a continuation used when evaluating a statement *)
-type st_m_fun = statement_eval_res -> m_fun
-
-(** Type of a continuation used when evaluating a statement *)
-type st_cm_fun = st_m_fun -> m_fun
-
-(** Convert a unit function to a cm function *)
-let unit_to_cm_fun (f : eval_ctx -> unit) : cm_fun =
- fun cf ctx ->
- f ctx;
- cf ctx
-
-(** *)
-let update_to_cm_fun (f : eval_ctx -> eval_ctx) : cm_fun =
- fun cf ctx ->
- let ctx = f ctx in
- cf ctx
-
-(** Composition of functions taking continuations as parameters.
- We tried to make this as general as possible. *)
-let comp (f : 'c -> 'd -> 'e) (g : ('a -> 'b) -> 'c) : ('a -> 'b) -> 'd -> 'e =
- fun cf ctx -> f (g cf) ctx
-
-let comp_unit (f : cm_fun) (g : eval_ctx -> unit) : cm_fun =
- comp f (unit_to_cm_fun g)
-
-let comp_update (f : cm_fun) (g : eval_ctx -> eval_ctx) : cm_fun =
- comp f (update_to_cm_fun g)
-
-(** This is just a test, to check that {!comp} is general enough to handle a case
- where a function must compute a value and give it to the continuation.
- It happens for functions like {!val:InterpreterExpressions.eval_operand}.
-
- Keeping this here also makes it a good reference, when one wants to figure
- out the signatures he should use for such a composition.
- *)
-let comp_ret_val (f : (typed_value -> m_fun) -> m_fun)
- (g : m_fun -> typed_value -> m_fun) : cm_fun =
- comp f g
-
-let apply (f : cm_fun) (g : m_fun) : m_fun = fun ctx -> f g ctx
-let id_cm_fun : cm_fun = fun cf ctx -> cf ctx
-
-(** If we have a list of [inputs] of type ['a list] and a function [f] which
- evaluates one element of type ['a] to compute a result of type ['b] before
- giving it to a continuation, the following function performs a fold operation:
- it evaluates all the inputs one by one by accumulating the results in a list,
- and gives the list to a continuation.
-
- Note that we make sure that the results are listed in the order in
- which they were computed (the first element of the list is the result
- of applying [f] to the first element of the inputs).
-
- See the unit test below for an illustration.
- *)
-let fold_left_apply_continuation (f : 'a -> ('c -> 'd) -> 'c -> 'd)
- (inputs : 'a list) (cf : 'c -> 'd) : 'c -> 'd =
- let rec eval_list (inputs : 'a list) (cf : 'c -> 'd) : 'c -> 'd =
+(** Function which takes a context as input, and evaluates to:
+ - a new context
+ - a continuation with which to build the execution trace, provided the
+ trace for the end of the execution.
+ *)
+type cm_fun = eval_ctx -> eval_ctx * (eval_result -> eval_result)
+
+type st_cm_fun =
+ eval_ctx -> (eval_ctx * statement_eval_res) * (eval_result -> eval_result)
+
+(** Type of a function used when evaluating a statement *)
+type stl_cm_fun =
+ eval_ctx ->
+ (eval_ctx * statement_eval_res) list
+ * (SymbolicAst.expression list option -> eval_result)
+
+(** Compose continuations that we use to compute execution traces *)
+let cc_comp (f : 'b -> 'c) (g : 'a -> 'b) : 'a -> 'c = fun e -> f (g e)
+
+let comp (f : 'b -> 'c) (g : 'x * ('a -> 'b)) : 'x * ('a -> 'c) =
+ let x, g = g in
+ (x, cc_comp f g)
+
+let comp2 (f : 'b -> 'c) (g : 'x * 'y * ('a -> 'b)) : 'x * 'y * ('a -> 'c) =
+ let x, y, g = g in
+ (x, y, cc_comp f g)
+
+(** [fold] operation for functions which thread a context and return a continuation *)
+let fold_left_apply_continuation (f : 'a -> 'c -> 'c * ('e -> 'e))
+ (inputs : 'a list) (ctx : 'c) : 'c * ('e -> 'e) =
+ let rec eval_list (inputs : 'a list) : 'c -> 'b =
fun ctx ->
match inputs with
- | [] -> cf ctx
- | x :: inputs -> comp (f x) (fun cf -> eval_list inputs cf) cf ctx
+ | [] -> (ctx, fun x -> x)
+ | x :: inputs ->
+ let ctx, cc = f x ctx in
+ comp cc (eval_list inputs ctx)
in
- eval_list inputs cf
-
-(** Unit test/example for {!fold_left_apply_continuation} *)
-let _ =
- fold_left_apply_continuation
- (fun x cf (ctx : int) -> cf (ctx + x))
- [ 1; 20; 300; 4000 ]
- (fun (ctx : int) -> assert (ctx = 4321))
- 0
-
-(** If we have a list of [inputs] of type ['a list] and a function [f] which
- evaluates one element of type ['a] to compute a result of type ['b] before
- giving it to a continuation, the following function performs a fold operation:
- it evaluates all the inputs one by one by accumulating the results in a list,
- and gives the list to a continuation.
-
- Note that we make sure that the results are listed in the order in
- which they were computed (the first element of the list is the result
- of applying [f] to the first element of the inputs).
-
- See the unit test below for an illustration.
