summaryrefslogtreecommitdiff
path: root/backends
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--backends/lean/Base/Diverge/Base.lean570
-rw-r--r--backends/lean/Base/Diverge/ElabBase.lean6
-rw-r--r--backends/lean/Base/Progress/Base.lean1
3 files changed, 510 insertions, 67 deletions
diff --git a/backends/lean/Base/Diverge/Base.lean b/backends/lean/Base/Diverge/Base.lean
index 6a52387d..9d986f4e 100644
--- a/backends/lean/Base/Diverge/Base.lean
+++ b/backends/lean/Base/Diverge/Base.lean
@@ -12,6 +12,78 @@ set_option profiler.threshold 100
namespace Diverge
+/- Auxiliary lemmas -/
+namespace Lemmas
+ -- TODO: not necessary anymore
+ def for_all_fin_aux {n : Nat} (f : Fin n → Prop) (m : Nat) (h : m ≤ n) : Prop :=
+ if heq: m = n then True
+ else
+ f ⟨ m, by simp_all [Nat.lt_iff_le_and_ne] ⟩ ∧
+ for_all_fin_aux f (m + 1) (by simp_all [Arith.add_one_le_iff_le_ne])
+ termination_by for_all_fin_aux n _ m h => n - m
+ decreasing_by
+ simp_wf
+ apply Nat.sub_add_lt_sub <;> try simp
+ simp_all [Arith.add_one_le_iff_le_ne]
+
+ def for_all_fin {n : Nat} (f : Fin n → Prop) := for_all_fin_aux f 0 (by simp)
+
+ theorem for_all_fin_aux_imp_forall {n : Nat} (f : Fin n → Prop) (m : Nat) :
+ (h : m ≤ n) →
+ for_all_fin_aux f m h → ∀ i, m ≤ i.val → f i
+ := by
+ generalize h: (n - m) = k
+ revert m
+ induction k -- TODO: induction h rather?
+ case zero =>
+ simp_all
+ intro m h1 h2
+ have h: n = m := by
+ linarith
+ unfold for_all_fin_aux; simp_all
+ simp_all
+ -- There is no i s.t. m ≤ i
+ intro i h3; cases i; simp_all
+ linarith
+ case succ k hi =>
+ intro m hk hmn
+ intro hf i hmi
+ have hne: m ≠ n := by
+ have hineq := Nat.lt_of_sub_eq_succ hk
+ linarith
+ -- m = i?
+ if heq: m = i then
+ -- Yes: simply use the `for_all_fin_aux` hyp
+ unfold for_all_fin_aux at hf
+ simp_all
+ else
+ -- No: use the induction hypothesis
+ have hlt: m < i := by simp_all [Nat.lt_iff_le_and_ne]
+ have hineq: m + 1 ≤ n := by
+ have hineq := Nat.lt_of_sub_eq_succ hk
+ simp [*, Nat.add_one_le_iff]
+ have heq1: n - (m + 1) = k := by
+ -- TODO: very annoying arithmetic proof
+ simp [Nat.sub_eq_iff_eq_add hineq]
+ have hineq1: m ≤ n := by linarith
+ simp [Nat.sub_eq_iff_eq_add hineq1] at hk
+ simp_arith [hk]
+ have hi := hi (m + 1) heq1 hineq
+ apply hi <;> simp_all
+ . unfold for_all_fin_aux at hf
+ simp_all
+ . simp_all [Arith.add_one_le_iff_le_ne]
+
+ -- TODO: this is not necessary anymore
+ theorem for_all_fin_imp_forall (n : Nat) (f : Fin n → Prop) :
+ for_all_fin f → ∀ i, f i
+ := by
+ intro Hf i
+ apply for_all_fin_aux_imp_forall <;> try assumption
+ simp
+
+end Lemmas
+
namespace Fix
open Primitives
@@ -436,6 +508,10 @@ namespace FixI
/- Indexed fixed-point: definitions with indexed types, convenient to use for mutually
recursive definitions. We simply port the definitions and proofs from Fix to a more
specific case.
+
+ Remark: the index designates the function in the mutually recursive group
+ (it should be a finite type). We make the return type depend on the input
+ type because we group the type parameters in the input type.
