diff options
Diffstat (limited to 'backends')
-rw-r--r-- | backends/hol4/Test.sml | 825 |
1 files changed, 825 insertions, 0 deletions
diff --git a/backends/hol4/Test.sml b/backends/hol4/Test.sml new file mode 100644 index 00000000..b29589d5 --- /dev/null +++ b/backends/hol4/Test.sml @@ -0,0 +1,825 @@ +open HolKernel boolLib bossLib Parse + +val _ = new_theory"test" + +(* SML declarations *) +(* for example: *) +(*val th = save_thm("SKOLEM_AGAIN",SKOLEM_THM) *) + +local open boolTheory integerTheory wordsTheory stringTheory in end + +Datatype: + error = Failure +End + +Datatype: + result = Return 'a | Fail error | Loop +End + +Type M = ``: 'a result`` + +(* TODO: rename *) +val st_ex_bind_def = Define ` + (st_ex_bind : 'a M -> ('a -> 'b M) -> 'b M) x f = + case x of + Return y => f y + | Fail e => Fail e + | Loop => Loop`; + +val st_ex_return_def = Define ` + (st_ex_return : 'a -> 'a M) x = + Return x`; + +Overload monad_bind[local] = ``st_ex_bind`` +Overload monad_unitbind[local] = ``\x y. st_ex_bind x (\z. y)`` +Overload monad_ignore_bind[local] = ``\x y. st_ex_bind x (\z. y)`` +(*Overload ex_bind[local] = ``st_ex_bind`` *) +(* Overload ex_return[local] = ``st_ex_return`` *) +(*Overload failwith = ``raise_Fail``*) + +(* Temporarily allow the monadic syntax *) +val _ = monadsyntax.temp_add_monadsyntax (); + +val test1_def = Define ` + test1 (x : bool) = Return x` + +val is_true_def = Define ‘ + is_true (x : bool) = if x then Return () else Fail Failure’ + +val test1_def = Define ‘ + test1 (x : bool) = Return x’ + +val test_monad_def = Define ` + test_monad v = + do + x <- Return v; + Return x + od`; + + +val test_monad2_def = Define ` + test_monad2 = + do + x <- Return T; + Return x + od`; + +val test_monad3_def = Define ` + test_monad3 x = + do + is_true x; + Return x + od`; + +(** + * Arithmetic + *) + +open intLib + +val test_int1 = Define ‘int1 = 32’ +val test_int2 = Define ‘int2 = -32’ + +Theorem INT_THM1: + !(x y : int). x > 0 ==> y > 0 ==> x + y > 0 +Proof + ARITH_TAC +QED + +Theorem INT_THM2: + !(x : int). T +Proof + rw[] +QED + +val _ = prefer_int () + +val x = “-36217863217862718” + +(* Deactivate notations for int *) +val _ = deprecate_int () +open arithmeticTheory + + +val m = Hol_pp.print_apropos; +val f = Hol_pp.print_find; + +(* +m “SUC (x : num) + y = _” +m “(ZERO : num) < SUC y” +m “(_ : num) < SUC y” +m “x < (y : num) <=> _” +f "ADD" +ADD + +val x = “1:num” +dest_term x +val (x1, x2) = dest_comb x +dest_term “0n:num” +dest_term “ZERO:num” +m “ZERO + (_ : num) = _” + +m “BIT1 _ = _” +NUMERAL_DEF + +val x = “ZERO = (0:num)” +dest_term x + +m “0 < SUC 0” +*) + +(* Display types on/off: M-h C-t *) +(* Move back: M-h b *) + +val _ = numLib.deprecate_num () +val _ = numLib.prefer_num () + +(* +m “!x. x = x” +*) + +Theorem NAT_THM1: + !(n : num). n < n + 1 +Proof + Induct_on ‘n’ >> DECIDE_TAC +QED + +Theorem NAT_THM2: + !