summaryrefslogtreecommitdiff
path: root/backends
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--backends/lean/Base/Diverge.lean273
1 files changed, 151 insertions, 122 deletions
diff --git a/backends/lean/Base/Diverge.lean b/backends/lean/Base/Diverge.lean
index 0eff17e3..759773c9 100644
--- a/backends/lean/Base/Diverge.lean
+++ b/backends/lean/Base/Diverge.lean
@@ -4,6 +4,7 @@ import Init.Data.List.Basic
import Mathlib.Tactic.RunCmd
import Mathlib.Tactic.Linarith
import Mathlib.Tactic.Tauto
+--import Mathlib.Logic
namespace Diverge
@@ -291,7 +292,7 @@ theorem fix_fixed_eq_terminates (f : (a → Result b) → a → Result b) (Hmono
split <;> simp [*] <;> intros <;> simp [*]
-- The final fixed point equation
-theorem fix_fixed_eq (f : (a → Result b) → a → Result b) (Hvalid : is_valid f) :
+theorem fix_fixed_eq {{f : (a → Result b) → a → Result b}} (Hvalid : is_valid f) :
∀ x, fix f x = f (fix f) x := by
intros x
-- conv => lhs; simp [fix]
@@ -320,7 +321,7 @@ theorem fix_fixed_eq (f : (a → Result b) → a → Result b) (Hvalid : is_vali
simp [is_mono_p, marrow_rel, result_rel]
split <;> simp
- -- TODO: generalize
+ -- TODO: remove
@[simp] theorem is_mono_p_tail_rec (x : a) :
@is_mono_p a b (λ f => f x) := by
simp_all [is_mono_p, marrow_rel, result_rel]
@@ -335,30 +336,147 @@ theorem fix_fixed_eq (f : (a → Result b) → a → Result b) (Hvalid : is_vali
is_cont_p f (λ _ => x) := by
simp [is_cont_p]
- -- TODO: generalize
+ -- TODO: remove
@[simp] theorem is_cont_p_tail_rec (f : (a → Result b) → a → Result b) (x : a) :
is_cont_p f (λ f => f x) := by
simp_all [is_cont_p, fix]
-/-
-(∀ n, fix_fuel n f x = div)
-
-⊢ f (fun y => fix_fuel (least (fix_fuel_P f y)) f y) x = div
-
-(? x. p x) ==> p (epsilon p)
-
-
-P (nf : a -> option Nat) :=
- match nf x with
- | None => forall n, fix_fuel n f x = div
- | Some n => fix_fuel n f x <> div
+ -- Lean is good at unification: we can write a very general version
+ theorem is_mono_p_bind
+ (g : (a → Result b) → Result b)
+ (h : b → (a → Result b) → Result b) :
+ is_mono_p g →
+ (∀ y, is_mono_p (h y)) →
+ is_mono_p (λ f => do let y ← g f; h y f) := by
+ intro hg hh
+ simp [is_mono_p]
+ intro fg fh Hrgh
+ simp [marrow_rel, result_rel]
+ have hg := hg Hrgh; simp [result_rel] at hg
+ cases heq0: g fg <;> simp_all
+ rename_i y _
+ have hh := hh y Hrgh; simp [result_rel] at hh
+ simp_all
-TODO: theorem de Tarsky,
-Gilles Dowek (Introduction à la théorie des langages de programmation)
+ -- Lean is good at unification: we can write a very general version
+ -- (in particular, it will manage to figure out `g` and `h` when we
+ -- apply the lemma)
+ theorem is_cont_p_bind
+ (f : (a → Result b) → a → Result b)
+ (Hfmono : is_mono f)
+ (g : (a → Result b) → Result b)
+ (h : b → (a → Result b) → Result b) :
+ is_mono_p g →
+ is_cont_p f g →
+ (∀ y, is_mono_p (h y)) →
+ (∀ y, is_cont_p f (h y)) →
+ is_cont_p f (λ f => do let y ← g f; h y f) := by
+ intro Hgmono Hgcont Hhmono Hhcont
+ simp [is_cont_p]
+ intro Hdiv
+ -- Case on `g (fix... f)`: is there an n s.t. it terminates?
