summaryrefslogtreecommitdiff
path: root/backends
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--backends/hol4/ilistScript.sml82
-rw-r--r--backends/hol4/ilistTheory.sig63
-rw-r--r--backends/hol4/primitivesArithScript.sml55
-rw-r--r--backends/hol4/primitivesArithTheory.sig9
-rw-r--r--backends/hol4/primitivesScript.sml44
-rw-r--r--backends/hol4/primitivesTheory.sig291
6 files changed, 333 insertions, 211 deletions
diff --git a/backends/hol4/ilistScript.sml b/backends/hol4/ilistScript.sml
new file mode 100644
index 00000000..3e17dcc8
--- /dev/null
+++ b/backends/hol4/ilistScript.sml
@@ -0,0 +1,82 @@
+open HolKernel boolLib bossLib Parse
+open boolTheory arithmeticTheory integerTheory intLib listTheory stringTheory
+
+open primitivesArithTheory primitivesBaseTacLib
+
+(* The following theory contains alternative definitions of functions operating
+ on lists like “EL” or “LENGTH”, but this time using integers rather than
+ natural numbers.
+
+ By using integers, we make sure we don't have to convert back and forth
+ between integers and natural numbers, which is extremely cumbersome in
+ the proofs.
+ *)
+
+val _ = new_theory "ilist"
+
+val len_def = Define ‘
+ len [] : int = 0 /\
+ len (x :: ls) : int = 1 + len ls
+’
+
+(* Return the ith element of a list.
+
+ Remark: we initially added the following case, so that we wouldn't need the
+ premise [i < len ls] is [index_eq_EL]:
+ “index (i : int) [] = EL (Num i) []”
+ *)
+val index_def = Define ‘
+ index (i : int) [] = EL (Num i) [] ∧
+ index (i : int) (x :: ls) = if i = 0 then x else (if 0 < i then index (i - 1) ls else ARB)
+’
+
+val update_def = Define ‘
+ update ([] : 'a list) (i : int) (y : 'a) : 'a list = [] ∧
+
+ update (x :: ls) (i : int) y =
+ if i = 0 then y :: ls else (if 0 < i then x :: update ls (i - 1) y else x :: ls)
+’
+
+Theorem len_eq_LENGTH:
+ ∀ls. len ls = &(LENGTH ls)
+Proof
+ Induct_on ‘ls’ >> fs [len_def] >> cooper_tac
+QED
+
+Theorem index_eq_EL:
+ ∀(i: int) ls.
+ 0 ≤ i ⇒
+ i < len ls ⇒
+ index i ls = EL (Num i) ls
+Proof
+ Induct_on ‘ls’ >> rpt strip_tac >> fs [len_def, index_def] >>
+ Cases_on ‘i = 0’ >> fs [] >>
+ (* TODO: automate *)
+ sg ‘0 < i’ >- cooper_tac >> fs [] >>
+ Cases_on ‘Num i’ >- (exfalso >> cooper_tac) >> fs [] >>
+ last_assum (qspec_assume ‘i - 1’) >>
+ pop_assum sg_premise_tac >- cooper_tac >>
+ sg ‘n = Num (i - 1)’ >- cooper_tac >> fs [] >>
+ last_assum irule >> cooper_tac
+QED
+
+Theorem len_append:
+ ∀l1 l2. len (l1 ++ l2) = len l1 + len l2
+Proof
+ rw [len_eq_LENGTH] >> cooper_tac
+QED
+
+Theorem append_len_eq:
+ (∀l1 l2 l1' l2'.
+ len l1 = len l1' ⇒
+ (l1 ⧺ l2 = l1' ⧺ l2' ⇔ l1 = l1' ∧ l2 = l2')) ∧
+ (∀l1 l2 l1' l2'.
