summaryrefslogtreecommitdiff
path: root/backends
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--backends/hol4/testHashmapTheory.sig202
1 files changed, 202 insertions, 0 deletions
diff --git a/backends/hol4/testHashmapTheory.sig b/backends/hol4/testHashmapTheory.sig
new file mode 100644
index 00000000..64312406
--- /dev/null
+++ b/backends/hol4/testHashmapTheory.sig
@@ -0,0 +1,202 @@
+signature testHashmapTheory =
+sig
+ type thm = Thm.thm
+
+ (* Axioms *)
+ val insert_def : thm
+
+ (* Definitions *)
+ val distinct_keys_def : thm
+ val list_t_TY_DEF : thm
+ val list_t_case_def : thm
+ val list_t_size_def : thm
+ val list_t_v_def : thm
+ val lookup_def : thm
+
+ (* Theorems *)
+ val datatype_list_t : thm
+ val index_eq : thm
+ val insert_lem : thm
+ val list_t_11 : thm
+ val list_t_Axiom : thm
+ val list_t_case_cong : thm
+ val list_t_case_eq : thm
+ val list_t_distinct : thm
+ val list_t_induction : thm
+ val list_t_nchotomy : thm
+ val lookup_raw_def : thm
+ val lookup_raw_ind : thm
+ val nth_mut_fwd_def : thm
+ val nth_mut_fwd_ind : thm
+ val nth_mut_fwd_spec : thm
+
+ val testHashmap_grammars : type_grammar.grammar * term_grammar.grammar
+(*
+ [primitives] Parent theory of "testHashmap"
+
+ [insert_def] Axiom
+
+ [oracles: ] [axioms: insert_def] []
+ ⊢ insert key value ls =
+ case ls of
+ ListCons (ckey,cvalue) tl =>
+ if ckey = key then Return (ListCons (ckey,value) tl)
+ else
+ do
+ tl0 <- insert key value tl;
+ Return (ListCons (ckey,cvalue) tl0)
+ od
+ | ListNil => Return (ListCons (key,value) ListNil)
+
+ [distinct_keys_def] Definition
+
+ ⊢ ∀ls.
+ distinct_keys ls ⇔
+ ∀i j.
+ 0 < i ⇒
+ i < len ls ⇒
+ 0 < j ⇒
+ j < len ls ⇒
+ FST (index i ls) = FST (index j ls) ⇒
+ i = j
+
+ [list_t_TY_DEF] Definition
+
+ ⊢ ∃rep.
+ TYPE_DEFINITION
+ (λa0'.
+ ∀ $var$('list_t').
+ (∀a0'.
+ (∃a0 a1.
+ a0' =
+ (λa0 a1.
+ ind_type$CONSTR 0 a0
+ (ind_type$FCONS a1 (λn. ind_type$BOTTOM)))
+ a0 a1 ∧ $var$('list_t') a1) ∨
+ a0' =
+ ind_type$CONSTR (SUC 0) ARB (λn. ind_type$BOTTOM) ⇒
+ $var$('list_t') a0') ⇒
+ $var$('list_t') a0') rep
+
+ [list_t_case_def] Definition
+
+ ⊢ (∀a0 a1 f v. list_t_CASE (ListCons a0 a1) f v = f a0 a1) ∧
+ ∀f v. list_t_CASE ListNil f v = v
+
+ [list_t_size_def] Definition
+
+ ⊢ (∀f a0 a1.
+ list_t_size f (ListCons a0 a1) = 1 + (f a0 + list_t_size f a1)) ∧
+ ∀f. list_t_size f ListNil = 0
+
+ [list_t_v_def] Definition
+
+ ⊢ list_t_v ListNil = [] ∧
+ ∀x tl. list_t_v (ListCons x tl) = x::list_t_v tl
+
+ [lookup_def] Definition
+
+ ⊢ ∀key ls. lookup key ls = lookup_raw key (list_t_v ls)
+
+ [datatype_list_t] Theorem
+
+ ⊢ DATATYPE (list_t ListCons ListNil)
+
+ [index_eq] Theorem
+
+ ⊢ (∀x ls. index 0 (x::ls) = x) ∧
+ ∀i x ls.