-/
open Primitives Fix
@@ -538,73 +614,6 @@ namespace FixI
let j: Fin tys1.length := ⟨ j, jLt ⟩
Eq.mp (by simp) (get_fun tl j)
- def for_all_fin_aux {n : Nat} (f : Fin n → Prop) (m : Nat) (h : m ≤ n) : Prop :=
- if heq: m = n then True
- else
- f ⟨ m, by simp_all [Nat.lt_iff_le_and_ne] ⟩ ∧
- for_all_fin_aux f (m + 1) (by simp_all [Arith.add_one_le_iff_le_ne])
- termination_by for_all_fin_aux n _ m h => n - m
- decreasing_by
- simp_wf
- apply Nat.sub_add_lt_sub <;> try simp
- simp_all [Arith.add_one_le_iff_le_ne]
-
- def for_all_fin {n : Nat} (f : Fin n → Prop) := for_all_fin_aux f 0 (by simp)
-
- theorem for_all_fin_aux_imp_forall {n : Nat} (f : Fin n → Prop) (m : Nat) :
- (h : m ≤ n) →
- for_all_fin_aux f m h → ∀ i, m ≤ i.val → f i
- := by
- generalize h: (n - m) = k
- revert m
- induction k -- TODO: induction h rather?
- case zero =>
- simp_all
- intro m h1 h2
- have h: n = m := by
- linarith
- unfold for_all_fin_aux; simp_all
- simp_all
- -- There is no i s.t. m ≤ i
- intro i h3; cases i; simp_all
- linarith
- case succ k hi =>
- intro m hk hmn
- intro hf i hmi
- have hne: m ≠ n := by
- have hineq := Nat.lt_of_sub_eq_succ hk
- linarith
- -- m = i?
- if heq: m = i then
- -- Yes: simply use the `for_all_fin_aux` hyp
- unfold for_all_fin_aux at hf
- simp_all
- else
- -- No: use the induction hypothesis
- have hlt: m < i := by simp_all [Nat.lt_iff_le_and_ne]
- have hineq: m + 1 ≤ n := by
- have hineq := Nat.lt_of_sub_eq_succ hk
- simp [*, Nat.add_one_le_iff]
- have heq1: n - (m + 1) = k := by
- -- TODO: very annoying arithmetic proof
- simp [Nat.sub_eq_iff_eq_add hineq]
- have hineq1: m ≤ n := by linarith
- simp [Nat.sub_eq_iff_eq_add hineq1] at hk
- simp_arith [hk]
- have hi := hi (m + 1) heq1 hineq
- apply hi <;> simp_all
- . unfold for_all_fin_aux at hf
- simp_all
- . simp_all [Arith.add_one_le_iff_le_ne]
-
- -- TODO: this is not necessary anymore
- theorem for_all_fin_imp_forall (n : Nat) (f : Fin n → Prop) :
- for_all_fin f → ∀ i, f i
- := by
- intro Hf i
- apply for_all_fin_aux_imp_forall <;> try assumption
- simp
-
/- Automating the proofs -/
@[simp] theorem is_valid_p_same
(k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)) (x : Result c) :
@@ -707,6 +716,222 @@ namespace FixI
end FixI
+namespace FixII
+ /- Indexed fixed-point: definitions with indexed types, convenient to use for mutually
+ recursive definitions. We simply port the definitions and proofs from Fix to a more
+ specific case.
+
+ Here however, we group the types into a parameter distinct from the inputs.