+ cases Classical.em (∀ n, g (fix_fuel n f) = .div) <;> rename_i Hn
+ . -- Case 1: g diverges
+ have Hgcont := Hgcont Hn
+ simp_all
+ . -- Case 2: g doesn't diverge
+ simp at Hn
+ let ⟨ n, Hn ⟩ := Hn
+ have Hdivn := Hdiv n
+ have Hffmono := fix_fuel_fix_mono Hfmono n
+ have Hgeq := Hgmono Hffmono
+ simp [result_rel] at Hgeq
+ cases Heq: g (fix_fuel n f) <;> rename_i y <;> simp_all
+ -- Remains the .ret case
+ -- Use Hdiv to prove that: ∀ n, h y (fix_fuel n f) = div
+ -- We do this in two steps: first we prove it for m ≥ n
+ have Hhdiv: ∀ m, h y (fix_fuel m f) = .div := by
+ have Hhdiv : ∀ m, n ≤ m → h y (fix_fuel m f) = .div := by
+ -- We use the fact that `g (fix_fuel n f) = .div`, combined with Hdiv
+ intro m Hle
+ have Hdivm := Hdiv m
+ -- Monotonicity of g
+ have Hffmono := fix_fuel_mono Hfmono Hle
+ have Hgmono := Hgmono Hffmono
+ -- We need to clear Hdiv because otherwise simp_all rewrites Hdivm with Hdiv
+ clear Hdiv
+ simp_all [result_rel]
+ intro m
+ -- TODO: we shouldn't need the excluded middle here because it is decidable
+ cases Classical.em (n ≤ m) <;> rename_i Hl
+ . apply Hhdiv; assumption
+ . simp at Hl
+ -- Make a case disjunction on `h y (fix_fuel m f)`: if it is not equal
+ -- to div, use the monotonicity of `h y`
+ have Hle : m ≤ n := by linarith
+ have Hffmono := fix_fuel_mono Hfmono Hle
+ have Hmono := Hhmono y Hffmono
+ simp [result_rel] at Hmono
+ cases Heq: h y (fix_fuel m f) <;> simp_all
+ -- We can now use the continuity hypothesis for h
+ apply Hhcont; assumption
-fix_f is f s.t.: f x = f (fix f) x ∧ ! g. g x = g (fix g) x ==> f <= g
+ -- TODO: move
+ def is_valid_p (f : (a → Result b) → a → Result b)
+ (body : (a → Result b) → Result b) : Prop :=
+ is_mono_p body ∧
+ (is_mono f → is_cont_p f body)
+
+ @[simp] theorem is_valid_p_same (f : (a → Result b) → a → Result b) (x : Result b) :
+ is_valid_p f (λ _ => x) := by
+ simp [is_valid_p]
+
+ @[simp] theorem is_valid_p_rec (f : (a → Result b) → a → Result b) (x : a) :
+ is_valid_p f (λ f => f x) := by
+ simp [is_valid_p]
+
+ -- Lean is good at unification: we can write a very general version
+ -- (in particular, it will manage to figure out `g` and `h` when we
+ -- apply the lemma)
+ theorem is_valid_p_bind
+ {{f : (a → Result b) → a → Result b}}
+ {{g : (a → Result b) → Result b}}
+ {{h : b → (a → Result b) → Result b}}
+ (Hgvalid : is_valid_p f g)
+ (Hhvalid : ∀ y, is_valid_p f (h y)) :
+ is_valid_p f (λ f => do let y ← g f; h y f) := by
+ let ⟨ Hgmono, Hgcont ⟩ := Hgvalid
+ -- TODO: conversion to move forall below and conjunction?
