diff options
Diffstat (limited to 'backends')
-rw-r--r-- | backends/lean/Primitives.lean | 76 |
1 files changed, 41 insertions, 35 deletions
diff --git a/backends/lean/Primitives.lean b/backends/lean/Primitives.lean index 3ccb8466..e558e476 100644 --- a/backends/lean/Primitives.lean +++ b/backends/lean/Primitives.lean @@ -63,24 +63,28 @@ instance : Pure Result where -- rely on subtype, and a custom let-binding operator, in effect recreating our -- own variant of the do-dsl -def Result.attach : (o : Result α) → Result { x : α // o = ret x } +def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := + match o with | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e + | .fail e => .fail e -macro "let" h:ident " : " e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, $h⟩ ← Result.attach $f) +macro "let" e:term " ⟵ " f:term : doElem => + `(doElem| let ⟨$e, h⟩ ← Result.attach $f) --- Silly example of the kind of reasoning that this notation enables +-- TODO: any way to factorize both definitions? +macro "let" e:term " <-- " f:term : doElem => + `(doElem| let ⟨$e, h⟩ ← Result.attach $f) + +-- We call the hypothesis `h`, in effect making it unavailable to the user +-- (because too much shadowing). But in practice, once can use the French single +-- quote notation (input with f< and f>), where `‹ h ›` finds a suitable +-- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` #eval do - let h: y <-- .ret (0: Nat) - let _: y = 0 := by cases h; decide + let y <-- .ret (0: Nat) + let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ .ret r --- TODO: ideally, `let <--` would automatically pick the name for the fresh --- hypothesis, of the form `h_x` where `x` is the name of the variable, with --- collision-avoidance. That way, code generation would be simpler. - ---------------------- -- MACHINE INTEGERS -- ---------------------- @@ -151,13 +155,14 @@ def USize.checked_sub (n: USize) (m: USize): Result USize := else fail integerOverflow +@[simp] +theorem usize_fits (n: Nat) (h: n <= 4294967295): n < USize.size := + match USize.size, usize_size_eq with + | _, Or.inl rfl => Nat.lt_of_le_of_lt h (by decide) + | _, Or.inr rfl => Nat.lt_of_le_of_lt h (by decide) + def USize.checked_add (n: USize) (m: USize): Result USize := - if h: n.val.val + m.val.val <= 4294967295 then - .ret ⟨ n.val.val + m.val.val, by - have h': 4294967295 < USize.size := by intlit - apply Nat.lt_of_le_of_lt h h' - ⟩ - else if h: n.val + m.val < USize.size then + if h: n.val + m.val < USize.size then .ret ⟨ n.val + m.val, h ⟩ else .fail integerOverflow @@ -173,12 +178,7 @@ def USize.checked_rem (n: USize) (m: USize): Result USize := .fail integerOverflow def USize.checked_mul (n: USize) (m: USize): Result USize := - if h: n.val.val * m.val.val <= 4294967295 then - .ret ⟨ n.val.val * m.val.val, by - have h': 4294967295 < USize.size := by intlit - apply Nat.lt_of_le_of_lt h h' - ⟩ - else if h: n.val * m.val < USize.size then + if h: n.val * m.val < USize.size then .ret ⟨ n.val * m.val, h ⟩ else .fail integerOverflow @@ -193,7 +193,6 @@ def USize.checked_div (n: USize) (m: USize): Result USize := else .fail integerOverflow - -- Test behavior... #eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0 @@ -358,6 +357,10 @@ def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := def mem_replace_back (a : Type) (_ : a) (y : a) : a := y +/-- Aeneas-translated function -- useful to reduce non-recursive definitions. + Use with `simp [ aeneas ]` -/ +register_simp_attr aeneas + -------------------- -- ASSERT COMMAND -- -------------------- @@ -366,21 +369,24 @@ open Lean Elab Command Term Meta syntax (name := assert) "#assert" term: command --- TODO: figure out how to make #assert behave as #eval followed by a compiler --- error if the term doesn't reduce to True. Once we have that, add some inline --- tests for the arithmetic operations, notably `rem` - @[command_elab assert] +unsafe def assertImpl : CommandElab := fun (_stx: Syntax) => do - logInfo "Reducing and asserting: " - logInfo _stx[1] runTermElabM (fun _ => do - let e ← Term.elabTerm _stx[1] none - logInfo (Expr.dbgToString e) - -- TODO: How to evaluate the term and compare the Result to true? + let r ← evalTerm Bool (mkConst ``Bool) _stx[1] + if not r then + logInfo "Assertion failed for: " + logInfo _stx[1] + logError "Expression reduced to false" pure ()) - -- logInfo (Expr.dbgToString (``true)) - -- throwError "TODO: assert" #eval 2 == 2 #assert (2 == 2) + +------------------- +-- SANITY CHECKS -- +------------------- + +-- TODO: add more once we have signed integers + +#assert (USize.checked_rem 1 2 == .ret 1) |