summaryrefslogtreecommitdiff
path: root/backends
diff options
context:
space:
mode:
Diffstat (limited to 'backends')
-rw-r--r--backends/hol4/Test.sml372
1 files changed, 339 insertions, 33 deletions
diff --git a/backends/hol4/Test.sml b/backends/hol4/Test.sml
index c10d64ce..55915fbc 100644
--- a/backends/hol4/Test.sml
+++ b/backends/hol4/Test.sml
@@ -27,6 +27,8 @@ val st_ex_bind_def = Define `
| Fail e => Fail e
| Loop => Loop`;
+val bind_name = fst (dest_const “st_ex_bind”)
+
val st_ex_return_def = Define `
(st_ex_return : 'a -> 'a M) x =
Return x`;
@@ -713,25 +715,43 @@ fun thm_to_conj_implies (thm : thm) : thm =
val thm = PURE_REWRITE_RULE [GSYM satTheory.AND_IMP] thm;
in thm end
+
+(* Like THEN1 and >-, but doesn't fail if the first subgoal is not completely
+ solved.
+
+ TODO: how to get the notation right?
+ *)
+fun op PARTIAL_THEN1 (tac1: tactic) (tac2: tactic) : tactic = tac1 THEN_LT (NTH_GOAL tac2 1)
+
(* If the current goal is [asms ⊢ g], and given a lemma of the form
[⊢ H ==> C], do the following:
- - attempt to prove [asms ⊢ H] using the given tactic
- - if it succeeds, call the theorem tactic with the theorem [asms ⊢ C]
+ - introduce [asms ⊢ H] as a subgoal and apply the given tactic on it
+ - also calls the theorem tactic with the theorem [asms ⊢ C]
If the lemma is not an implication, we directly call the theorem tactic.
*)
-fun prove_premise_then_apply (prove_hyp: tactic) (then_tac: thm_tactic) (thm : thm) : tactic =
+fun intro_premise_then (premise_tac: tactic) (then_tac: thm_tactic) (thm : thm) : tactic =
let
val c = concl thm;
(* First case: there is a premise to prove *)
fun prove_premise_then (h : term) =
- SUBGOAL_THEN h (fn h_thm => then_tac (MP thm h_thm)) >- prove_hyp;
+ PARTIAL_THEN1 (SUBGOAL_THEN h (fn h_thm => then_tac (MP thm h_thm))) premise_tac;
(* Second case: no premise to prove *)
val no_prove_premise_then = then_tac thm;
in
if is_imp c then prove_premise_then (fst (dest_imp c)) else no_prove_premise_then
end
+(* Same as {!intro_premise_then} but fails if the premise_tac fails to prove the premise *)
+fun prove_premise_then (premise_tac: tactic) (then_tac: thm_tactic) (thm : thm) : tactic =
+ intro_premise_then
+ (premise_tac >> FAIL_TAC "prove_premise_then: could not prove premise")
+ then_tac thm
+
+(*
+val thm = th
+*)
+
(* Call a function on all the subterms of a term *)
fun dep_apply_in_subterms
(f : string Redblackset.set -> term -> unit)
@@ -923,7 +943,7 @@ fun apply_dep_rewrites_match_concl_tac
val thms = map thm_to_conj_implies thms;
in
(* Apply each theorem *)
- MAP_EVERY (prove_premise_then_apply prove_premise then_tac) thms (asms, g)
+ MAP_EVERY (prove_premise_then prove_premise then_tac) thms (asms, g)
end
(*
@@ -952,7 +972,7 @@ fun apply_dep_rewrites_match_first_premise_tac
let
val th = thm_to_conj_implies th;
in
- prove_premise_then_apply prove_premise then_tac th
+ prove_premise_then prove_premise then_tac th
end;
in
(* Apply each theorem *)
@@ -997,7 +1017,7 @@ fun rewrite_int_conversion_id
(* If the conclusion is not already in the assumptions, prove it, use
it to rewrite the goal and add it in the assumptions, otherwise do nothing *)
if already_in_asms then ALL_TAC
- else prove_premise_then_apply prove_premise rewrite_then_assum lemma
+ else prove_premise_then prove_premise rewrite_then_assum lemma
end
(* Look for conversions from integers to machine integers and back.