+ simp [is_valid_p, forall_and] at Hhvalid
+ have ⟨ Hhmono, Hhcont ⟩ := Hhvalid
+ simp [← imp_forall_iff] at Hhcont
+ simp [is_valid_p]; constructor
+ . -- Monotonicity
+ apply is_mono_p_bind <;> assumption
+ . -- Continuity
+ intro Hfmono
+ have Hgcont := Hgcont Hfmono
+ have Hhcont := Hhcont Hfmono
+ apply is_cont_p_bind <;> assumption
+
+ theorem is_valid_p_imp_is_valid {{body : (a → Result b) → a → Result b}}
+ (Hvalid : ∀ f x, is_valid_p f (λ f => body f x)) :
+ is_valid body := by
+ have Hmono : is_mono body := by
+ intro f h Hr x
+ have Hmono := Hvalid (λ _ _ => .div) x
+ have Hmono := Hmono.left
+ apply Hmono; assumption
+ have Hcont : is_cont body := by
+ intro x Hdiv
+ have Hcont := (Hvalid body x).right Hmono
+ simp [is_cont_p] at Hcont
+ apply Hcont
+ intro n
+ have Hdiv := Hdiv n
+ simp [fix_fuel] at Hdiv
+ simp [*]
+ apply is_valid.intro Hmono Hcont
--/
+ theorem is_valid_p_fix_fixed_eq {{body : (a → Result b) → a → Result b}}
+ (Hvalid : ∀ f x, is_valid_p f (λ f => body f x)) :
+ ∀ x, fix body x = body (fix body) x :=
+ fix_fixed_eq (is_valid_p_imp_is_valid Hvalid)
end Fix
@@ -420,7 +538,7 @@ namespace Ex1
:= by
have Hvalid : is_valid (@list_nth_body a) :=
is_valid.intro list_nth_body_mono list_nth_body_cont
- have Heq := fix_fixed_eq (@list_nth_body a) Hvalid
+ have Heq := fix_fixed_eq Hvalid
simp [Heq, list_nth]
conv => lhs; rw [list_nth_body]
simp [Heq]
@@ -444,117 +562,28 @@ namespace Ex2
let y ← f (tl, i - 1)
.ret y
- -- Lean is good at applying lemmas: we can write a very general version
- theorem is_mono_p_bind
- (g : (a → Result b) → Result b)
- (h : b → (a → Result b) → Result b) :
- is_mono_p g →
- (∀ y, is_mono_p (h y)) →
- is_mono_p (λ f => do let y ← g f; h y f) := by
- intro hg hh
- simp [is_mono_p]
- intro fg fh Hrgh
- simp [marrow_rel, result_rel]
- have hg := hg Hrgh; simp [result_rel] at hg
- cases heq0: g fg <;> simp_all
- rename_i y _
- have hh := hh y Hrgh; simp [result_rel] at hh
- simp_all
-
- -- Lean is good at applying lemmas: we can write a very general version
- theorem is_cont_p_bind
- (f : (a → Result b) → a → Result b)
- (g : (a → Result b) → Result b)
- (h : b → (a → Result b) → Result b) :
- is_cont_p f (λ f => g f) →
- (∀ y, is_cont_p f (h y)) →
- is_cont_p f (λ f => do let y ← g f; h y f) := by
- intro Hg Hh
- simp [is_cont_p]
- intro Hdiv
- -- Case on `g (fix... f)`: is there an n s.t. it terminates?
- cases Classical.em (∀ n, g (fix_fuel n f) = .div) <;> rename_i Hn
- . -- Case 1: g diverges
- have Hg := Hg Hn
- simp_all
- . -- Case 2: g doesn't diverge
- simp at Hn
- let ⟨ n, Hn ⟩ := Hn
- have Hdivn := Hdiv n
- -- TODO: we need monotonicity of g and f
- have Hgmono : is_mono_p g := by sorry
- have Hfmono : is_mono f := by sorry
- have Hffmono := fix_fuel_fix_mono Hfmono n
- have Hgeq := Hgmono Hffmono
- simp [result_rel] at Hgeq
- cases Heq: g (fix_fuel n f) <;> rename_i y <;> simp_all
- -- Remains the .ret case
- -- TODO: we need monotonicity of h?
