diff options
Diffstat (limited to 'backends')
-rw-r--r-- | backends/lean/Base/Arith.lean | 96 |
1 files changed, 58 insertions, 38 deletions
diff --git a/backends/lean/Base/Arith.lean b/backends/lean/Base/Arith.lean index df48a6a2..8cdf75a3 100644 --- a/backends/lean/Base/Arith.lean +++ b/backends/lean/Base/Arith.lean @@ -231,7 +231,7 @@ example (x y : Int) (h0 : x ≠ y) (h1 : ¬ x = y) : True := by set_option trace.Arith false -def addDecl (name : Name) (val : Expr) (type : Expr) (asLet : Bool) (k : Expr → Tactic.TacticM Unit) : Tactic.TacticM Unit := +def addDecl (name : Name) (val : Expr) (type : Expr) (asLet : Bool) : Tactic.TacticM Expr := -- I don't think we need that Lean.Elab.Tactic.withMainContext do -- Insert the new declaration @@ -256,10 +256,11 @@ def addDecl (name : Name) (val : Expr) (type : Expr) (asLet : Bool) (k : Expr mvarId.assign newVal let goals ← Tactic.getUnsolvedGoals Lean.Elab.Tactic.setGoals (newMVar.mvarId! :: goals) - -- Call the continuation - k nval + -- Return the new value - note: we are in the *new* context, created + -- after the declaration was added, so it will persist + pure nval -def addDeclSyntax (name : Name) (val : Syntax) (asLet : Bool) (k : Expr → Tactic.TacticM Unit) : Tactic.TacticM Unit := +def addDeclSyntax (name : Name) (val : Syntax) (asLet : Bool) : Tactic.TacticM Unit := -- I don't think we need that Lean.Elab.Tactic.withMainContext do -- @@ -270,13 +271,13 @@ def addDeclSyntax (name : Name) (val : Syntax) (asLet : Bool) (k : Expr → Tact -- not choose): we force the instantiation of the meta-variable synthesizeSyntheticMVarsUsingDefault -- - addDecl name val type asLet k + let _ ← addDecl name val type asLet -elab "custom_let " n:ident " := " v:term : tactic => - addDeclSyntax n.getId v (asLet := true) (λ _ => pure ()) +elab "custom_let " n:ident " := " v:term : tactic => do + addDeclSyntax n.getId v (asLet := true) elab "custom_have " n:ident " := " v:term : tactic => - addDeclSyntax n.getId v (asLet := false) (λ _ => pure ()) + addDeclSyntax n.getId v (asLet := false) example : Nat := by custom_let x := 4 @@ -287,13 +288,13 @@ example (x : Bool) : Nat := by cases x <;> custom_let x := 3 <;> apply x -- Lookup instances in a context and introduce them with additional declarations. -def introInstances (declToUnfold : Name) (lookup : Expr → MetaM (Option Expr)) (k : Expr → Tactic.TacticM Unit) : Tactic.TacticM Unit := do +def introInstances (declToUnfold : Name) (lookup : Expr → MetaM (Option Expr)) : Tactic.TacticM (Array Expr) := do let hs ← collectInstancesFromMainCtx lookup - hs.forM fun e => do + hs.toArray.mapM fun e => do let type ← inferType e let name ← mkFreshUserName `h -- Add a declaration - addDecl name e type (asLet := false) λ nval => do + let nval ← addDecl name e type (asLet := false) -- Simplify to unfold the declaration to unfold (i.e., the projector) let simpTheorems ← Tactic.simpOnlyBuiltins.foldlM (·.addConst ·) ({} : SimpTheorems) -- Add the equational theorem for the decl to unfold @@ -304,14 +305,14 @@ def introInstances (declToUnfold : Name) (lookup : Expr → MetaM (Option Expr)) let loc := Tactic.Location.targets #[mkIdent name] false -- Apply the simplifier let _ ← Tactic.simpLocation ctx (discharge? := .none) loc - -- Call the continuation - k nval + -- Return the new value + pure nval -- Lookup the instances of `HasProp for all the sub-expressions in the context, -- and introduce the corresponding assumptions elab "intro_has_prop_instances" : tactic => do trace[Arith] "Introducing the HasProp instances" - introInstances ``HasProp.prop_ty lookupHasProp (fun _ => pure ()) + let _ ← introInstances ``HasProp.prop_ty lookupHasProp example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by intro_has_prop_instances @@ -322,7 +323,7 @@ example {a: Type} (v : Vec a) : v.val.length ≤ Scalar.max ScalarTy.Usize := by