@@ -1034,7 +1054,7 @@ apply_dep_rewrites_match_first_premise_tac prove_premise then_tac NUM_SUB_1_EQ
sg ‘u32_to_int z = u32_to_int i − 1 /\ 0 ≤ u32_to_int z’ >- prove_premise
-prove_premise_then_apply prove_premise
+prove_premise_then prove_premise
val thm = thm_to_conj_implies (SPECL [“u32_to_int z”, “u32_to_int i”] NUM_SUB_1_EQ)
@@ -1048,13 +1068,315 @@ val massage : tactic =
assume_bounds_for_all_int_vars >>
rewrite_with_dep_int_lemmas
+(* Lexicographic order over pairs *)
+fun pair_compare (comp1 : 'a * 'a -> order) (comp2 : 'b * 'b -> order)
+ ((p1, p2) : (('a * 'b) * ('a * 'b))) : order =
+ let
+ val (x1, y1) = p1;
+ val (x2, y2) = p2;
+ in
+ case comp1 (x1, x2) of
+ LESS => LESS
+ | GREATER => GREATER
+ | EQUAL => comp2 (y1, y2)
+ end
+
+(* A constant name (theory, constant name) *)
+type const_name = string * string
+
+val const_name_compare = pair_compare String.compare String.compare
+
+(* The registered spec theorems, that {!progress} will automatically apply.
+
+ The keys are the function names (it is a pair, because constant names
+ are made of the theory name and the name of the constant itself).
+
+ Also note that we can store several specs per definition (in practice, when
+ looking up specs, we will try them all one by one, in a LIFO order).
+
+ We store theorems where all the premises are in the goal, with implications
+ (i.e.: [⊢ H0 ==> ... ==> Hn ==> H], not [H0, ..., Hn ⊢ H]).
+
+ We do this because, when doing proofs by induction, {!progress} might have to
+ handle *unregistered* theorems coming the current goal assumptions and of the shape
+ (the conclusion of the theorem is an assumption, and we want to ignore this assumption):
+ {[
+ [∀i. u32_to_int i < &LENGTH (list_t_v ls) ⇒
+ case nth ls i of
+ Return x => ...
+ | ... => ...]
+ ⊢ ∀i. u32_to_int i < &LENGTH (list_t_v ls) ⇒
+ case nth ls i of
+ Return x => ...
+ | ... => ...
+ ]}
+ *)
+val reg_spec_thms: (const_name, thm) Redblackmap.dict ref =
+ ref (Redblackmap.mkDict const_name_compare)
+
+(* Retrieve the specified application in a spec theorem.
+
+ A spec theorem for a function [f] typically has the shape:
+ {[
+ !x0 ... xn.
+ H0 ==> ... Hm ==>
+ (exists ...
+ (exists ... . f y0 ... yp = ... /\ ...) \/
+ (exists ... . f y0 ... yp = ... /\ ...) \/
+ ...
+ ]}
+
+ Or:
+ {[
+ !x0 ... xn.
+ H0 ==> ... Hm ==>
+ case f y0 ... yp of
+ ... => ...
+ | ... => ...
+ ]}
+
+ We return: [f y0 ... yp]
+*)
+fun get_spec_app (t : term) : term =
+ let
+ (* Remove the universally quantified variables, the premises and
+ the existentially quantified variables *)
+ val t = (snd o strip_exists o snd o strip_imp o snd o strip_forall) t;
+ (* Remove the exists, take the first disjunct *)
+ val t = (hd o strip_disj o snd o strip_exists) t;
+ (* Split the conjunctions and take the first conjunct *)
+ val t = (hd o strip_conj) t;
+ (* Remove the case if there is, otherwise destruct the equality *)
+ val t =
+ if TypeBase.is_case t then let val (_, t, _) = TypeBase.dest_case t in t end
+ else (fst o dest_eq) t;
+ in t end
+
+(* Given a function call [f y0 ... yn] return the name of the function *)
+fun get_fun_name_from_app (t : term) : const_name =
+ let
+ val f = (fst o strip_comb) t;
+ val {Name=name, Thy=thy, Ty=_} = dest_thy_const f;
+ val cn = (thy, name);
+ in cn end
+
+(* Register a spec theorem in the spec database.
+
+ For the shape of spec theorems, see {!get_spec_thm_app}.