+ len l2 = len l2' ⇒
+ (l1 ⧺ l2 = l1' ⧺ l2' ⇔ l1 = l1' ∧ l2 = l2'))
+Proof
+ rw [len_eq_LENGTH] >> fs [APPEND_11_LENGTH]
+QED
+
+(* TODO: prove more theorems, and add rewriting theorems *)
+
+val _ = export_theory ()
diff --git a/backends/hol4/ilistTheory.sig b/backends/hol4/ilistTheory.sig
new file mode 100644
index 00000000..9612f063
--- /dev/null
+++ b/backends/hol4/ilistTheory.sig
@@ -0,0 +1,63 @@
+signature ilistTheory =
+sig
+ type thm = Thm.thm
+
+ (* Definitions *)
+ val index_def : thm
+ val len_def : thm
+ val update_def : thm
+
+ (* Theorems *)
+ val append_len_eq : thm
+ val index_eq_EL : thm
+ val len_append : thm
+ val len_eq_LENGTH : thm
+
+ val ilist_grammars : type_grammar.grammar * term_grammar.grammar
+(*
+ [primitivesArith] Parent theory of "ilist"
+
+ [string] Parent theory of "ilist"
+
+ [index_def] Definition
+
+ ⊢ (∀i. index i [] = EL (Num i) []) ∧
+ ∀i x ls.
+ index i (x::ls) =
+ if i = 0 then x else if 0 < i then index (i − 1) ls else ARB
+
+ [len_def] Definition
+
+ ⊢ len [] = 0 ∧ ∀x ls. len (x::ls) = 1 + len ls
+
+ [update_def] Definition
+
+ ⊢ (∀i y. update [] i y = []) ∧
+ ∀x ls i y.
+ update (x::ls) i y =
+ if i = 0 then y::ls
+ else if 0 < i then x::update ls (i − 1) y
+ else x::ls
+
+ [append_len_eq] Theorem
+
+ ⊢ (∀l1 l2 l1' l2'.
+ len l1 = len l1' ⇒ (l1 ⧺ l2 = l1' ⧺ l2' ⇔ l1 = l1' ∧ l2 = l2')) ∧
+ ∀l1 l2 l1' l2'.
+ len l2 = len l2' ⇒ (l1 ⧺ l2 = l1' ⧺ l2' ⇔ l1 = l1' ∧ l2 = l2')
+
+ [index_eq_EL] Theorem
+
+ ⊢ ∀i ls. 0 ≤ i ⇒ i < len ls ⇒ index i ls = EL (Num i) ls
+
+ [len_append] Theorem
+
+ ⊢ ∀l1 l2. len (l1 ⧺ l2) = len l1 + len l2
+
+ [len_eq_LENGTH] Theorem
+
+ ⊢ ∀ls. len ls = &LENGTH ls
+
+
+*)
+end
diff --git a/backends/hol4/primitivesArithScript.sml b/backends/hol4/primitivesArithScript.sml
index 79d94698..eb2548fd 100644
--- a/backends/hol4/primitivesArithScript.sml
+++ b/backends/hol4/primitivesArithScript.sml
@@ -6,8 +6,27 @@ val _ = new_theory "primitivesArith"
(* TODO: we need a better library of lemmas about arithmetic *)
-(* We generate and save an induction theorem for positive integers *)
-Theorem int_induction:
+val not_le_eq_gt = store_thm("not_le_eq_gt", “!(x y: int). ~(x <= y) <=> x > y”, cooper_tac)
+val not_lt_eq_ge = store_thm("not_lt_eq_ge", “!(x y: int). ~(x < y) <=> x >= y”, cooper_tac)
+(* TODO: add gsymed versions of those as rewriting theorems by default (we only want to
+ manipulate ‘<’ and ‘≤’) *)
+val not_ge_eq_lt = store_thm("not_ge_eq_lt", “!(x y: int). ~(x >= y) <=> x < y”, cooper_tac)
+val not_gt_eq_le = store_thm("not_gt_eq_le", “!(x y: int). ~(x > y) <=> x <= y”, cooper_tac)
+
+val ge_eq_le = store_thm("ge_eq_le", “!(x y : int). x >= y <=> y <= x”, cooper_tac)
+val le_eq_ge = store_thm("le_eq_ge", “!(x y : int). x <= y <=> y >= x”, cooper_tac)
+val gt_eq_lt = store_thm("gt_eq_lt", “!(x y : int). x > y <=> y < x”, cooper_tac)
+val lt_eq_gt = store_thm("lt_eq_gt", “!(x y : int). x < y <=> y > x”, cooper_tac)
+
+(*
+ * We generate and save an induction theorem for positive integers
+ *)
+
+(* This is the induction theorem we want.