(n : num). n < n + (1 : num) +Proof + gen_tac >> + Induct_on ‘n’ >- ( + PURE_REWRITE_TAC [ADD, NUMERAL_DEF, BIT1, ALT_ZERO] >> + PURE_REWRITE_TAC [prim_recTheory.LESS_0_0]) >> + PURE_REWRITE_TAC [ADD] >> + irule prim_recTheory.LESS_MONO >> + asm_rewrite_tac [] +QED + + +val x = “1278361286371286:num” + + +(********************** PRIMITIVES *) +val _ = prefer_int () + +val _ = new_type ("u32", 0) +val _ = new_type ("i32", 0) + +val u32_min_def = Define ‘u32_min = (0:int)’ +val u32_max_def = Define ‘u32_max = (4294967295:int)’ + +(* TODO: change that *) +val usize_max_def = Define ‘usize_max = (4294967295:int)’ + +val i32_min_def = Define ‘i32_min = (-2147483648:int)’ +val i32_max_def = Define ‘i32_max = (2147483647:int)’ + +val _ = new_constant ("u32_to_int", “:u32 -> int”) +val _ = new_constant ("i32_to_int", “:i32 -> int”) + +val _ = new_constant ("int_to_u32", “:int -> u32”) +val _ = new_constant ("int_to_i32", “:int -> i32”) + + +(* TODO: change to "...of..." *) +val u32_to_int_bounds = + new_axiom ( + "u32_to_int_bounds", + “!n. u32_min <= u32_to_int n /\ u32_to_int n <= u32_max”) + +val i32_to_int_bounds = + new_axiom ( + "i32_to_int_bounds", + “!n. i32_min <= i32_to_int n /\ i32_to_int n <= i32_max”) + +val int_to_u32_id = + new_axiom ( + "int_to_u32_id", + “!n. u32_min <= n /\ n <= u32_max ==> + u32_to_int (int_to_u32 n) = n”) + +val int_to_i32_id = + new_axiom ( + "int_to_i32_id", + “!n. i32_min <= n /\ n <= i32_max ==> + i32_to_int (int_to_i32 n) = n”) + +val mk_u32_def = Define + ‘mk_u32 n = + if u32_min <= n /\ n <= u32_max then Return (int_to_u32 n) + else Fail Failure’ + +val u32_add_def = Define ‘u32_add x y = mk_u32 ((u32_to_int x) + (u32_to_int y))’ + +Theorem MK_U32_SUCCESS: + !n. u32_min <= n /\ n <= u32_max ==> + mk_u32 n = Return (int_to_u32 n) +Proof + rw[mk_u32_def] +QED + +Theorem U32_ADD_EQ: + !x y. + u32_to_int x + u32_to_int y <= u32_max ==> + ?z. u32_add x y = Return z /\ u32_to_int z = u32_to_int x + u32_to_int y +Proof + rpt gen_tac >> + rpt DISCH_TAC >> + exists_tac “int_to_u32 (u32_to_int x + u32_to_int y)” >> + imp_res_tac MK_U32_SUCCESS >> + (* There is probably a better way of doing this *) + sg ‘u32_min <= u32_to_int x’ >- (rw[u32_to_int_bounds]) >> + sg ‘u32_min <= u32_to_int y’ >- (rw[u32_to_int_bounds]) >> + fs [u32_min_def, u32_add_def] >> + irule int_to_u32_id >> + fs[u32_min_def] +QED + +val u32_sub_def = Define ‘u32_sub x y = mk_u32 ((u32_to_int x) - (u32_to_int y))’ + +Theorem U32_SUB_EQ: + !x y. + u32_min <= u32_to_int x - u32_to_int y ==> + ?z. u32_sub x y = Return z /\ u32_to_int z = u32_to_int x - u32_to_int y +Proof + rpt gen_tac >> + rpt DISCH_TAC >> + exists_tac “int_to_u32 (u32_to_int x - u32_to_int y)” >> + imp_res_tac MK_U32_SUCCESS >> + (* There is probably a better way of doing this *) + sg ‘u32_to_int x − u32_to_int y ≤ u32_max’ >-( + sg ‘u32_to_int