+ -/
+ open Primitives Fix
+
+ -- The index type
+ variable {id : Type u}
+
+ -- The input/output types
+ variable {ty : id → Type v} {a : (i:id) → ty i → Type w} {b : (i:id) → ty i → Type x}
+
+ -- Monotonicity relation over monadic arrows (i.e., Kleisli arrows)
+ def karrow_rel (k1 k2 : (i:id) → (t:ty i) → (a i t) → Result (b i t)) : Prop :=
+ ∀ i t x, result_rel (k1 i t x) (k2 i t x)
+
+ def kk_to_gen (k : (i:id) → (t:ty i) → (x:a i t) → Result (b i t)) :
+ (x: (i:id) × (t:ty i) × (a i t)) → Result (b x.fst x.snd.fst) :=
+ λ ⟨ i, t, x ⟩ => k i t x
+
+ def kk_of_gen (k : (x: (i:id) × (t:ty i) × (a i t)) → Result (b x.fst x.snd.fst)) :
+ (i:id) → (t:ty i) → a i t → Result (b i t) :=
+ λ i t x => k ⟨ i, t, x ⟩
+
+ def k_to_gen (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)) :
+ ((x: (i:id) × (t:ty i) × (a i t)) → Result (b x.fst x.snd.fst)) → (x: (i:id) × (t:ty i) × (a i t)) → Result (b x.fst x.snd.fst) :=
+ λ kk => kk_to_gen (k (kk_of_gen kk))
+
+ def k_of_gen (k : ((x: (i:id) × (t:ty i) × (a i t)) → Result (b x.fst x.snd.fst)) → (x: (i:id) × (t:ty i) × (a i t)) → Result (b x.fst x.snd.fst)) :
+ ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t) :=
+ λ kk => kk_of_gen (k (kk_to_gen kk))
+
+ def e_to_gen (e : ((i:id) → (t:ty i) → a i t → Result (b i t)) → Result c) :
+ ((x: (i:id) × (t:ty i) × (a i t)) → Result (b x.fst x.snd.fst)) → Result c :=
+ λ k => e (kk_of_gen k)
+
+ def is_valid_p (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t))
+ (e : ((i:id) → (t:ty i) → a i t → Result (b i t)) → Result c) : Prop :=
+ Fix.is_valid_p (k_to_gen k) (e_to_gen e)
+
+ def is_valid (f : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)) : Prop :=
+ ∀ k i t x, is_valid_p k (λ k => f k i t x)
+
+ def fix
+ (f : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)) :
+ (i:id) → (t:ty i) → a i t → Result (b i t) :=
+ kk_of_gen (Fix.fix (k_to_gen f))
+
+ theorem is_valid_fix_fixed_eq
+ {{f : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)}}
+ (Hvalid : is_valid f) :
+ fix f = f (fix f) := by
+ have Hvalid' : Fix.is_valid (k_to_gen f) := by
+ intro k x
+ simp only [is_valid, is_valid_p] at Hvalid
+ let ⟨ i, t, x ⟩ := x
+ have Hvalid := Hvalid (k_of_gen k) i t x
+ simp only [k_to_gen, k_of_gen, kk_to_gen, kk_of_gen] at Hvalid
+ refine Hvalid
+ have Heq := Fix.is_valid_fix_fixed_eq Hvalid'
+ simp [fix]
+ conv => lhs; rw [Heq]
+
+ /- Some utilities to define the mutually recursive functions -/
+
+ -- TODO: use more
+ abbrev kk_ty (id : Type u) (ty : id → Type v) (a : (i:id) → ty i → Type w) (b : (i:id) → ty i → Type x) :=
+ (i:id) → (t:ty i) → a i t → Result (b i t)
+ abbrev k_ty (id : Type u) (ty : id → Type v) (a : (i:id) → ty i → Type w) (b : (i:id) → ty i → Type x) :=
+ kk_ty id ty a b → kk_ty id ty a b
+
+ abbrev in_out_ty : Type (imax (u + 1) (imax (v + 1) (w + 1))) :=
+ (ty : Type u) × (ty → Type v) × (ty → Type w)
+ -- TODO: remove?
+ abbrev mk_in_out_ty (ty : Type u) (in_ty : ty → Type v) (out_ty : ty → Type w) :
+ in_out_ty :=
+ Sigma.mk ty (Prod.mk in_ty out_ty)
+
+ -- Initially, we had left out the parameters id, a and b.
