summaryrefslogtreecommitdiff
path: root/backends
diff options
context:
space:
mode:
Diffstat (limited to 'backends')
-rw-r--r--backends/coq/Primitives.v56
-rw-r--r--backends/fstar/Primitives.fst75
-rw-r--r--backends/lean/Base/Primitives/Array.lean28
3 files changed, 139 insertions, 20 deletions
diff --git a/backends/coq/Primitives.v b/backends/coq/Primitives.v
index ae961ac2..d462715f 100644
--- a/backends/coq/Primitives.v
+++ b/backends/coq/Primitives.v
@@ -213,6 +213,7 @@ Proof.
pose (scalar_max_cons_valid ty).
lia.
Qed.
+Print scalar_le_max_valid.
Definition scalar_in_bounds (ty: scalar_ty) (x: Z) : bool :=
scalar_ge_min ty x && scalar_le_max ty x .
@@ -394,13 +395,15 @@ Notation "x s< y" := (scalar_ltb x y) (at level 80) : Primitives_scope.
Notation "x s>= y" := (scalar_geb x y) (at level 80) : Primitives_scope.
Notation "x s> y" := (scalar_gtb x y) (at level 80) : Primitives_scope.
-(*** Vectors *)
-
-Definition vec T := { l: list T | Z.of_nat (length l) <= usize_max }.
+(*** Range *)
+Record range (T : Type) := mk_range {
+ start: T;
+ end_: T;
+}.
+Arguments mk_range {_}.
-Definition vec_to_list {T: Type} (v: vec T) : list T := proj1_sig v.
-
-Definition vec_length {T: Type} (v: vec T) : Z := Z.of_nat (length (vec_to_list v)).
+(*** Arrays *)
+Definition array T (n : usize) := { l: list T | Z.of_nat (length l) = to_Z n}.
Lemma le_0_usize_max : 0 <= usize_max.
Proof.
@@ -409,6 +412,47 @@ Proof.
lia.
Qed.
+Lemma eqb_imp_eq (x y : Z) : Z.eqb x y = true -> x = y.
+Proof.
+ lia.
+Qed.
+
+(* TODO: finish the definitions *)
+Axiom mk_array : forall (T : Type) (n : usize) (l : list T), array T n.
+
+Axiom array_index_shared : forall (T : Type) (n : usize) (x : array T n) (i : usize), result T.
+Axiom array_index_mut_fwd : forall (T : Type) (n : usize) (x : array T n) (i : usize), result T.
+Axiom array_index_mut_back : forall (T : Type) (n : usize) (x : array T n) (i : usize) (nx : T), result (array T n).
+
+(*** Slice *)
+Definition slice T := { l: list T | Z.of_nat (length l) <= usize_max}.
+
+Axiom slice_len : forall (T : Type) (s : slice T), usize.
+Axiom slice_index_shared : forall (T : Type) (x : slice T) (i : usize), result T.
+Axiom slice_index_mut_fwd : forall (T : Type) (x : slice T) (i : usize), result T.
+Axiom slice_index_mut_back : forall (T : Type) (x : slice T) (i : usize) (nx : T), result (slice T).
+
+(*** Subslices *)
+
+Axiom array_to_slice_shared : forall (T : Type) (n : usize) (x : array T n), result (slice T).
+Axiom array_to_slice_mut_fwd : forall (T : Type) (n : usize) (x : array T n), result (slice T).
+Axiom array_to_slice_mut_back : forall (T : Type) (n : usize) (x : array T n) (s : slice T), result (array T n).
+
+Axiom array_subslice_shared: forall (T : Type) (n : usize) (x : array T n) (r : range usize), result (slice T).
+Axiom array_subslice_mut_fwd: forall (T : Type) (n : usize) (x : array T n) (r : range usize), result (slice T).
+Axiom array_subslice_mut_back: forall (T : Type) (n : usize) (x : array T n) (r : range usize) (ns : slice T), result (array T n).
+Axiom slice_subslice_shared: forall (T : Type) (x : slice T) (r : range usize), result (slice T).
