summaryrefslogtreecommitdiff
path: root/backends
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--backends/hol4/divDefLib.sig26
-rw-r--r--backends/hol4/divDefScript.sml17
2 files changed, 35 insertions, 8 deletions
diff --git a/backends/hol4/divDefLib.sig b/backends/hol4/divDefLib.sig
index 51a09b9c..df879b4b 100644
--- a/backends/hol4/divDefLib.sig
+++ b/backends/hol4/divDefLib.sig
@@ -9,6 +9,32 @@
divDefExampleTheory.
For examples of how to use DefiveDiv, see divDefLibExampleScript.
+
+ Limitations: our encoding has limitations with regards to higher-order functions. More
+ precisely, the following definition wouldn't be accepted, because we don't know how
+ “MAP” would use ‘explore_tree’, meaning we can't prove the validity property required
+ by the fixed point upon defining ‘explore_tree’ and ‘explore_node’:
+
+ {[
+ Datatype tree:
+ | Leaf : int
+ | Node : tree list
+
+ explore_tree (t : tree) : tree =
+ case t of
+ Leaf i => Leaf i
+ | Node ns => Node (explore_node ns)
+
+ explore_node (ns : tree list) : tree list =
+ MAP explore_tree ns (* This is not supported *)
+ ]}
+
+ *However*, our encoding does allow defining a function ‘f’ *then* giving it
+ as argument to a higher-order function such as ‘MAP’.
+
+ Remark: "Partial recursive functions in higher-order logic", Alexander Krauss,
+ introduces an interesting approach by means of an inductive. It could be
+ interesting to try and compare.
*)
signature divDefLib =
diff --git a/backends/hol4/divDefScript.sml b/backends/hol4/divDefScript.sml
index c742fb1f..b80aa2bf 100644
--- a/backends/hol4/divDefScript.sml
+++ b/backends/hol4/divDefScript.sml
@@ -20,35 +20,36 @@ val _ = new_theory "divDef"
*======================*)
(* An auxiliary operator which uses some fuel *)
-val fix_fuel_def = Define ‘
+Definition fix_fuel_def:
(fix_fuel (0 : num) (f : ('a -> 'b result) -> 'a -> 'b result) (x : 'a) : 'b result = Diverge) ∧
(fix_fuel (SUC n) (f : ('a -> 'b result) -> 'a -> 'b result) (x : 'a) : 'b result = f (fix_fuel n f) x)
-’
+End
(* An auxiliary predicate *)
-val fix_fuel_P_def = Define ‘
+Definition fix_fuel_P_def:
fix_fuel_P f x n = ~(is_diverge (fix_fuel n f x))
-’
+End
(* The fixed point operator *)
-val fix_def = Define ‘
+Definition fix_def:
fix (f : ('a -> 'b result) -> 'a -> 'b result) (x : 'a) : 'b result =
if (∃ n. fix_fuel_P f x n) then fix_fuel ($LEAST (fix_fuel_P f x)) f x else Diverge
-’
+End
(* A validity condition.
If a function body ‘f’ satisfies this condition, then we have the fixed point
equation ‘fix f = f (fix f)’ (see [fix_fixed_eq]).
*)
-val is_valid_fp_body_def = Define ‘
+Definition is_valid_fp_body_def:
(is_valid_fp_body (0 : num) (f : ('a -> 'a result) -> 'a -> 'a result) = F) ∧
(is_valid_fp_body (SUC n) (f : ('a -> 'a result) -> 'a -> 'a result) =
∀x. (∀g h. f g x = f h x) ∨
(∃ h y. is_valid_fp_body n h ∧
∀g. f g x = do z <- g y; h g z od))
-’
+End
+
(*======================
* Lemmas
*======================*)