+ *)
+fun register_spec_thm (th: thm) : unit =
+ let
+ (* Transform the theroem a bit before storing it *)
+ val th = SPEC_ALL th;
+ (* Retrieve the app ([f x0 ... xn]) *)
+ val f = get_spec_app (concl th);
+ (* Retrieve the function name *)
+ val cn = get_fun_name_from_app f;
+ in
+ (* Store *)
+ reg_spec_thms := Redblackmap.insert (!reg_spec_thms, cn, th)
+ end
+
+(* TODO: I32_SUB_EQ *)
+val _ = app register_spec_thm [U32_ADD_EQ, U32_SUB_EQ, I32_ADD_EQ]
+
+(*
+app register_spec_thm [U32_ADD_EQ, U32_SUB_EQ, I32_ADD_EQ]
+Redblackmap.listItems (!reg_spec_thms)
+*)
+
+(*
+(* TODO: remove? *)
+datatype monadic_app_kind =
+ Call | Bind | Case
+*)
+
+(* Repeatedly destruct cases and return the last scrutinee we get *)
+fun strip_all_cases_get_scrutinee (t : term) : term =
+ if TypeBase.is_case t
+ then (strip_all_cases_get_scrutinee o fst o TypeBase.strip_case) t
+ else t
+
+(*
+TypeBase.dest_case “case ls of [] => T | _ => F”
+TypeBase.strip_case “case ls of [] => T | _ => F”
+TypeBase.strip_case “case (if b then [] else [0, 1]) of [] => T | _ => F”
+TypeBase.strip_case “3”
+TypeBase.dest_case “3”
+
+strip_all_cases_get_scrutinee “case ls of [] => T | _ => F”
+strip_all_cases_get_scrutinee “case (if b then [] else [0, 1]) of [] => T | _ => F”
+strip_all_cases_get_scrutinee “3”
+*)
+
+
+(* Provided the goal contains a call to a monadic function, return this function call.
+
+ The goal should be of the shape:
+ 1.
+ {[
+ case (* potentially expanded function body *) of
+ ... => ...
+ | ... => ...
+ ]}
+
+ 2. Or:
+ {[
+ exists ... .
+ ... (* potentially expanded function body *) = Return ... /\
+ ... (* Various properties *)
+ ]}
+
+ 3. Or a disjunction of cases like the one above, below existential binders
+ (actually: note sure this last case exists in practice):
+ {[
+ exists ... .
+ (exists ... . (* body *) = Return ... /\ ...) \/
+ ...
+ ]}
+
+ The function body should be of the shape:
+ {[
+ x <- f y0 ... yn;
+ ...
+ ]}
+
+ Or (typically if we expanded the monadic binds):
+ {[
+ case f y0 ... yn of
+ ...
+ ]}
+
+ Or simply (typically if we reached the end of the function we're analyzing):
+ {[
+ f y0 ... yn
+ ]}
+
+ For all the above cases we would return [f y0 ... yn].
+ *)
+fun get_monadic_app_call (t : term) : term =
+ (* We do something slightly imprecise but hopefully general and robut *)
+ let
+ (* Case 3.: strip the existential binders, and take the first disjuntion *)
+ val t = (hd o strip_disj o snd o strip_exists) t;
+ (* Case 2.: strip the existential binders, and take the first conjunction *)
+ val t = (hd o strip_conj o snd o strip_exists) t;
+ (* If it is an equality, take the lhs *)
+ val t = if is_eq t then lhs t else t;
+ (* Expand the binders to transform them to cases *)
+ val t =
+ (rhs o concl) (REWRITE_CONV [st_ex_bind_def] t)
+ handle UNCHANGED => t;
+ (* Strip all the cases *)
+ val t = strip_all_cases_get_scrutinee t;
+ in t end
+
+(* Use the given theorem to progress by one step (we use this when
+ analyzing a function body: this goes forward by one call to a monadic function).
+
+ We transform the goal by:
+ - pushing the theorem premises to a subgoal
+ - adding the theorem conclusion in the assumptions in another goal, and
+ getting rid of the monadic call
+
+ Then [then_tac] receives as paramter the monadic call on which we applied
+ the lemma. This can be useful, for instance, to make a case disjunction.
+
+ This function is the most primitive of the [progress...] functions.
