diff options
Diffstat (limited to 'backends')
-rw-r--r-- | backends/lean/Base/Diverge.lean | 120 |
1 files changed, 119 insertions, 1 deletions
diff --git a/backends/lean/Base/Diverge.lean b/backends/lean/Base/Diverge.lean index 0e3e96c3..2e77c5e0 100644 --- a/backends/lean/Base/Diverge.lean +++ b/backends/lean/Base/Diverge.lean @@ -564,6 +564,124 @@ namespace Ex2 end Ex2 +namespace Ex3 + /- Mutually recursive functions -/ + open Primitives Fix + + /- Because we have mutually recursive functions, we use a sum for the inputs + and the output types: + - inputs: the sum allows to select the function to call in the recursive + calls (and the functions may not have the same input types) + - outpus: this case is degenerate because `even` and `odd` both have the + return type `Bool`, but generally speaking we need a sum type because + the functions in the mutually recursive group may not have the same + return type. + -/ + variable (f : (Int ⊕ Int) → Result (Bool ⊕ Bool)) + + def is_even_is_odd_body (x : (Int ⊕ Int)) : Result (Bool ⊕ Bool) := + match x with + | .inl i => + -- Body of `is_even` + if i = 0 + then .ret (.inl true) -- We return .inl because this is `is_even` + else + do + let b ← + do + -- Call `odd`: we need to wrap the input value in `.inr`, then + -- extract the output value + let r ← f (.inr (i- 1)) + match r with + | .inl _ => .fail .panic -- Invalid output + | .inr b => .ret b + -- Wrap the return value + .ret (.inl b) + | .inr i => + -- Body of `is_odd` + if i = 0 + then .ret (.inr false) -- We return .inr because this is `is_odd` + else + do + let b ← + do + -- Call `is_even`: we need to wrap the input value in .inr, then + -- extract the output value + let r ← f (.inl (i- 1)) + match r with + | .inl b => .ret b + | .inr _ => .fail .panic -- Invalid output + -- Wrap the return value + .ret (.inr b) + + theorem is_even_is_odd_body_is_valid: + ∀ k x, is_valid_p k (λ k => is_even_is_odd_body k x) := by + intro k x + simp [is_even_is_odd_body] + split <;> simp <;> split <;> simp + apply is_valid_p_bind; simp + intros; split <;> simp + apply is_valid_p_bind; simp + intros; split <;> simp + + noncomputable + def is_even (i : Int): Result Bool := + do + let r ← fix is_even_is_odd_body (.inl i) + match r with + | .inl b => .ret b + | .inr _ => .fail .panic + + noncomputable + def is_odd (i : Int): Result Bool := + do + let r ← fix is_even_is_odd_body (.inr i) + match r with + | .inl _ => .fail .panic + | .inr b => .ret b + + -- TODO: move + -- TODO: this is not enough + theorem swap_if_bind {a b : Type} (e : Prop) [Decidable e] (x y : Result a) (f : a → Result b) : + (do + let z ← (if e then x else y) + f z) + = + (if e then do let z ← x; f z + else do let z ← y; f z) := by + split <;> simp + + theorem is_even_eq (i : Int) : + is_even i = (if i = 0 then .ret true else is_odd (i - 1)) + := by + have Heq := is_valid_p_fix_fixed_eq is_even_is_odd_body_is_valid + simp [is_even, is_odd] + conv => lhs; rw [Heq]; simp; rw [is_even_is_odd_body]; simp + -- Very annoying: we need to swap the matches + -- Doing this with rewriting lemmas is hard generally speaking + -- (especially as we may have to generate lemmas for user-defined + -- inductives on the fly). + -- The simplest is to repeatedly split then simplify (we identify + -- the outer match or monadic let-binding, and split on its scrutinee) + split <;> simp + cases H0 : fix is_even_is_odd_body (Sum.inr (i - 1)) <;> simp + rename_i v + split <;> simp + + theorem is_odd_eq (i : Int) : + is_odd i = (if i = 0 then .ret false else is_even (i - 1)) + := by + have Heq := is_valid_p_fix_fixed_eq is_even_is_odd_body_is_valid + simp [is_even, is_odd] + conv => lhs; rw [Heq]; simp; rw [is_even_is_odd_body]; simp + -- Same remark as for `even` + split <;> simp + cases H0 : fix is_even_is_odd_body (Sum.inl (i - 1)) <;> simp + rename_i v + split <;> simp + +end Ex3 + namespace Ex4 /- Higher-order example -/ open Primitives Fix @@ -581,7 +699,7 @@ namespace Ex4 .ret (hd :: tl) /- The validity theorem for `map`, generic in `f` -/ - /- TODO: rename the condition to k in all the lemma statements -/ + /- TODO: rename the continuation to k in all the lemma statements -/ theorem map_is_valid {{f : (a → Result b) → a → Result c}} (Hfvalid : ∀ k x, is_valid_p k (λ k => f k x)) |