+ -- However, by parameterizing Funs with those parameters, we can state
+ -- and prove lemmas like Funs.is_valid_p_is_valid_p
+ inductive Funs (id : Type u) (ty : id → Type v)
+ (a : (i:id) → ty i → Type w) (b : (i:id) → ty i → Type x) :
+ List in_out_ty.{v, w, x} → Type (max (u + 1) (max (v + 1) (max (w + 1) (x + 1)))) :=
+ | Nil : Funs id ty a b []
+ | Cons {it: Type v} {ity : it → Type w} {oty : it → Type x} {tys : List in_out_ty}
+ (f : kk_ty id ty a b → (i:it) → (x:ity i) → Result (oty i)) (tl : Funs id ty a b tys) :
+ Funs id ty a b (⟨ it, ity, oty ⟩ :: tys)
+
+ def get_fun {tys : List in_out_ty} (fl : Funs id ty a b tys) :
+ (i : Fin tys.length) → kk_ty id ty a b → (t : (tys.get i).fst) →
+ ((tys.get i).snd.fst t) → Result ((tys.get i).snd.snd t) :=
+ match fl with
+ | .Nil => λ i => by have h:= i.isLt; simp at h
+ | @Funs.Cons id ty a b it ity oty tys1 f tl =>
+ λ ⟨ i, iLt ⟩ =>
+ match i with
+ | 0 =>
+ Eq.mp (by simp [List.get]) f
+ | .succ j =>
+ have jLt: j < tys1.length := by
+ simp at iLt
+ revert iLt
+ simp_arith
+ let j: Fin tys1.length := ⟨ j, jLt ⟩
+ Eq.mp (by simp) (get_fun tl j)
+
+ /- Automating the proofs -/
+ @[simp] theorem is_valid_p_same
+ (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)) (x : Result c) :
+ is_valid_p k (λ _ => x) := by
+ simp [is_valid_p, k_to_gen, e_to_gen]
+
+ @[simp] theorem is_valid_p_rec
+ (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)) (i : id) (t : ty i) (x : a i t) :
+ is_valid_p k (λ k => k i t x) := by
+ simp [is_valid_p, k_to_gen, e_to_gen, kk_to_gen, kk_of_gen]
+
+ theorem is_valid_p_ite
+ (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t))
+ (cond : Prop) [h : Decidable cond]
+ {e1 e2 : ((i:id) → (t:ty i) → a i t → Result (b i t)) → Result c}
+ (he1: is_valid_p k e1) (he2 : is_valid_p k e2) :
+ is_valid_p k (λ k => ite cond (e1 k) (e2 k)) := by
+ split <;> assumption
+
+ theorem is_valid_p_dite
+ (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t))
+ (cond : Prop) [h : Decidable cond]
+ {e1 : ((i:id) → (t:ty i) → a i t → Result (b i t)) → cond → Result c}
+ {e2 : ((i:id) → (t:ty i) → a i t → Result (b i t)) → Not cond → Result c}
+ (he1: ∀ x, is_valid_p k (λ k => e1 k x))
+ (he2 : ∀ x, is_valid_p k (λ k => e2 k x)) :
+ is_valid_p k (λ k => dite cond (e1 k) (e2 k)) := by
+ split <;> simp [*]
+
+ theorem is_valid_p_bind
+ {{k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)}}
+ {{g : ((i:id) → (t:ty i) → a i t → Result (b i t)) → Result c}}
+ {{h : c → ((i:id) → (t:ty i) → a i t → Result (b i t)) → Result d}}
+ (Hgvalid : is_valid_p k g)
+ (Hhvalid : ∀ y, is_valid_p k (h y)) :
+ is_valid_p k (λ k => do let y ← g k; h y k) := by
+ apply Fix.is_valid_p_bind
+ . apply Hgvalid
+ . apply Hhvalid
+
+ def Funs.is_valid_p
+ (k : k_ty id ty a b)
+ (fl : Funs id ty a b tys) :
+ Prop :=
+ match fl with
+ | .Nil => True
+ | .Cons f fl =>
+ (∀ i x, FixII.is_valid_p k (λ k => f k i x)) ∧ fl.is_valid_p k
+
+ theorem Funs.is_valid_p_Nil (k : k_ty id ty a b) :
+ Funs.is_valid_p k Funs.Nil := by simp [Funs.is_valid_p]
+
+ def Funs.is_valid_p_is_valid_p_aux
+ {k : k_ty id ty a b}
+ {tys : List in_out_ty}
+ (fl : Funs id ty a b tys) (Hvalid : is_valid_p k fl) :