+
+ Unfortunately, it often can't be applied by [Induct_on].
+ *)
+Theorem int_induction_ideal:
!(P : int -> bool). P 0 /\ (!i. 0 <= i /\ P i ==> P (i+1)) ==> !i. 0 <= i ==> P i
Proof
ntac 4 strip_tac >>
@@ -21,20 +40,26 @@ Proof
rw [] >> try_tac cooper_tac
QED
-val _ = TypeBase.update_induction int_induction
-
-(* TODO: add those as rewriting theorems by default *)
-val not_le_eq_gt = store_thm("not_le_eq_gt", “!(x y: int). ~(x <= y) <=> x > y”, cooper_tac)
-val not_lt_eq_ge = store_thm("not_lt_eq_ge", “!(x y: int). ~(x < y) <=> x >= y”, cooper_tac)
-val not_ge_eq_lt = store_thm("not_ge_eq_lt", “!(x y: int). ~(x >= y) <=> x < y”, cooper_tac)
-val not_gt_eq_le = store_thm("not_gt_eq_le", “!(x y: int). ~(x > y) <=> x <= y”, cooper_tac)
+(* This induction theorem works well with [Induct_on] *)
+Theorem int_induction:
+ !(P : int -> bool). (∀i. i < 0 ⇒ P i) ∧ P 0 /\ (!i. P i ==> P (i+1)) ==> !i. P i
+Proof
+ ntac 3 strip_tac >>
+ Cases_on ‘i < 0’ >- (last_assum irule >> fs []) >>
+ fs [not_lt_eq_ge] >>
+ Induct_on ‘Num i’ >> rpt strip_tac >> pop_last_assum ignore_tac
+ >-(sg ‘i = 0’ >- cooper_tac >> fs []) >>
+ last_assum (qspec_assume ‘i-1’) >>
+ fs [] >> pop_assum irule >>
+ rw [] >> try_tac cooper_tac >>
+ first_assum (qspec_assume ‘i - 1’) >>
+ pop_assum irule >>
+ rw [] >> try_tac cooper_tac
+QED
-val ge_eq_le = store_thm("ge_eq_le", “!(x y : int). x >= y <=> y <= x”, cooper_tac)
-val le_eq_ge = store_thm("le_eq_ge", “!(x y : int). x <= y <=> y >= x”, cooper_tac)
-val gt_eq_lt = store_thm("gt_eq_lt", “!(x y : int). x > y <=> y < x”, cooper_tac)
-val lt_eq_gt = store_thm("lt_eq_gt", “!(x y : int). x < y <=> y > x”, cooper_tac)
+val _ = TypeBase.update_induction int_induction
-Theorem int_of_num:
+Theorem int_of_num_id:
∀i. 0 ≤ i ⇒ &Num i = i
Proof
fs [INT_OF_NUM]
@@ -64,7 +89,7 @@ Proof
imp_res_tac int_of_num >>
(* Associativity of & *)
pure_rewrite_tac [int_add] >>
- fs []
+ cooper_tac
QED
Theorem num_sub_1_eq:
diff --git a/backends/hol4/primitivesArithTheory.sig b/backends/hol4/primitivesArithTheory.sig
index 73a6cf20..b2172b7c 100644
--- a/backends/hol4/primitivesArithTheory.sig
+++ b/backends/hol4/primitivesArithTheory.sig
@@ -7,7 +7,8 @@ sig
val gt_eq_lt : thm
val int_add : thm
val int_induction : thm
- val int_of_num : thm
+ val int_induction_ideal : thm
+ val int_of_num_id : thm
val int_of_num_inj : thm
val le_eq_ge : thm
val lt_eq_gt : thm
@@ -44,9 +45,13 @@ sig
[int_induction] Theorem
+ ⊢ ∀P. (∀i. i < 0 ⇒ P i) ∧ P 0 ∧ (∀i. P i ⇒ P (i + 1)) ⇒ ∀i. P i
+
+ [int_induction_ideal] Theorem
+