simp_all [Scalar.max, Scalar.min] -- Tactic to split on a disjunction -def splitDisj (h : Expr) : Tactic.TacticM Unit := do +def splitDisj (h : Expr) (kleft kright : Tactic.TacticM Unit) : Tactic.TacticM Unit := do trace[Arith] "assumption on which to split: {h}" -- Retrieve the main goal Lean.Elab.Tactic.withMainContext do @@ -361,14 +362,23 @@ def splitDisj (h : Expr) : Tactic.TacticM Unit := do trace[Arith] "main goal: {mgoal}" mgoal.assign casesExpr let goals ← Tactic.getUnsolvedGoals - Tactic.setGoals (mleft :: mright :: goals) + -- Focus on the left + Tactic.setGoals [mleft] + kleft + let leftGoals ← Tactic.getUnsolvedGoals + -- Focus on the right + Tactic.setGoals [mright] + kright + let rightGoals ← Tactic.getUnsolvedGoals + -- Put all the goals back + Tactic.setGoals (leftGoals ++ rightGoals ++ goals) trace[Arith] "new goals: {← Tactic.getUnsolvedGoals}" elab "split_disj " n:ident : tactic => do Lean.Elab.Tactic.withMainContext do let decl ← Lean.Meta.getLocalDeclFromUserName n.getId let fvar := mkFVar decl.fvarId - splitDisj fvar + splitDisj fvar (fun _ => pure ()) (fun _ => pure ()) example (x y : Int) (h0 : x ≤ y ∨ x ≥ y) : x ≤ y ∨ x ≥ y := by split_disj h0 @@ -379,7 +389,7 @@ example (x y : Int) (h0 : x ≤ y ∨ x ≥ y) : x ≤ y ∨ x ≥ y := by -- and introduce the corresponding assumptions elab "intro_prop_has_imp_instances" : tactic => do trace[Arith] "Introducing the PropHasImp instances" - introInstances ``PropHasImp.concl lookupPropHasImp (fun _ => pure ()) + let _ ← introInstances ``PropHasImp.concl lookupPropHasImp example (x y : Int) (h0 : x ≤ y) (h1 : x ≠ y) : x < y := by intro_prop_has_imp_instances @@ -388,7 +398,7 @@ example (x y : Int) (h0 : x ≤ y) (h1 : x ≠ y) : x < y := by . linarith . linarith -syntax "int_tac_preprocess" : tactic +--syntax "int_tac_preprocess" : tactic /- Boosting a bit the linarith tac. @@ -399,31 +409,41 @@ syntax "int_tac_preprocess" : tactic -/ def intTacPreprocess : Tactic.TacticM Unit := do Lean.Elab.Tactic.withMainContext do - -- Get the local context - let ctx ← Lean.MonadLCtx.getLCtx - -- Just a matter of precaution - let ctx ← instantiateLCtxMVars ctx - -- Explore the declarations - Remark: we don't explore the subexpressions - -- (we could, but it is rarely necessary, because terms of the shape `x ≠ y` - -- are often introduced because of branchings in the code, and using `split` - -- introduces exactly the assumptions `x = y` and `x ≠ y`). - let decls ← ctx.getDecls - for decl in decls do - let ty ← Lean.Meta.inferType decl.toExpr - ty.withApp fun f args => do - trace[Arith] "decl: {f} {args}" - -- Check if this is an inequality between integers - pure () - --- TODO: int_tac + -- Lookup the instances of PropHasImp (this is how we detect assumptions + -- of the proper shape), introduce assumptions in the context and split + -- on those + -- TODO: get rid of the assumption that we split + let rec splitOnAsms (asms : List Expr) : Tactic.TacticM Unit := + match asms with + | [] => pure () + | asm :: asms => + let k := splitOnAsms asms + splitDisj asm k k + -- Introduce + let asms ← introInstances ``PropHasImp.concl lookupPropHasImp + -- Split + splitOnAsms asms.toList elab "int_tac_preprocess" : tactic => intTacPreprocess example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by int_tac_preprocess - simp_all - int_tac_preprocess + linarith + linarith + +syntax "int_tac" : tactic +macro_rules + | `(tactic| int_tac) => + `(tactic| + int_tac_preprocess <;> + linarith) + +example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by int_tac + +-- Checking that things append correctly when there are several disjunctions +example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y := by + int_tac_preprocess <;> apply And.intro <;> linarith -- A tactic to solve linear arithmetic goals in the presence of scalars syntax "scalar_tac" : tactic |