- *)
-let fold_left_list_apply_continuation (f : 'a -> ('b -> 'c -> 'd) -> 'c -> 'd)
- (inputs : 'a list) (cf : 'b list -> 'c -> 'd) : 'c -> 'd =
- let rec eval_list (inputs : 'a list) (cf : 'b list -> 'c -> 'd)
- (outputs : 'b list) : 'c -> 'd =
- fun ctx ->
+ eval_list inputs ctx
+
+(** [map] operation for functions which thread a context and return a continuation *)
+let map_apply_continuation (f : 'a -> 'c -> 'b * 'c * ('e -> 'e))
+ (inputs : 'a list) (ctx : 'c) : 'b list * 'c * ('e -> 'e) =
+ let rec eval_list (inputs : 'a list) (ctx : 'c) : 'b list * 'c * ('e -> 'e) =
match inputs with
- | [] -> cf (List.rev outputs) ctx
+ | [] -> ([], ctx, fun e -> e)
| x :: inputs ->
- comp (f x) (fun cf v -> eval_list inputs cf (v :: outputs)) cf ctx
+ let v, ctx, cc1 = f x ctx in
+ let vl, ctx, cc2 = eval_list inputs ctx in
+ (v :: vl, ctx, cc_comp cc1 cc2)
in
- eval_list inputs cf []
-
-(** Unit test/example for {!fold_left_list_apply_continuation} *)
-let _ =
- fold_left_list_apply_continuation
- (fun x cf (ctx : unit) -> cf (10 + x) ctx)
- [ 0; 1; 2; 3; 4 ]
- (fun values _ctx -> assert (values = [ 10; 11; 12; 13; 14 ]))
- ()
-
-(** Composition of functions taking continuations as parameters.
-
- We sometimes have the following situation, where we want to compose three
- functions [send], [transmit] and [receive] such that:
- - those three functions take continuations as parameters
- - [send] generates a value and gives it to its continuation
- - [receive] expects a value (so we can compose [send] and [receive] like
- so: [comp send receive])
- - [transmit] doesn't expect any value and needs to be called between [send]
- and [receive]
-
- In this situation, we need to take the value given by [send] and "transmit"
- it to [receive].
-
- This is what this function does (see the unit test below for an illustration).
- *)
-let comp_transmit (f : ('v -> 'm) -> 'n) (g : 'm -> 'm) : ('v -> 'm) -> 'n =
- fun cf -> f (fun v -> g (cf v))
-
-(** Example of use of {!comp_transmit} - TODO: make "real" unit tests *)
-let () =
- let return3 (cf : int -> unit -> unit) (ctx : unit) = cf 3 ctx in
- let do_nothing (cf : unit -> unit) (ctx : unit) = cf ctx in
- let consume3 (x : int) (ctx : unit) : unit =
- assert (x = 3);
- ctx
+ eval_list inputs ctx
+
+let opt_list_to_list_opt (len : int) (el : 'a option list) : 'a list option =
+ let expr_list =
+ List.rev
+ (List.fold_left
+ (fun acc a -> match a with Some b -> b :: acc | None -> [])
+ [] el)
in
- let cc = comp_transmit return3 do_nothing in
- let cc = cc consume3 in
- cc ()
-
-(** Sometimes, we want to compose a function with a continuation which checks
- its computed value and its updated context, before transmitting them
+ let _ = assert (List.length expr_list = len) in
+ if Option.is_none (List.hd expr_list) then None else Some expr_list
+
+let cc_singleton file line meta cf el =
+ match el with
+ | Some [ e ] -> cf (Some e)
+ | Some _ -> internal_error file line meta
+ | _ -> None
+
+(** It happens that we need to concatenate lists of results, for
+ instance when evaluating the branches of a match. When applying
+ the continuations to build the symbolic expressions, we need
+ to decompose the list of expressions we get to give it to the
+ individual continuations for the branches.
*)
-let comp_check_value (f : ('v -> 'ctx -> 'a) -> 'ctx -> 'b)
- (g : 'v -> 'ctx -> unit) : ('v -> 'ctx -> 'a) -> 'ctx -> 'b =
- fun cf ->
- f (fun v ctx ->
- g v ctx;
- cf v ctx)
-
-(** This case is similar to {!comp_check_value}, but even simpler (we only check
- the context)
- *)
-let comp_check_ctx (f : ('ctx -> 'a) -> 'ctx -> 'b) (g : 'ctx -> unit) :
- ('ctx -> 'a) -> 'ctx -> 'b =
- fun cf ->
- f (fun ctx ->
- g ctx;
- cf ctx)
+let comp_seqs (file : string) (line : int) (meta : Meta.meta)
+ (ls :
+ ('a list
+ * (SymbolicAst.expression list option -> SymbolicAst.expression option))
+ list) :
+ 'a list
+ * (SymbolicAst.expression list option -> SymbolicAst.expression list option)
+ =
+ (* Auxiliary function: given a list of expressions el, build the expressions
+ corresponding to the different branches *)
+ let rec cc_aux ls el =
+ match ls with
+ | [] ->
+ (* End of the list of branches: there shouldn't be any expression remaining *)
+ sanity_check file line (el = []) meta;
+ []
+ | (resl, cf) :: ls ->
+ (* Split the list of expressions between:
+ - the expressions for the current branch
+ - the expressions for the remaining branches *)
+ let el0, el = Collections.List.split_at el (List.length resl) in
+ (* Compute the expression for the current branch *)
+ let e0 = cf (Some el0) in
+ let e0 =
+ match e0 with None -> internal_error file line meta | Some e -> e
+ in
+ (* Compute the expressions for the remaining branches *)
+ let e = cc_aux ls el in
+ (* Concatenate *)
+ e0 :: e
+ in
+ let cc el = match el with None -> None | Some el -> Some (cc_aux ls el) in
+ (List.flatten (fst (List.split ls)), cc)