+ *)
+fun pure_progress_with (premise_tac : tactic)
+ (then_tac : term -> thm_tactic) (th : thm) : tactic =
+ fn (asms,g) =>
+ let
+ (* Remove all the universally quantified variables from the theorem *)
+ val th = SPEC_ALL th;
+ (* Retrieve the monadic call from the goal *)
+ val fgoal = get_monadic_app_call g;
+ (* Retrieve the app call from the theroem *)
+ val gth = get_spec_app (concl th);
+ (* Match and instantiate *)
+ val (var_s, ty_s) = match_term gth fgoal;
+ (* Instantiate the theorem *)
+ val th = INST var_s (INST_TYPE ty_s th);
+ (* Retrieve the premises of the theorem *)
+ val th = PURE_REWRITE_RULE [GSYM satTheory.AND_IMP] th;
+ in
+ (* Apply the theorem *)
+ intro_premise_then premise_tac (then_tac fgoal) th (asms, g)
+ end
+
(*
-SIMP_CONV arith_ss [ADD] “1 + (x : num)”
-SIMP_CONV list_ss [ADD, EL] “EL (Num (1+x)) (t::list_t_v ls)”
+val (asms, g) = top_goal ()
+val t = g
+
+val th = U32_SUB_EQ
+
+val premise_tac = massage >> TRY COOPER_TAC
+fun then_tac fgoal =
+ fn thm => ASSUME_TAC thm >> Cases_on ‘^fgoal’ >>
+ rw [] >> fs [st_ex_bind_def] >> massage >> fs []
+
+pure_progress_with premise_tac then_tac th
+*)
+
+fun progress_with (th : thm) : tactic =
+ let
+ val premise_tac = massage >> fs [] >> rw [] >> TRY COOPER_TAC;
+ fun then_tac fgoal thm =
+ ASSUME_TAC thm >> Cases_on ‘^fgoal’ >>
+ rw [] >> fs [st_ex_bind_def] >> massage >> fs [];
+ in
+ pure_progress_with premise_tac then_tac th
+ end
+
+(*
+progress_with U32_SUB_EQ
+*)
+
+(* This function lookups the theorem to use to make progress *)
+val progress : tactic =
+ fn (asms, g) =>
+ let
+ (* Retrieve the monadic call from the goal *)
+ val fgoal = get_monadic_app_call g;
+ val fname = get_fun_name_from_app fgoal;
+ (* Lookup the theorem: first look in the assumptions (we might want to
+ use the inductive hypothesis for instance) *)
+ fun asm_to_spec asm =
+ let
+ (* Fail if there are no universal quantifiers *)
+ val _ =
+ if is_forall asm then asm
+ else assert is_forall ((snd o strip_imp) asm);
+ val asm_fname = (get_fun_name_from_app o get_spec_app) asm;
+ (* Fail if the name is not the one we're looking for *)
+ val _ = assert (fn n => fname = n) asm_fname;
+ in
+ ASSUME asm
+ end
+ val asms_thl = mapfilter asm_to_spec asms;
+ (* Lookup a spec in the database *)
+ val thl =
+ case Redblackmap.peek (!reg_spec_thms, fname) of
+ NONE => asms_thl
+ | SOME spec => spec :: asms_thl;
+ val _ =
+ if null thl then
+ raise (failwith "progress: could not find a suitable theorem to apply")
+ else ();
+ in
+ (* Attempt to use the theorems one by one *)
+ MAP_FIRST progress_with thl (asms, g)
+ end
-m “1 + x = SUC x”
+(*
+val (asms, g) = top_goal ()
*)
+(* TODO: no exfalso tactic?? *)
+val EX_FALSO : tactic =
+ SUBGOAL_THEN “F” (fn th => ASSUME_TAC th >> fs[])
+
Theorem nth_lem:
!(ls : 't list_t) (i : u32).
u32_to_int i < int_of_num (LENGTH (list_t_v ls)) ==>
@@ -1063,30 +1385,14 @@ Theorem nth_lem:
| Fail _ => F
| Loop => F
Proof
- Induct_on ‘ls’ >> fs [list_t_v_def, HD] >~ [‘ListNil’] >>
- rpt strip_tac >> massage >>
- PURE_ONCE_REWRITE_TAC [nth_def] >> rw [] >-(intLib.COOPER_TAC) >>
- (* TODO: we need specialized tactics here - first: subgoal *)
- sg ‘0 <= u32_to_int i - u32_to_int (int_to_u32 1)’ >-(
- massage >> COOPER_TAC
- ) >>
- (* TODO: automate (should be in a massage) *)
- imp_res_tac U32_SUB_EQ >> fs [st_ex_bind_def, list_t_v_def] >> rw [] >>
- massage >> fs [] >> rw [] >>
- (* TODO: automate this: we should be able to analyze the ‘nth ls z’,
- notice there is a quantified assumption in the context,
- and instantiate it properly.
-
- Remark: we can apply the resulting theorem only after rewriting it.
- Possibility:
- - do some default rewriting and try to apply it
- - if it fails, simply add it in the assumptions for the user
- *)
- pop_last_assum (qspec_then ‘z’ assume_tac) >> rfs [] >>
- pop_assum irule >>
- COOPER_TAC
+ Induct_on ‘ls’ >> rw [list_t_v_def] >~ [‘ListNil’]
+ >-(massage >> EX_FALSO >> COOPER_TAC) >>
+ PURE_ONCE_REWRITE_TAC [nth_def] >> rw [] >>
+ progress >> progress
QED
+(* *)
+
(***
* Example of how to get rid of the fuel in practice
*)