x <= u32_max’ >- (rw[u32_to_int_bounds]) >> + sg ‘u32_min <= u32_to_int y’ >- (rw[u32_to_int_bounds]) >> + fs [u32_min_def] >> + COOPER_TAC + ) >> + fs [u32_min_def, u32_sub_def] >> + irule int_to_u32_id >> + fs[u32_min_def] +QED + +val mk_i32_def = Define + ‘mk_i32 n = + if i32_min <= n /\ n <= i32_max then Return (int_to_i32 n) + else Fail Failure’ + +val i32_add_def = Define ‘i32_add x y = mk_i32 ((i32_to_int x) + (i32_to_int y))’ + +Theorem MK_I32_SUCCESS: + !n. i32_min <= n /\ n <= i32_max ==> + mk_i32 n = Return (int_to_i32 n) +Proof + rw[mk_i32_def] +QED + +Theorem I32_ADD_EQ: + !x y. + i32_min <= i32_to_int x + i32_to_int y ==> + i32_to_int x + i32_to_int y <= i32_max ==> + ?z. i32_add x y = Return z /\ i32_to_int z = i32_to_int x + i32_to_int y +Proof + rpt gen_tac >> + rpt DISCH_TAC >> + exists_tac “int_to_i32 (i32_to_int x + i32_to_int y)” >> + imp_res_tac MK_I32_SUCCESS >> + fs [i32_min_def, i32_add_def] >> + irule int_to_i32_id >> + fs[i32_min_def] +QED + +open listTheory + +val _ = new_type ("vec", 1) +val _ = new_constant ("vec_to_list", “:'a vec -> 'a list”) + +val VEC_TO_LIST_NUM_BOUNDS = + new_axiom ( + "VEC_TO_LIST_BOUNDS", + “!v. let l = LENGTH (vec_to_list v) in + (0:num) <= l /\ l <= (4294967295:num)”) + +Theorem VEC_TO_LIST_INT_BOUNDS: + !v. let l = int_of_num (LENGTH (vec_to_list v)) in + u32_min <= l /\ l <= u32_max +Proof + gen_tac >> + rw [u32_min_def, u32_max_def] >> + assume_tac VEC_TO_LIST_NUM_BOUNDS >> + fs[] +QED + +val VEC_LEN_DEF = Define ‘vec_len v = int_to_u32 (int_of_num (LENGTH (vec_to_list v)))’ + +(* +(* Useless *) +Theorem VEC_LEN_BOUNDS: + !v. u32_min <= u32_to_int (vec_len v) /\ u32_to_int (vec_len v) <= u32_max +Proof + gen_tac >> + qspec_then ‘v’ assume_tac VEC_TO_LIST_INT_BOUNDS >> + fs[VEC_LEN_DEF] >> + IMP_RES_TAC int_to_u32_id >> + fs[] +QED +*) + +(* The type parameters are ordered in alphabetical order *) +Datatype: + test = Variant1 'b | Variant2 'a +End + +Datatype: + test2 = Variant1_1 'T2 | Variant2_1 'T1 +End + +Datatype: + test2 = Variant1_2 'T1 | Variant2_2 'T2 +End + +(* +“Variant1_1 3” +“Variant1_2 3” + +type_of “CONS 3” +*) + +(* TODO: argument order, we must also omit arguments in new type *) +Datatype: + list_t = + ListCons 't list_t + | ListNil +End + +val list_nth_mut_loop_loop_fwd_def = Define ‘ + list_nth_mut_loop_loop_fwd (ls : 't list_t) (i : u32) : 't result = + case ls of + | ListCons x tl => + if u32_to_int i = (0:int) + then Return x + else + do + i0 <- u32_sub i (int_to_u32 1); + list_nth_mut_loop_loop_fwd tl i0 + od + | ListNil => + Fail Failure +’ + +(* +CoInductive coind: + !x y. coind x /\ coind y ==> coind (x + y) +End +*) + +(* +(* This generates inconsistent theorems *) +CoInductive loop: + !x. loop x = if x then loop x else 0 +End + +CoInductive loop: + !