+ index i (x::ls) =
+ if 0 < i ∨ 0 ≤ i ∧ i ≠ 0 then index (i − 1) ls
+ else if i = 0 then x
+ else ARB
+
+ [insert_lem] Theorem
+
+ [oracles: DISK_THM] [axioms: insert_def] []
+ ⊢ ∀ls key value.
+ distinct_keys (list_t_v ls) ⇒
+ case insert key value ls of
+ Return ls1 =>
+ lookup key ls1 = SOME value ∧
+ ∀k. k ≠ key ⇒ lookup k ls = lookup k ls1
+ | Fail v1 => F
+ | Loop => F
+
+ [list_t_11] Theorem
+
+ ⊢ ∀a0 a1 a0' a1'.
+ ListCons a0 a1 = ListCons a0' a1' ⇔ a0 = a0' ∧ a1 = a1'
+
+ [list_t_Axiom] Theorem
+
+ ⊢ ∀f0 f1. ∃fn.
+ (∀a0 a1. fn (ListCons a0 a1) = f0 a0 a1 (fn a1)) ∧
+ fn ListNil = f1
+
+ [list_t_case_cong] Theorem
+
+ ⊢ ∀M M' f v.
+ M = M' ∧ (∀a0 a1. M' = ListCons a0 a1 ⇒ f a0 a1 = f' a0 a1) ∧
+ (M' = ListNil ⇒ v = v') ⇒
+ list_t_CASE M f v = list_t_CASE M' f' v'
+
+ [list_t_case_eq] Theorem
+
+ ⊢ list_t_CASE x f v = v' ⇔
+ (∃t l. x = ListCons t l ∧ f t l = v') ∨ x = ListNil ∧ v = v'
+
+ [list_t_distinct] Theorem
+
+ ⊢ ∀a1 a0. ListCons a0 a1 ≠ ListNil
+
+ [list_t_induction] Theorem
+
+ ⊢ ∀P. (∀l. P l ⇒ ∀t. P (ListCons t l)) ∧ P ListNil ⇒ ∀l. P l
+
+ [list_t_nchotomy] Theorem
+
+ ⊢ ∀ll. (∃t l. ll = ListCons t l) ∨ ll = ListNil
+
+ [lookup_raw_def] Theorem
+
+ ⊢ (∀key. lookup_raw key [] = NONE) ∧
+ ∀v ls key k.
+ lookup_raw key ((k,v)::ls) =
+ if k = key then SOME v else lookup_raw key ls
+
+ [lookup_raw_ind] Theorem
+
+ ⊢ ∀P. (∀key. P key []) ∧
+ (∀key k v ls. (k ≠ key ⇒ P key ls) ⇒ P key ((k,v)::ls)) ⇒
+ ∀v v1. P v v1
+
+ [nth_mut_fwd_def] Theorem
+
+ ⊢ ∀ls i.
+ nth_mut_fwd ls i =
+ case ls of
+ ListCons x tl =>
+ if u32_to_int i = 0 then Return x
+ else do i0 <- u32_sub i (int_to_u32 1); nth_mut_fwd tl i0 od
+ | ListNil => Fail Failure
+
+ [nth_mut_fwd_ind] Theorem
+
+ ⊢ ∀P. (∀ls i.
+ (∀x tl i0. ls = ListCons x tl ∧ u32_to_int i ≠ 0 ⇒ P tl i0) ⇒
+ P ls i) ⇒
+ ∀v v1. P v v1
+
+ [nth_mut_fwd_spec] Theorem
+
+ ⊢ ∀ls i.
+ u32_to_int i < len (list_t_v ls) ⇒
+ case nth_mut_fwd ls i of
+ Return x => x = index (u32_to_int i) (list_t_v ls)
+ | Fail v1 => F
+ | Loop => F
+
+
+*)
+end