+ ∀ (i : Fin tys.length) (t : (tys.get i).fst) (x : (tys.get i).snd.fst t),
+ FixII.is_valid_p k (fun k => get_fun fl i k t x) := by
+ -- Prepare the induction
+ have ⟨ n, Hn ⟩ : { n : Nat // tys.length = n } := ⟨ tys.length, by rfl ⟩
+ revert tys fl Hvalid
+ induction n
+ --
+ case zero =>
+ intro tys fl Hvalid Hlen;
+ have Heq: tys = [] := by cases tys <;> simp_all
+ intro i x
+ simp_all
+ have Hi := i.isLt
+ simp_all
+ case succ n Hn =>
+ intro tys fl Hvalid Hlen i x;
+ cases fl <;> simp at Hlen i x Hvalid
+ rename_i ity oty tys f fl
+ have ⟨ Hvf, Hvalid ⟩ := Hvalid
+ have Hvf1: is_valid_p k fl := by
+ simp [Hvalid, Funs.is_valid_p]
+ have Hn := @Hn tys fl Hvf1 (by simp [*])
+ -- Case disjunction on i
+ match i with
+ | ⟨ 0, _ ⟩ =>
+ simp at x
+ simp [get_fun]
+ apply (Hvf x)
+ | ⟨ .succ j, HiLt ⟩ =>
+ simp_arith at HiLt
+ simp at x
+ let j : Fin (List.length tys) := ⟨ j, by simp_arith [HiLt] ⟩
+ have Hn := Hn j x
+ apply Hn
+
+ def Funs.is_valid_p_is_valid_p
+ (tys : List in_out_ty)
+ (k : k_ty (Fin (List.length tys)) (λ i => (tys.get i).fst)
+ (fun i t => (List.get tys i).snd.fst t) (fun i t => (List.get tys i).snd.snd t))
+ (fl : Funs (Fin tys.length) (λ i => (tys.get i).fst)
+ (λ i t => (tys.get i).snd.fst t) (λ i t => (tys.get i).snd.snd t) tys) :
+ fl.is_valid_p k →
+ ∀ (i : Fin tys.length) (t : (tys.get i).fst) (x : (tys.get i).snd.fst t),
+ FixII.is_valid_p k (fun k => get_fun fl i k t x)
+ := by
+ intro Hvalid
+ apply is_valid_p_is_valid_p_aux; simp [*]
+
+end FixII
+
namespace Ex1
/- An example of use of the fixed-point -/
open Primitives Fix
@@ -1133,3 +1358,214 @@ namespace Ex6
Heqix
end Ex6
+
+namespace Ex7
+ /- `list_nth` again, but this time we use FixII -/
+ open Primitives FixII
+
+ @[simp] def tys.{u} : List in_out_ty :=
+ [mk_in_out_ty (Type u) (λ a => List a × Int) (λ a => a)]
+
+ @[simp] def ty (i : Fin 1) := (tys.get i).fst
+ @[simp] def input_ty (i : Fin 1) (t : ty i) : Type u := (tys.get i).snd.fst t
+ @[simp] def output_ty (i : Fin 1) (t : ty i) : Type u := (tys.get i).snd.snd t
+
+ def list_nth_body.{u} (k : (i:Fin 1) → (t:ty i) → input_ty i t → Result (output_ty i t))
+ (a : Type u) (x : List a × Int) : Result a :=
+ let ⟨ ls, i ⟩ := x
+ match ls with
+ | [] => .fail .panic
+ | hd :: tl =>
+ if i = 0 then .ret hd
+ else k 0 a ⟨ tl, i - 1 ⟩
+
+ @[simp] def bodies :
+ Funs (Fin 1) ty input_ty output_ty tys :=
+ Funs.Cons list_nth_body Funs.Nil
+
+ def body (k : (i : Fin 1) → (t : ty i) → (x : input_ty i t) → Result (output_ty i t)) (i: Fin 1) :
+ (t : ty i) → (x : input_ty i t) → Result (output_ty i t) := get_fun bodies i k
+
+ theorem body_is_valid: is_valid body := by
+ -- Split the proof into proofs of validity of the individual bodies
+ rw [is_valid]
+ simp only [body]
+ intro k
+ apply (Funs.is_valid_p_is_valid_p tys)
+ simp [Funs.is_valid_p]
+ (repeat (apply And.intro)); intro x; try simp at x
+ simp only [list_nth_body]
+ -- Prove the validity of the individual bodies
+ intro k x
+ split <;> try simp
+ split <;> simp
+
+ -- Writing the proof terms explicitly
+ theorem list_nth_body_is_valid' (k : k_ty (Fin 1) ty input_ty output_ty)