(x : int). loop x = if x > 0 then loop (x - 1) else 0 +End +*) + +(* This terminates *) +val list_nth_mut_loop_loop_fwd_def = Define ‘ + list_nth_mut_loop_loop_fwd (ls : 't list_t) (i : u32) : 't result = + case ls of + | ListCons x tl => + if u32_to_int i = (0:int) + then Return x + else + do + i0 <- u32_sub i (int_to_u32 1); + list_nth_mut_loop_loop_fwd tl i0 + od + | ListNil => + Fail Failure +’ + +(* This is sort of a coinductive definition. + + This can be justified: + - we first define a version [nth_fuel] which uses fuel (and is thus terminating) + - we define the predicate P: + P ls i n = case nth_fuel n ls i of Return _ => T | _ => F + - we then use [LEAST] (least upper bound for natural numbers) to define nth as: + “nth ls i = if (?n. P n) then nth_fuel (LEAST (P ls i)) ls i else Fail Loop ” + - we finally prove that nth satisfies the proper equation. + + We would need the following intermediate lemma: + !n. + n < LEAST (P ls i) ==> nth_fuel n ls i = Fail _ /\ + n >= LEAST (P ls i) ==> nth_fuel n ls i = nth_fuel (LEAST P ls i) ls i + + *) +val _ = new_constant ("nth", “:'t list_t -> u32 -> 't result”) +val nth_def = new_axiom ("nth_def", “ + nth (ls : 't list_t) (i : u32) : 't result = + case ls of + | ListCons x tl => + if u32_to_int i = (0:int) + then Return x + else + do + i0 <- u32_sub i (int_to_u32 1); + nth tl i0 + od + | ListNil => + Fail Failure + ”) + + +(*** Examples of proofs on [nth] *) +val list_t_v_def = Define ‘ + list_t_v ls = + case ls of + | ListCons x tl => x :: list_t_v tl + | ListNil => [] +’ + +(* TODO: move *) +open dep_rewrite +open integerTheory + +Theorem INT_OF_NUM_INJ: + !n m. &n = &m ==> n = m +Proof + rpt strip_tac >> + fs [Num] +QED + +Theorem NUM_SUB_1_EQ: + !i. 0 <= i - 1 ==> Num i = SUC (Num (i-1)) +Proof + rpt strip_tac >> + (* 0 <= i *) + sg ‘0 <= i’ >- COOPER_TAC >> + (* Get rid of the SUC *) + sg ‘SUC (Num (i - 1)) = 1 + Num (i - 1)’ >-(rw [ADD]) >> + rw [] >> + (* Convert to integers*) + irule INT_OF_NUM_INJ >> + imp_res_tac (GSYM INT_OF_NUM) >> + (* Associativity of & *) + PURE_REWRITE_TAC [GSYM INT_ADD] >> + fs [] +QED + +(* TODO: + - list all the integer variables, and insert bounds in the assumptions + - replace u32_min by 0? + - i - 1 + - auto lookup of spec lemmas +*) + +Theorem nth_lem: + !(ls : 't list_t) (i : u32). + u32_to_int i < int_of_num (LENGTH (list_t_v ls)) ==> + case nth ls i of + | Return x => x = EL (Num (u32_to_int i)) (list_t_v ls) + | Fail _ => F + | Loop => F +Proof + Induct_on ‘ls’ >~ [‘ListNil’] >> rpt strip_tac >> + PURE_ONCE_REWRITE_TAC [nth_def] >> rw [] >-( + (* TODO: automate this *) + fs [list_t_v_def, LENGTH] >> + qspec_then ‘i’ assume_tac u32_to_int_bounds >> + rw [] >> fs [u32_min_def] >> + intLib.COOPER_TAC + ) >- ( + PURE_ONCE_REWRITE_TAC [list_t_v_def] >> + rw [HD] + ) >> + (* TODO: we need specialized tactics here - first: subgoal *) + sg ‘u32_min <= u32_to_int i - u32_to_int (int_to_u32 1)’ >-( + fs [u32_min_def] >> + (* We