diff options
Diffstat (limited to '')
-rw-r--r-- | backends/lean/Base/Core.lean | 17 | ||||
-rw-r--r-- | backends/lean/Base/IList/IList.lean | 18 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/ArraySlice.lean | 8 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/Base.lean | 22 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/Core.lean | 13 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/Scalar.lean | 9 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/Vec.lean | 4 |
7 files changed, 69 insertions, 22 deletions
diff --git a/backends/lean/Base/Core.lean b/backends/lean/Base/Core.lean new file mode 100644 index 00000000..89dd199b --- /dev/null +++ b/backends/lean/Base/Core.lean @@ -0,0 +1,17 @@ + +import Lean + +/- This lemma is generally useful. It often happens that (because we + make a split on a condition for instance) we have `x ≠ y` in the context + and need to simplify `y ≠ x` somewhere. -/ +@[simp] +theorem neq_imp {α : Type u} {x y : α} (h : ¬ x = y) : ¬ y = x := by intro; simp_all + +/- This is generally useful, and doing without is actually quite cumbersome. + + Note that the following theorem does not seem to be necessary (we invert `x` + and `y` in the conclusion), probably because of `neq_imp`: + `¬ x = y → ¬ y == x` + -/ +@[simp] +theorem neq_imp_nbeq [BEq α] [LawfulBEq α] (x y : α) (heq : ¬ x = y) : ¬ x == y := by simp [*] diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean index c77f075f..1b103bb3 100644 --- a/backends/lean/Base/IList/IList.lean +++ b/backends/lean/Base/IList/IList.lean @@ -3,13 +3,7 @@ import Base.Arith import Base.Utils - --- TODO: move? --- This lemma is generally useful. It often happens that (because we --- make a split on a condition for instance) we have `x ≠ y` in the context --- and need to simplify `y ≠ x` somewhere. -@[simp] -theorem neq_imp {α : Type u} {x y : α} (h : ¬ x = y) : ¬ y = x := by intro; simp_all +import Base.Core namespace List @@ -134,7 +128,7 @@ def pairwise_rel | [] => True | hd :: tl => allP tl (rel hd) ∧ pairwise_rel rel tl -section Lemmas +section variable {α : Type u} @@ -578,6 +572,12 @@ theorem pairwise_rel_cons {α : Type u} (rel : α → α → Prop) (hd: α) (tl: pairwise_rel rel (hd :: tl) ↔ allP tl (rel hd) ∧ pairwise_rel rel tl := by simp [pairwise_rel] -end Lemmas +theorem lookup_not_none_imp_len_pos [BEq α] (l : List (α × β)) (key : α) + (hLookup : l.lookup key ≠ none) : + 0 < l.len := by + induction l <;> simp_all + scalar_tac + +end end List diff --git a/backends/lean/Base/Primitives/ArraySlice.lean b/backends/lean/Base/Primitives/ArraySlice.lean index 899871af..3cc0f9c1 100644 --- a/backends/lean/Base/Primitives/ArraySlice.lean +++ b/backends/lean/Base/Primitives/ArraySlice.lean @@ -16,6 +16,10 @@ open Result Error core.ops.range def Array (α : Type u) (n : Usize) := { l : List α // l.length = n.val } +instance [BEq α] : BEq (Array α n) := SubtypeBEq _ + +instance [BEq α] [LawfulBEq α] : LawfulBEq (Array α n) := SubtypeLawfulBEq _ + instance (a : Type u) (n : Usize) : Arith.HasIntProp (Array a n) where prop_ty := λ v => v.val.len = n.val prop := λ ⟨ _, l ⟩ => by simp[Scalar.max, List.len_eq_length, *] @@ -109,6 +113,10 @@ theorem Array.index_mut_usize_spec {α : Type u} {n : Usize} [Inhabited α] (v: def Slice (α : Type u) := { l : List α // l.length ≤ Usize.max } +instance [BEq α] : BEq (Slice α) := SubtypeBEq _ + +instance [BEq α] [LawfulBEq α] : LawfulBEq (Slice α) := SubtypeLawfulBEq _ + instance (a : Type u) : Arith.HasIntProp (Slice a) where prop_ty := λ v => 0 ≤ v.val.len ∧ v.val.len ≤ Scalar.max ScalarTy.Usize prop := λ ⟨ _, l ⟩ => by simp[Scalar.max, List.len_eq_length, *] diff --git a/backends/lean/Base/Primitives/Base.lean b/backends/lean/Base/Primitives/Base.lean index c9237e65..63fbd8c0 100644 --- a/backends/lean/Base/Primitives/Base.lean +++ b/backends/lean/Base/Primitives/Base.lean @@ -134,18 +134,16 @@ def Result.attach {α: Type} (o : Result α): Result { x : α // o = ok x } := -- MISC -- ---------- --- This acts like a swap effectively in a functional pure world. --- We return the old value of `dst`, i.e. `dst` itself. --- The new value of `dst` is `src`. -@[simp] def core.mem.replace (a : Type) (dst : a) (src : a) : a × a := (dst, src) -/- [core::option::Option::take] -/ -@[simp] def Option.take (T: Type) (self: Option T): Option T × Option T := (self, .none) -/- [core::mem::swap] -/ -@[simp] def core.mem.swap (T: Type) (a b: T): T × T := (b, a) - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas +instance SubtypeBEq [BEq α] (p : α → Prop) : BEq (Subtype p) where + beq v0 v1 := v0.val == v1.val + +instance SubtypeLawfulBEq [BEq α] (p : α → Prop) [LawfulBEq α] : LawfulBEq (Subtype p) where + eq_of_beq {a b} h := by cases a; cases b; simp_all [BEq.beq] + rfl := by intro a; cases a; simp [BEq.beq] + +------------------------------ +---- Misc Primitives Types --- +------------------------------ -- We don't really use raw pointers for now structure MutRawPtr (T : Type) where diff --git a/backends/lean/Base/Primitives/Core.lean b/backends/lean/Base/Primitives/Core.lean index 14a51bc1..aa4a7f28 100644 --- a/backends/lean/Base/Primitives/Core.lean +++ b/backends/lean/Base/Primitives/Core.lean @@ -59,4 +59,17 @@ def Option.unwrap (T : Type) (x : Option T) : Result T := end option -- core.option +/- [core::option::Option::take] -/ +@[simp] def Option.take (T: Type) (self: Option T): Option T × Option T := (self, .none) + +/- [core::mem::replace] + + This acts like a swap effectively in a functional pure world. + We return the old value of `dst`, i.e. `dst` itself. + The new value of `dst` is `src`. -/ +@[simp] def mem.replace (a : Type) (dst : a) (src : a) : a × a := (dst, src) + +/- [core::mem::swap] -/ +@[simp] def mem.swap (T: Type) (a b: T): T × T := (b, a) + end core diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean index 31038e0d..2359c140 100644 --- a/backends/lean/Base/Primitives/Scalar.lean +++ b/backends/lean/Base/Primitives/Scalar.lean @@ -299,7 +299,14 @@ structure Scalar (ty : ScalarTy) where val : Int hmin : Scalar.min ty ≤ val hmax : val ≤ Scalar.max ty -deriving Repr +deriving Repr, BEq, DecidableEq + +instance {ty} : BEq (Scalar ty) where + beq a b := a.val = b.val + +instance {ty} : LawfulBEq (Scalar ty) where + eq_of_beq {a b} := by cases a; cases b; simp[BEq.beq] + rfl {a} := by cases a; simp [BEq.beq] instance (ty : ScalarTy) : CoeOut (Scalar ty) Int where coe := λ v => v.val diff --git a/backends/lean/Base/Primitives/Vec.lean b/backends/lean/Base/Primitives/Vec.lean index 12789fa9..82ecb8ed 100644 --- a/backends/lean/Base/Primitives/Vec.lean +++ b/backends/lean/Base/Primitives/Vec.lean @@ -16,6 +16,10 @@ namespace alloc.vec def Vec (α : Type u) := { l : List α // l.length ≤ Usize.max } +instance [BEq α] : BEq (Vec α) := SubtypeBEq _ + +instance [BEq α] [LawfulBEq α] : LawfulBEq (Vec α) := SubtypeLawfulBEq _ + instance (a : Type u) : Arith.HasIntProp (Vec a) where prop_ty := λ v => 0 ≤ v.val.len ∧ v.val.len ≤ Scalar.max ScalarTy.Usize prop := λ ⟨ _, l ⟩ => by simp[Scalar.max, List.len_eq_length, *] |