⊢ ∀P. P 0 ∧ (∀i. 0 ≤ i ∧ P i ⇒ P (i + 1)) ⇒ ∀i. 0 ≤ i ⇒ P i
- [int_of_num] Theorem
+ [int_of_num_id] Theorem
⊢ ∀i. 0 ≤ i ⇒ &Num i = i
diff --git a/backends/hol4/primitivesScript.sml b/backends/hol4/primitivesScript.sml
index b1dd770b..b7bc978f 100644
--- a/backends/hol4/primitivesScript.sml
+++ b/backends/hol4/primitivesScript.sml
@@ -1,7 +1,7 @@
open HolKernel boolLib bossLib Parse
open boolTheory arithmeticTheory integerTheory intLib listTheory stringTheory
-open primitivesArithTheory primitivesBaseTacLib
+open primitivesArithTheory primitivesBaseTacLib ilistTheory
val primitives_theory_name = "primitives"
val _ = new_theory primitives_theory_name
@@ -1169,12 +1169,11 @@ val _ = new_constant ("vec_to_list", “:'a vec -> 'a list”)
(* TODO: we could also make ‘mk_vec’ return ‘'a vec’ (no result) *)
val _ = new_constant ("mk_vec", “:'a list -> 'a vec result”)
-
val vec_to_list_num_bounds =
new_axiom ("vec_to_list_num_bounds",
- “!v. let l = LENGTH (vec_to_list v) in
- (0:num) <= l /\ l <= Num usize_max”)
+ “!v. (0:num) <= LENGTH (vec_to_list v) /\ LENGTH (vec_to_list v) <= Num usize_max”)
+(*
Theorem vec_to_list_int_bounds:
!v. 0 <= int_of_num (LENGTH (vec_to_list v)) /\ int_of_num (LENGTH (vec_to_list v)) <= usize_max
Proof
@@ -1252,13 +1251,16 @@ Proof
Induct_on ‘ls’ >> Cases_on ‘i’ >> rw [update_def] >>
Cases_on ‘j’ >> fs []
QED
+*)
+(*
(* TODO: this is the base definition for index. Shall we remove the ‘return’ type? *)
val vec_index_def = Define ‘
vec_index i v =
if usize_to_int i ≤ usize_to_int (vec_len v)
then Return (EL (Num (usize_to_int i)) (vec_to_list v))
else Fail Failure’
+*)
(* TODO: shortcut for qspec_then ... ASSUME_TAC *)
(* TODO: use cooper_tac everywhere *)
@@ -1300,6 +1302,7 @@ QED
&n < &m
*)
+(*
val vec_insert_back_def = Define ‘
vec_insert_back (v : 'a vec) (i : usize) (x : 'a) = mk_vec (update (vec_to_list v) (Num (usize_to_int i)) x)’
@@ -1326,7 +1329,7 @@ Proof
sg ‘Num (usize_to_int i) < LENGTH (vec_to_list v)’ >-(
(* TODO: automate *)
pure_once_rewrite_tac [gsym INT_LT] >>
- dep_pure_once_rewrite_tac [primitivesArithTheory.int_of_num] >>
+ dep_pure_once_rewrite_tac [int_of_num_id] >>
qspec_assume ‘i’ usize_to_int_bounds >> fs []
) >>
fs [] >>
@@ -1336,33 +1339,16 @@ Proof
rw [] >-(
(* TODO: automate *)
irule int_of_num_neq_inj >>
- dep_pure_rewrite_tac [primitivesArithTheory.int_of_num] >>
+ dep_pure_rewrite_tac [int_of_num_id] >>
rw [usize_to_int_bounds] >>
metis_tac [int_to_usize_usize_to_int]
) >>
(* TODO: automate *)
pure_once_rewrite_tac [gsym INT_LT] >>
- dep_pure_once_rewrite_tac [primitivesArithTheory.int_of_num] >>