+Axiom slice_subslice_mut_fwd: forall (T : Type) (x : slice T) (r : range usize), result (slice T).
+Axiom slice_subslice_mut_back: forall (T : Type) (x : slice T) (r : range usize) (ns : slice T), result (slice T).
+
+(*** Vectors *)
+
+Definition vec T := { l: list T | Z.of_nat (length l) <= usize_max }.
+
+Definition vec_to_list {T: Type} (v: vec T) : list T := proj1_sig v.
+
+Definition vec_length {T: Type} (v: vec T) : Z := Z.of_nat (length (vec_to_list v)).
+
Definition vec_new (T: Type) : vec T := (exist _ [] le_0_usize_max).
Lemma vec_len_in_usize {T} (v: vec T) : usize_min <= vec_length v <= usize_max.
diff --git a/backends/fstar/Primitives.fst b/backends/fstar/Primitives.fst
index 98a696b6..9db82069 100644
--- a/backends/fstar/Primitives.fst
+++ b/backends/fstar/Primitives.fst
@@ -259,6 +259,81 @@ let u32_mul = scalar_mul #U32
let u64_mul = scalar_mul #U64
let u128_mul = scalar_mul #U128
+(*** Range *)
+type range (a : Type0) = {
+ start : a;
+ end_ : a;
+}
+
+(*** Array *)
+type array (a : Type0) (n : usize) = s:list a{length s = n}
+
+// We tried putting the normalize_term condition as a refinement on the list
+// but it didn't work. It works with the requires clause.
+let mk_array (a : Type0) (n : usize)
+ (l : list a) :
+ Pure (array a n)
+ (requires (normalize_term(FStar.List.Tot.length l) = n))
+ (ensures (fun _ -> True)) =
+ normalize_term_spec (FStar.List.Tot.length l);
+ l
+
+let array_index_shared (a : Type0) (n : usize) (x : array a n) (i : usize) : result a =
+ if i < length x then Return (index x i)
+ else Fail Failure
+
+let array_index_mut_fwd (a : Type0) (n : usize) (x : array a n) (i : usize) : result a =
+ if i < length x then Return (index x i)
+ else Fail Failure
+
+let array_index_mut_back (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) =
+ if i < length x then Return (list_update x i nx)
+ else Fail Failure
+
+(*** Slice *)
+type slice (a : Type0) = s:list a{length s <= usize_max}
+
+let slice_len (a : Type0) (s : slice a) : usize = length s
+
+let slice_index_shared (a : Type0) (x : slice a) (i : usize) : result a =
+ if i < length x then Return (index x i)
+ else Fail Failure
+
+let slice_index_mut_fwd (a : Type0) (x : slice a) (i : usize) : result a =
+ if i < length x then Return (index x i)
+ else Fail Failure
+
+let slice_index_mut_back (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) =
+ if i < length x then Return (list_update x i nx)
+ else Fail Failure
+
+(*** Subslices *)
+
+let array_to_slice_shared (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x
+let array_to_slice_mut_fwd (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x
+let array_to_slice_mut_back (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) =
+ if length s = n then Return s
+ else Fail Failure
+
+// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *)
+let array_subslice_shared (a : Type0) (n : usize) (x : array a n) (r : range usize) : result (slice a) =
+ admit()
+
+let array_subslice_mut_fwd (a : Type0) (n : usize) (x : array a n) (r : range usize) : result (slice a) =
+ admit()
+
+let array_subslice_mut_back (a : Type0) (n : usize) (x : array a n) (r : range usize) (ns : slice a) : result (array a n) =
+ admit()
+
+let slice_subslice_shared (a : Type0) (x : slice a) (r : range usize) : result (slice a) =
+ admit()
+
+let slice_subslice_mut_fwd (a : Type0) (x : slice a) (r : range usize) : result (slice a) =
+ admit()
+
+let slice_subslice_mut_back (a : Type0) (x : slice a) (r : range usize) (ns : slice a) : result (slice a) =
+ admit()
+
(*** Vector *)
type vec (a : Type0) = v:list a{length v <= usize_max}
diff --git a/backends/lean/Base/Primitives/Array.lean b/backends/lean/Base/Primitives/Array.lean
index 2d4a567b..6c95fd78 100644
--- a/backends/lean/Base/Primitives/Array.lean
+++ b/backends/lean/Base/Primitives/Array.lean
@@ -57,7 +57,7 @@ def Array.index_shared (α : Type u) (n : Usize) (v: Array α n) (i: Usize) : Re
-/
@[pspec]
-theorem Array.index_shared_spec {α : Type u} {n : Usize}[Inhabited α] (v: Array α n) (i: Usize)
+theorem Array.index_shared_spec {α : Type u} {n : Usize} [Inhabited α] (v: Array α n) (i: Usize)
(hbound : i.val < v.length) :
∃ x, v.index_shared α n i = ret x ∧ x = v.val.index i.val := by
simp only [index_shared]
@@ -202,32 +202,32 @@ theorem Slice.index_mut_back_spec {α : Type u} (v: Slice α) (i: Usize) (x : α
/- Array to slice/subslices -/
/- We could make this function not use the `Result` type. By making it monadic, we
- push the user to use the `Array.to_slice_spec` spec theorem below (through the
- `progress` tactic), meaning `Array.to_slice` should be considered as opaque.