+ (a : Type u) (x : List a × Int) : is_valid_p k (fun k => list_nth_body k a x) :=
+ let ⟨ ls, i ⟩ := x
+ match ls with
+ | [] => is_valid_p_same k (.fail .panic)
+ | hd :: tl =>
+ is_valid_p_ite k (Eq i 0) (is_valid_p_same k (.ret hd)) (is_valid_p_rec k 0 a ⟨tl, i-1⟩)
+
+ theorem body_is_valid' : is_valid body :=
+ fun k =>
+ Funs.is_valid_p_is_valid_p tys k bodies
+ (And.intro (list_nth_body_is_valid' k) (Funs.is_valid_p_Nil k))
+
+ def list_nth {a: Type u} (ls : List a) (i : Int) : Result a :=
+ fix body 0 a ⟨ ls , i ⟩
+
+ -- The unfolding equation - diverges if `i < 0`
+ theorem list_nth_eq (ls : List a) (i : Int) :
+ list_nth ls i =
+ match ls with
+ | [] => .fail .panic
+ | hd :: tl =>
+ if i = 0 then .ret hd
+ else list_nth tl (i - 1)
+ := by
+ have Heq := is_valid_fix_fixed_eq body_is_valid
+ simp [list_nth]
+ conv => lhs; rw [Heq]
+
+ -- Write the proof term explicitly: the generation of the proof term (without tactics)
+ -- is automatable, and the proof term is actually a lot simpler and smaller when we
+ -- don't use tactics.
+ theorem list_nth_eq'.{u} {a : Type u} (ls : List a) (i : Int) :
+ list_nth ls i =
+ match ls with
+ | [] => .fail .panic
+ | hd :: tl =>
+ if i = 0 then .ret hd
+ else list_nth tl (i - 1)
+ :=
+ -- Use the fixed-point equation
+ have Heq := is_valid_fix_fixed_eq body_is_valid.{u}
+ -- Add the index
+ have Heqi := congr_fun Heq 0
+ -- Add the type parameter
+ have Heqia := congr_fun Heqi a
+ -- Add the input
+ have Heqix := congr_fun Heqia (ls, i)
+ -- Done
+ Heqix
+
+end Ex7
+
+namespace Ex8
+ /- Higher-order example, with FixII -/
+ open Primitives FixII
+
+ variable {id : Type u} {ty : id → Type v}
+ variable {a : (i:id) → ty i → Type w} {b : (i:id) → ty i → Type x}
+
+ /- An auxiliary function, which doesn't require the fixed-point -/
+ def map {a : Type y} {b : Type z} (f : a → Result b) (ls : List a) : Result (List b) :=
+ match ls with
+ | [] => .ret []
+ | hd :: tl =>
+ do
+ let hd ← f hd
+ let tl ← map f tl
+ .ret (hd :: tl)
+
+ /- The validity theorem for `map`, generic in `f` -/
+ theorem map_is_valid
+ (i : id) (t : ty i)
+ {{f : (a i t → Result (b i t)) → (a i t) → Result c}}
+ (Hfvalid : ∀ k x, is_valid_p k (λ k => f (k i t) x))
+ (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t))
+ (ls : List (a i t)) :
+ is_valid_p k (λ k => map (f (k i t)) ls) := by
+ induction ls <;> simp [map]
+ apply is_valid_p_bind <;> try simp_all
+ intros
+ apply is_valid_p_bind <;> try simp_all
+
+ theorem map_is_valid'
+ (i : id) (t : ty i)
+ (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t))
+ (ls : List (a i t)) :
+ is_valid_p k (λ k => map (k i t) ls) := by
+ induction ls <;> simp [map]
+ apply is_valid_p_bind <;> try simp_all
+ intros
+ apply is_valid_p_bind <;> try simp_all
+
+end Ex8
+
+namespace Ex9
+ /- An example which uses map -/
+ open Primitives FixII Ex8
+
+ inductive Tree (a : Type u) :=
+ | leaf (x : a)
+ | node (tl : List (Tree a))
+
+ @[simp] def tys.{u} : List in_out_ty :=
+ [mk_in_out_ty (Type u) (λ a => Tree a) (λ a => Tree a)]
+
+ @[simp] def ty (i : Fin 1) := (tys.get i).fst
+ @[simp] def input_ty (i : Fin 1) (t : ty i) : Type u := (tys.get i).snd.fst t