+ dep_pure_once_rewrite_tac [int_of_num_id] >>
qspec_assume ‘j’ usize_to_int_bounds >> fs []
QED
-
-
-(* Small experiment: trying to redefine common functions with integers instead of nums *)
-val index_def = Define ‘
- index (i : int) (x :: ls) = if i = 0 then x else (if 0 < i then index (i - 1) ls else ARB)
-’
-
-val len_def = Define ‘
- len [] : int = 0 /\
- len (x :: ls) : int = 1 + len ls
-’
-
-val update_def = Define ‘
- update ([] : 'a list) (i : int) (y : 'a) : 'a list = [] ∧
-
- update (x :: ls) (i : int) y =
- if i = 0 then y :: ls else (if 0 < i then x :: update ls (i - 1) y else x :: ls)
-’
+*)
Theorem update_len:
∀ls i y. len (update ls i y) = len ls
@@ -1417,8 +1403,11 @@ QED
Theorem vec_to_list_int_bounds:
!v. 0 <= len (vec_to_list v) /\ len (vec_to_list v) <= usize_max
Proof
- (* TODO *)
- cheat
+ gen_tac >>
+ qspec_assume ‘v’ vec_to_list_num_bounds >>
+ fs [len_eq_LENGTH] >>
+ assume_tac usize_bounds >> fs [u16_max_def] >>
+ cooper_tac
QED
val vec_len_def = Define ‘vec_len v = int_to_usize (len (vec_to_list v))’
@@ -1438,7 +1427,6 @@ val vec_index_def = Define ‘
then Return (index (usize_to_int i) (vec_to_list v))
else Fail Failure’
-(* TODO: *)
val mk_vec_spec = new_axiom ("mk_vec_spec",
“∀l. len l ≤ usize_max ⇒ ∃v. mk_vec l = Return v ∧ vec_to_list v = l”)
diff --git a/backends/hol4/primitivesTheory.sig b/backends/hol4/primitivesTheory.sig
index 92f02af8..23846737 100644
--- a/backends/hol4/primitivesTheory.sig
+++ b/backends/hol4/primitivesTheory.sig
@@ -85,14 +85,12 @@ sig
val i8_mul_def : thm
val i8_rem_def : thm
val i8_sub_def : thm
- val index_def : thm
val int_rem_def : thm
val isize_add_def : thm
val isize_div_def : thm
val isize_mul_def : thm
val isize_rem_def : thm
val isize_sub_def : thm
- val len_def : thm
val massert_def : thm
val mem_replace_back_def : thm
val mem_replace_fwd_def : thm
@@ -142,7 +140,6 @@ sig
val u8_mul_def : thm
val u8_rem_def : thm
val u8_sub_def : thm
- val update_def : thm
val usize_add_def : thm
val usize_div_def : thm
val usize_mul_def : thm
@@ -151,8 +148,6 @@ sig
val vec_index_def : thm
val vec_insert_back_def : thm
val vec_len_def : thm
- val vec_new_def : thm
- val vec_push_back_def : thm
(* Theorems *)
val datatype_error : thm
@@ -237,7 +232,6 @@ sig
val u8_mul_eq : thm
val u8_rem_eq : thm
val u8_sub_eq : thm
- val update_ind : thm
val update_len : thm
val update_spec : thm
val usize_add_eq : thm
@@ -251,209 +245,208 @@ sig
val primitives_grammars : type_grammar.grammar * term_grammar.grammar
(*
- [primitivesArith] Parent theory of "primitives"