+ push the user to use the `Array.to_slice_shared_spec` spec theorem below (through the
+ `progress` tactic), meaning `Array.to_slice_shared` should be considered as opaque.
All what the spec theorem reveals is that the "representative" lists are the same. -/
-def Array.to_slice (α : Type u) (n : Usize) (v : Array α n) : Result (Slice α) :=
+def Array.to_slice_shared (α : Type u) (n : Usize) (v : Array α n) : Result (Slice α) :=
ret ⟨ v.val, by simp [← List.len_eq_length]; scalar_tac ⟩
@[pspec]
-theorem Array.to_slice_spec {α : Type u} {n : Usize} (v : Array α n) :
- ∃ s, to_slice α n v = ret s ∧ v.val = s.val := by simp [to_slice]
+theorem Array.to_slice_shared_spec {α : Type u} {n : Usize} (v : Array α n) :
+ ∃ s, to_slice_shared α n v = ret s ∧ v.val = s.val := by simp [to_slice_shared]
-def Array.to_mut_slice (α : Type u) (n : Usize) (v : Array α n) : Result (Slice α) :=
- to_slice α n v
+def Array.to_slice_mut (α : Type u) (n : Usize) (v : Array α n) : Result (Slice α) :=
+ to_slice_shared α n v
@[pspec]
-theorem Array.to_mut_slice_spec {α : Type u} {n : Usize} (v : Array α n) :
- ∃ s, Array.to_slice α n v = ret s ∧ v.val = s.val := to_slice_spec v
+theorem Array.to_slice_mut_spec {α : Type u} {n : Usize} (v : Array α n) :
+ ∃ s, Array.to_slice_shared α n v = ret s ∧ v.val = s.val := to_slice_shared_spec v
-def Array.to_mut_slice_back (α : Type u) (n : Usize) (_ : Array α n) (s : Slice α) : Result (Array α n) :=
+def Array.to_slice_mut_back (α : Type u) (n : Usize) (_ : Array α n) (s : Slice α) : Result (Array α n) :=
if h: s.val.len = n.val then
ret ⟨ s.val, by simp [← List.len_eq_length, *] ⟩
else fail panic
@[pspec]
-theorem Array.to_mut_slice_back_spec {α : Type u} {n : Usize} (a : Array α n) (ns : Slice α) (h : ns.val.len = n.val) :
- ∃ na, to_mut_slice_back α n a ns = ret na ∧ na.val = ns.val
- := by simp [to_mut_slice_back, *]
+theorem Array.to_slice_mut_back_spec {α : Type u} {n : Usize} (a : Array α n) (ns : Slice α) (h : ns.val.len = n.val) :
+ ∃ na, to_slice_mut_back α n a ns = ret na ∧ na.val = ns.val
+ := by simp [to_slice_mut_back, *]
def Array.subslice_shared (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) : Result (Slice α) :=
-- TODO: not completely sure here