+ @[simp] def output_ty (i : Fin 1) (t : ty i) : Type u := (tys.get i).snd.snd t
+
+ def id_body.{u} (k : (i:Fin 1) → (t:ty i) → input_ty i t → Result (output_ty i t))
+ (a : Type u) (t : Tree a) : Result (Tree a) :=
+ match t with
+ | .leaf x => .ret (.leaf x)
+ | .node tl =>
+ do
+ let tl ← map (k 0 a) tl
+ .ret (.node tl)
+
+ @[simp] def bodies :
+ Funs (Fin 1) ty input_ty output_ty tys :=
+ Funs.Cons id_body Funs.Nil
+
+ theorem id_body_is_valid :
+ ∀ (k : ((i : Fin 1) → (t : ty i) → input_ty i t → Result (output_ty i t)) → (i : Fin 1) → (t : ty i) → input_ty i t → Result (output_ty i t))
+ (a : Type u) (x : Tree a),
+ @is_valid_p (Fin 1) ty input_ty output_ty (output_ty 0 a) k (λ k => id_body k a x) := by
+ intro k a x
+ simp only [id_body]
+ split <;> try simp
+ apply is_valid_p_bind <;> try simp [*]
+ -- We have to show that `map k tl` is valid
+ -- Remark: `map_is_valid` doesn't work here, we need the specialized version
+ apply map_is_valid'
+
+ def body (k : (i : Fin 1) → (t : ty i) → (x : input_ty i t) → Result (output_ty i t)) (i: Fin 1) :
+ (t : ty i) → (x : input_ty i t) → Result (output_ty i t) := get_fun bodies i k
+
+ theorem body_is_valid : is_valid body :=
+ fun k =>
+ Funs.is_valid_p_is_valid_p tys k bodies
+ (And.intro (id_body_is_valid k) (Funs.is_valid_p_Nil k))
+
+ def id {a: Type u} (t : Tree a) : Result (Tree a) :=
+ fix body 0 a t
+
+ -- Writing the proof term explicitly
+ theorem id_eq' {a : Type u} (t : Tree a) :
+ id t =
+ (match t with
+ | .leaf x => .ret (.leaf x)
+ | .node tl =>
+ do
+ let tl ← map id tl
+ .ret (.node tl))
+ :=
+ -- The unfolding equation
+ have Heq := is_valid_fix_fixed_eq body_is_valid.{u}
+ -- Add the index
+ have Heqi := congr_fun Heq 0
+ -- Add the type parameter
+ have Heqia := congr_fun Heqi a
+ -- Add the input
+ have Heqix := congr_fun Heqia t
+ -- Done
+ Heqix
+
+end Ex9
diff --git a/backends/lean/Base/Diverge/ElabBase.lean b/backends/lean/Base/Diverge/ElabBase.lean
index fedb1c74..1a0676e2 100644
--- a/backends/lean/Base/Diverge/ElabBase.lean
+++ b/backends/lean/Base/Diverge/ElabBase.lean
@@ -1,8 +1,11 @@
import Lean
+import Base.Utils
+import Base.Primitives.Base
namespace Diverge
open Lean Elab Term Meta
+open Utils
-- We can't define and use trace classes in the same file
initialize registerTraceClass `Diverge.elab
@@ -12,4 +15,7 @@ initialize registerTraceClass `Diverge.def.genBody
initialize registerTraceClass `Diverge.def.valid
initialize registerTraceClass `Diverge.def.unfold
+-- For the attribute (for higher-order functions)
+initialize registerTraceClass `Diverge.attr
+
end Diverge
diff --git a/backends/lean/Base/Progress/Base.lean b/backends/lean/Base/Progress/Base.lean
index cf2a3b70..573f0cc5 100644
--- a/backends/lean/Base/Progress/Base.lean
+++ b/backends/lean/Base/Progress/Base.lean
@@ -154,6 +154,7 @@ structure PSpecAttr where
specs of the scalar operations, which is what I really need, but I'm not sure it
applies well to other situations. A better way would probably to use type classes, but
I couldn't get them to work on those cases. It is worth retrying.
+ UPDATE: use discrimination trees (`DiscrTree`) from core Lean
-/
structure PSpecClassAttr where
attr : AttributeImpl