+ [ilist] Parent theory of "primitives"
- [string] Parent theory of "primitives"
+ [isize_bounds] Axiom
+
+ [oracles: ] [axioms: isize_bounds] []
+ ⊢ isize_min ≤ i16_min ∧ isize_max ≥ i16_max
- [mk_vec_spec] Axiom
+ [usize_bounds] Axiom
- [oracles: ] [axioms: mk_vec_spec] []
- ⊢ ∀l. len l ≤ usize_max ⇒ ∃v. mk_vec l = Return v ∧ vec_to_list v = l
+ [oracles: ] [axioms: usize_bounds] [] ⊢ usize_max ≥ u16_max
- [vec_to_list_num_bounds] Axiom
+ [isize_to_int_bounds] Axiom
- [oracles: ] [axioms: vec_to_list_num_bounds] []
- ⊢ ∀v. (let l = LENGTH (vec_to_list v) in 0 ≤ l ∧ l ≤ Num usize_max)
+ [oracles: ] [axioms: isize_to_int_bounds] []
+ ⊢ ∀n. isize_min ≤ isize_to_int n ∧ isize_to_int n ≤ isize_max
- [int_to_usize_usize_to_int] Axiom
+ [i8_to_int_bounds] Axiom
- [oracles: ] [axioms: int_to_usize_usize_to_int] []
- ⊢ ∀i. int_to_usize (usize_to_int i) = i
+ [oracles: ] [axioms: i8_to_int_bounds] []
+ ⊢ ∀n. i8_min ≤ i8_to_int n ∧ i8_to_int n ≤ i8_max
- [int_to_u128_u128_to_int] Axiom
+ [i16_to_int_bounds] Axiom
- [oracles: ] [axioms: int_to_u128_u128_to_int] []
- ⊢ ∀i. int_to_u128 (u128_to_int i) = i
+ [oracles: ] [axioms: i16_to_int_bounds] []
+ ⊢ ∀n. i16_min ≤ i16_to_int n ∧ i16_to_int n ≤ i16_max
- [int_to_u64_u64_to_int] Axiom
+ [i32_to_int_bounds] Axiom
- [oracles: ] [axioms: int_to_u64_u64_to_int] []
- ⊢ ∀i. int_to_u64 (u64_to_int i) = i
+ [oracles: ] [axioms: i32_to_int_bounds] []
+ ⊢ ∀n. i32_min ≤ i32_to_int n ∧ i32_to_int n ≤ i32_max
- [int_to_u32_u32_to_int] Axiom
+ [i64_to_int_bounds] Axiom
- [oracles: ] [axioms: int_to_u32_u32_to_int] []
- ⊢ ∀i. int_to_u32 (u32_to_int i) = i
+ [oracles: ] [axioms: i64_to_int_bounds] []
+ ⊢ ∀n. i64_min ≤ i64_to_int n ∧ i64_to_int n ≤ i64_max
- [int_to_u16_u16_to_int] Axiom
+ [i128_to_int_bounds] Axiom
- [oracles: ] [axioms: int_to_u16_u16_to_int] []
- ⊢ ∀i. int_to_u16 (u16_to_int i) = i
+ [oracles: ] [axioms: i128_to_int_bounds] []
+ ⊢ ∀n. i128_min ≤ i128_to_int n ∧ i128_to_int n ≤ i128_max
- [int_to_u8_u8_to_int] Axiom
+ [usize_to_int_bounds] Axiom
- [oracles: ] [axioms: int_to_u8_u8_to_int] []
- ⊢ ∀i. int_to_u8 (u8_to_int i) = i
+ [oracles: ] [axioms: usize_to_int_bounds] []
+ ⊢ ∀n. 0 ≤ usize_to_int n ∧ usize_to_int n ≤ usize_max
- [int_to_isize_isize_to_int] Axiom
+ [u8_to_int_bounds] Axiom
- [oracles: ] [axioms: int_to_isize_isize_to_int] []
- ⊢ ∀i. int_to_isize (isize_to_int i) = i
+ [oracles: ] [axioms: u8_to_int_bounds] []
+ ⊢ ∀n. 0 ≤ u8_to_int n ∧ u8_to_int n ≤ u8_max
- [int_to_i128_i128_to_int] Axiom
+ [u16_to_int_bounds] Axiom
- [oracles: ] [axioms: int_to_i128_i128_to_int] []