- have Hhmono : is_mono_p (h y) := by sorry
- -- Use Hdiv to prove that: ∀ n, h y (fix_fuel n f) = div
- -- We do this in two steps: first we prove it for m ≥ n
- have Hhdiv: ∀ m, h y (fix_fuel m f) = .div := by
- have Hhdiv : ∀ m, n ≤ m → h y (fix_fuel m f) = .div := by
- -- We use the fact that `g (fix_fuel n f) = .div`, combined with Hdiv
- intro m Hle
- have Hdivm := Hdiv m
- -- Monotonicity of g
- have Hffmono := fix_fuel_mono Hfmono Hle
- have Hgmono := Hgmono Hffmono
- -- We need to clear Hdiv because otherwise simp_all rewrites Hdivm with Hdiv
- clear Hdiv
- simp_all [result_rel]
- intro m
- -- TODO: we shouldn't need the excluded middle here because it is decidable
- cases Classical.em (n ≤ m) <;> rename_i Hl
- . apply Hhdiv; assumption
- . simp at Hl
- -- Make a case disjunction on `h y (fix_fuel m f)`: if it is not equal
- -- to div, use the monotonicity of `h y`
- have Hle : m ≤ n := by linarith
- have Hffmono := fix_fuel_mono Hfmono Hle
- have Hmono := Hhmono Hffmono
- simp [result_rel] at Hmono
- cases Heq: h y (fix_fuel m f) <;> simp_all
- -- We can now use the continuity hypothesis for h
- apply Hh; assumption
-
-
- -- TODO: what is the name of this theorem?
- -- theorem eta_app_eq (x : a) (f : a → b) : f x = (λ x => f x) x := by simp
- -- theorem eta_eq (x : a) (f : a → b) : (λ x => f x) = f := by simp
-
- --set_option pp.funBinderTypes true
- --set_option pp.explicit true
- --set_option pp.notation false
-
- theorem list_nth_body_mono : ∀ x, is_mono_p (λ f => @list_nth_body a f x) := by
- intro x
- simp [list_nth_body]
- split <;> simp
- split <;> simp
- apply is_mono_p_bind <;> intros <;> simp
-
- theorem list_nth_body_cont2: ∀ f x, is_cont_p f (λ f => @list_nth_body a f x) := by
+ theorem list_nth_body_valid: ∀ f x, is_valid_p f (λ f => @list_nth_body a f x) := by
intro f x
simp [list_nth_body]
split <;> simp
split <;> simp
+ apply is_valid_p_bind <;> intros <;> simp_all
noncomputable
def list_nth (ls : List a) (i : Int) : Result a := fix list_nth_body (ls, i)
theorem list_nth_eq (ls : List a) (i : Int) :
- list_nth ls i =
- match ls with
- | [] => .fail .panic
- | hd :: tl =>
- if i = 0 then .ret hd
- else list_nth tl (i - 1)
+ (list_nth ls i =
+ match ls with
+ | [] => .fail .panic
+ | hd :: tl =>
+ if i = 0 then .ret hd
+ else
+ do
+ let y ← list_nth tl (i - 1)
+ .ret y)
:= by
- have Hvalid : is_valid (@list_nth_body a) :=
- is_valid.intro list_nth_body_mono list_nth_body_cont
- have Heq := fix_fixed_eq (@list_nth_body a) Hvalid
+ have Heq := is_valid_p_fix_fixed_eq (@list_nth_body_valid a)
simp [Heq, list_nth]
conv => lhs; rw [list_nth_body]
simp [Heq]
@@ -731,7 +760,7 @@ namespace Ex3
:= by
have Hvalid : is_valid (@id_body a) :=
is_valid.intro id_body_mono id_body_cont
- have Heq := fix_fixed_eq (@id_body a) Hvalid
+ have Heq := fix_fixed_eq Hvalid
conv => lhs; rw [id, Heq, id_body]
end Ex3