need to detect that we're in the bounds, etc. *) + DEP_ONCE_REWRITE_TAC [int_to_u32_id] >> + strip_tac >- (fs [u32_min_def, u32_max_def] >> COOPER_TAC) >> + sg ‘u32_min <= u32_to_int i’ >- (rw[u32_to_int_bounds]) >> + fs [u32_min_def] >> + COOPER_TAC + ) >> + imp_res_tac U32_SUB_EQ >> fs [st_ex_bind_def] >> + (* Automate this *) + PURE_ONCE_REWRITE_TAC [list_t_v_def] >> rw [] >> + (* Automate this *) + sg ‘u32_to_int (int_to_u32 1) = 1’ >-( + DEP_ONCE_REWRITE_TAC [int_to_u32_id] >> + fs [u32_min_def, u32_max_def] >> COOPER_TAC + ) >> + fs [] >> + (* TODO: automate this *) + sg ‘u32_min <= u32_to_int z’ >-(rw[u32_to_int_bounds]) >> fs [u32_min_def] >> + qspec_then ‘u32_to_int z’ imp_res_tac NUM_SUB_1_EQ >> rw [] >> + (* Finish the proof by recursion *) + pop_last_assum (qspec_then ‘z’ assume_tac) >> + pop_last_assum mp_tac >> + qspec_then ‘ListCons t ls’ assume_tac list_t_v_def >> + rw [] >> + fs [INT] >> + sg ‘u32_to_int z < &LENGTH (list_t_v ls)’ >- COOPER_TAC >> + fs [] >> + (* Rem.: rfs! *) + rfs [] +QED + +(*** + * Example of how to get rid of the fuel in practice + *) +val nth_fuel_def = Define ‘ + nth_fuel (n : num) (ls : 't list_t) (i : u32) : 't result = + case n of + | 0 => Loop + | SUC n => + do case ls of + | ListCons x tl => + if u32_to_int i = (0:int) + then Return x + else + do + i0 <- u32_sub i (int_to_u32 1); + nth_fuel n tl i0 + od + | ListNil => + Fail Failure + od + ’ + +(* +whileTheory.LEAST_DEF +type_of “$LEAST” +val x = “LEAST_DEF” +*) + +val is_loop_def = Define ‘is_loop r = case r of Loop => T | _ => F’ + +val nth_fuel_P_def = Define ‘ + nth_fuel_P ls i n = ~is_loop (nth_fuel n ls i) +’ + +Theorem nth_fuel_mono: + !n m ls i. + n <= m ==> + if is_loop (nth_fuel n ls i) then T + else nth_fuel n ls i = nth_fuel m ls i +Proof + Induct_on ‘n’ >- ( + rpt gen_tac >> + DISCH_TAC >> + PURE_ONCE_REWRITE_TAC [nth_fuel_def] >> + rw[is_loop_def] + ) >> + (* Interesting case *) + rpt gen_tac >> + DISCH_TAC >> + CASE_TAC >> + Cases_on ‘m’ >- ( + (* Contradiction: SUC n < 0 *) + sg ‘SUC n = 0’ >- decide_tac >> + fs [is_loop_def] + ) >> + fs [is_loop_def] >> + pop_assum mp_tac >> + PURE_ONCE_REWRITE_TAC [nth_fuel_def] >> + fs [] >> + DISCH_TAC >> + (* We just have to explore all the paths: we can have dedicated tactics for that + (we need to do case analysis) *) + Cases_on ‘ls’ >> fs [] >> + Cases_on ‘u32_to_int (i :u32) = (0 :int)’ >> fs [] >> + fs [st_ex_bind_def] >> + Cases_on ‘u32_sub (i :u32) (int_to_u32 (1 :int))’ >> fs [] >> + (* Apply the induction hypothesis *) + first_x_assum (qspecl_then [‘n'’, ‘l’, ‘a’] assume_tac) >> + first_x_assum imp_res_tac >> + pop_assum mp_tac >> + CASE_TAC +QED + +Theorem nth_fuel_P_mono: + !n m ls i. + n <= m ==> + nth_fuel_P ls i n ==> + nth_fuel n ls i = nth_fuel m ls i +Proof + rpt gen_tac >> rpt DISCH_TAC >> + fs [nth_fuel_P_def] >> + imp_res_tac nth_fuel_mono >> + pop_assum (qspecl_then [‘ls’, ‘i’] assume_tac) >> + pop_assum mp_tac >> CASE_TAC >> fs [] +QED + +Theorem nth_fuel_least_fail_mono: + !n ls i. + n < $LEAST (nth_fuel_P ls i) ==> + nth_fuel n ls i = Loop +Proof + rpt gen_tac >> + disch_tac >> + imp_res_tac whileTheory.LESS_LEAST >> + fs [nth_fuel_P_def, is_loop_def] >> + pop_assum mp_tac >> + CASE_TAC +QED + +Theorem nth_fuel_least_success_mono: + !n ls i. + $LEAST (nth_fuel_P ls i) <= n ==> + nth_fuel n ls i = nth_fuel ($LEAST (nth_fuel_P ls i)) ls i +Proof + rpt gen_tac >> + disch_tac >> + (* Case disjunction on whether there exists a fuel such that it terminates *) + Cases_on ‘?m. nth_fuel_P ls i m’ >- ( + (* Terminates *) + irule EQ_SYM >> + irule nth_fuel_P_mono >> fs [] >> + (* Prove that calling with the least upper bound of fuel succeeds *) + qspec_then ‘nth_fuel_P (ls :α list_t) (i :u32)’ imp_res_tac whileTheory.LEAST_EXISTS_IMP + ) >> + (* Doesn't terminate *) + fs [] >> + sg ‘~(nth_fuel_P ls i n)’ >- fs [] >> + sg ‘~(nth_fuel_P ls i ($LEAST (nth_fuel_P ls i)))’ >- fs [] >> + fs [nth_fuel_P_def, is_loop_def] >> + pop_assum mp_tac >> CASE_TAC >> + pop_assum mp_tac >> + pop_assum mp_tac >> CASE_TAC +QED + +val nth_def_raw = Define ‘ + nth ls i = + if (?n. nth_fuel_P ls i n) then nth_fuel ($LEAST (nth_fuel_P ls i)) ls i + else Loop +’ + +(* This makes the proofs easier, in that it helps us control the context *) +val nth_expand_def = Define ‘ + nth_expand nth ls i = + case ls of + | ListCons x tl => + if u32_to_int i = (0:int) + then Return x + else + do + i0 <- u32_sub i (int_to_u32 1); + nth tl i0 + od + | ListNil => + Fail Failure +’ + +(* Prove the important theorems *) +Theorem nth_def_terminates: + !ls i. + (?n. nth_fuel_P ls i n) ==> + nth ls i = + nth_expand nth ls i +Proof + rpt strip_tac >> + fs [nth_expand_def] >> + PURE_ONCE_REWRITE_TAC [nth_def_raw] >> + (* Prove that the least upper bound is <= n *) + sg ‘$LEAST (nth_fuel_P ls i) <= n’ >-( + qspec_then ‘nth_fuel_P (ls :α list_t) (i :u32)’ imp_res_tac whileTheory.LEAST_EXISTS_IMP >> + spose_not_then assume_tac >> fs [] + ) >> + (* Use the monotonicity theorem - TODO: ? *) + imp_res_tac nth_fuel_least_success_mono >> + (* Rewrite only on the left - TODO: easy way ?? *) + qspecl_then [‘$LEAST (nth_fuel_P ls i)’, ‘ls’, ‘i’] assume_tac nth_fuel_def >> + (* TODO: how to discard assumptions?? *) + fs [] >> pop_assum (fn _ => fs []) >> + (* Cases on the least upper bound *) + Cases_on ‘$LEAST (nth_fuel_P ls i)’ >> rw [] >- ( + (* The bound is equal to 0: contradiction *) + sg ‘nth_fuel 0 ls i = Loop’ >- (PURE_ONCE_REWRITE_TAC [nth_fuel_def] >> rw []) >> + fs [nth_fuel_P_def, is_loop_def] + ) >> + (* Bound not equal to 0 *) + fs [nth_fuel_P_def, is_loop_def] >> + (* Explore all the paths *) + fs [st_ex_bind_def] >> + Cases_on ‘ls’ >> rw [] >> fs [] >> + Cases_on ‘u32_sub i (int_to_u32 1)’ >> rw [] >> fs [] >> + (* Recursive call: use monotonicity - we have an assumption which eliminates the Loop case *) + Cases_on ‘nth_fuel n' l a’ >> rw [] >> fs [] >> + (sg ‘nth_fuel_P l a n'’ >- fs [nth_fuel_P_def, is_loop_def]) >> + (sg ‘$LEAST (nth_fuel_P l a) <= n'’ >-( + qspec_then ‘nth_fuel_P l a’ imp_res_tac whileTheory.LEAST_EXISTS_IMP >> + spose_not_then assume_tac >> fs [])) >> + imp_res_tac nth_fuel_least_success_mono >> fs [] +QED + +(* Prove the important theorems *) +Theorem nth_def_loop: + !ls i. + (!n. ~nth_fuel_P ls i n) ==> + nth ls i = + nth_expand nth ls i +Proof + rpt gen_tac >> + PURE_ONCE_REWRITE_TAC [nth_def_raw] >> + strip_tac >> rw[] >> + (* Non-terminating case *) + sg ‘∀n. ¬nth_fuel_P ls i (SUC n)’ >- rw [] >> + fs [nth_fuel_P_def, is_loop_def] >> + pop_assum mp_tac >> + PURE_ONCE_REWRITE_TAC [nth_fuel_def] >> + rw [] >> + fs [nth_expand_def] >> + (* Evaluate all the paths *) + fs [st_ex_bind_def] >> + Cases_on ‘ls’ >> rw [] >> fs [] >> + Cases_on ‘u32_sub i (int_to_u32 1)’ >> rw [] >> fs [] >> + (* Use the definition of nth *) + rw [nth_def_raw] >> + first_x_assum (qspec_then ‘$LEAST (nth_fuel_P l a)’ assume_tac) >> + Cases_on ‘nth_fuel ($LEAST (nth_fuel_P l a)) l a’ >> fs [] +QED + +(* The final theorem *) +Theorem nth_def: + !ls i. + nth ls i = + case ls of + | ListCons x tl => + if u32_to_int i = (0:int) + then Return x + else + do + i0 <- u32_sub i (int_to_u32 1); + nth tl i0 + od + | ListNil => + Fail Failure +Proof + rpt strip_tac >> + Cases_on ‘?n. nth_fuel_P ls i n’ >-( + assume_tac nth_def_terminates >> + fs [nth_expand_def] >> + pop_assum irule >> + metis_tac []) >> + fs [] >> imp_res_tac nth_def_loop >> fs [nth_expand_def] +QED + +(* + +Je viens de finir ma petite expérimentation avec le fuel : ça marche bien. Par exemple, si je pose les définitions suivantes : +Datatype: + result = Return 'a | Fail error | Loop +End + +(* Omitting some definitions like the bind *) + +val _ = Define ‘ + nth_fuel (n : num) (ls : 't list_t) (i : u32) : 't result = + case n of + | 0 => Loop + | SUC n => + do case ls of + | ListCons x tl => + if u32_to_int i = (0:int) + then Return x + else + do + i0 <- u32_sub i (int_to_u32 1); + nth_fuel n tl i0 + od + | ListNil => + Fail Failure + od + ’ + +val _ = Define 'is_loop r = case r of Loop => T | _ => F' + +val _ = Define 'nth_fuel_P ls i n = ~is_loop (nth_fuel n ls i)' + +(* $LEAST returns the least upper bound for a predicate (if it exists - otherwise it returns an arbitrary number) *) +val _ = Define ‘ + nth ls i = + if (?n. nth_fuel_P ls i n) then nth_fuel ($LEAST (nth_fuel_P ls i)) ls i + else Loop +’ +J'arrive à montrer (c'est un chouïa technique) : +Theorem nth_def: + !ls i. + nth ls i = + case ls of + | ListCons x tl => + if u32_to_int i = (0:int) + then Return x + else + do + i0 <- u32_sub i (int_to_u32 1); + nth tl i0 + od + | ListNil => + Fail Failure + +*) |