- ⊢ ∀i. int_to_i128 (i128_to_int i) = i
+ [oracles: ] [axioms: u16_to_int_bounds] []
+ ⊢ ∀n. 0 ≤ u16_to_int n ∧ u16_to_int n ≤ u16_max
- [int_to_i64_i64_to_int] Axiom
+ [u32_to_int_bounds] Axiom
- [oracles: ] [axioms: int_to_i64_i64_to_int] []
- ⊢ ∀i. int_to_i64 (i64_to_int i) = i
+ [oracles: ] [axioms: u32_to_int_bounds] []
+ ⊢ ∀n. 0 ≤ u32_to_int n ∧ u32_to_int n ≤ u32_max
- [int_to_i32_i32_to_int] Axiom
+ [u64_to_int_bounds] Axiom
- [oracles: ] [axioms: int_to_i32_i32_to_int] []
- ⊢ ∀i. int_to_i32 (i32_to_int i) = i
+ [oracles: ] [axioms: u64_to_int_bounds] []
+ ⊢ ∀n. 0 ≤ u64_to_int n ∧ u64_to_int n ≤ u64_max
- [int_to_i16_i16_to_int] Axiom
+ [u128_to_int_bounds] Axiom
- [oracles: ] [axioms: int_to_i16_i16_to_int] []
- ⊢ ∀i. int_to_i16 (i16_to_int i) = i
+ [oracles: ] [axioms: u128_to_int_bounds] []
+ ⊢ ∀n. 0 ≤ u128_to_int n ∧ u128_to_int n ≤ u128_max
- [int_to_i8_i8_to_int] Axiom
+ [isize_to_int_int_to_isize] Axiom
- [oracles: ] [axioms: int_to_i8_i8_to_int] []
- ⊢ ∀i. int_to_i8 (i8_to_int i) = i
+ [oracles: ] [axioms: isize_to_int_int_to_isize] []
+ ⊢ ∀n. isize_min ≤ n ∧ n ≤ isize_max ⇒
+ isize_to_int (int_to_isize n) = n
- [u128_to_int_int_to_u128] Axiom
+ [i8_to_int_int_to_i8] Axiom
- [oracles: ] [axioms: u128_to_int_int_to_u128] []
- ⊢ ∀n. 0 ≤ n ∧ n ≤ u128_max ⇒ u128_to_int (int_to_u128 n) = n
+ [oracles: ] [axioms: i8_to_int_int_to_i8] []
+ ⊢ ∀n. i8_min ≤ n ∧ n ≤ i8_max ⇒ i8_to_int (int_to_i8 n) = n
- [u64_to_int_int_to_u64] Axiom
+ [i16_to_int_int_to_i16] Axiom
- [oracles: ] [axioms: u64_to_int_int_to_u64] []
- ⊢ ∀n. 0 ≤ n ∧ n ≤ u64_max ⇒ u64_to_int (int_to_u64 n) = n
+ [oracles: ] [axioms: i16_to_int_int_to_i16] []
+ ⊢ ∀n. i16_min ≤ n ∧ n ≤ i16_max ⇒ i16_to_int (int_to_i16 n) = n
- [u32_to_int_int_to_u32] Axiom
+ [i32_to_int_int_to_i32] Axiom
- [oracles: ] [axioms: u32_to_int_int_to_u32] []
- ⊢ ∀n. 0 ≤ n ∧ n ≤ u32_max ⇒ u32_to_int (int_to_u32 n) = n
+ [oracles: ] [axioms: i32_to_int_int_to_i32] []
+ ⊢ ∀n. i32_min ≤ n ∧ n ≤ i32_max ⇒ i32_to_int (int_to_i32 n) = n
- [u16_to_int_int_to_u16] Axiom
+ [i64_to_int_int_to_i64] Axiom
- [oracles: ] [axioms: u16_to_int_int_to_u16] []
- ⊢ ∀n. 0 ≤ n ∧ n ≤ u16_max ⇒ u16_to_int (int_to_u16 n) = n
+ [oracles: ] [axioms: i64_to_int_int_to_i64] []
+ ⊢ ∀n. i64_min ≤ n ∧ n ≤ i64_max ⇒ i64_to_int (int_to_i64 n) = n
- [u8_to_int_int_to_u8] Axiom
+ [i128_to_int_int_to_i128] Axiom
- [oracles: ] [axioms: u8_to_int_int_to_u8] []
- ⊢ ∀n. 0 ≤ n ∧ n ≤ u8_max ⇒ u8_to_int (int_to_u8 n) = n
+ [oracles: ] [axioms: i128_to_int_int_to_i128] []
+ ⊢ ∀n. i128_min ≤ n ∧ n ≤ i128_max ⇒ i128_to_int (int_to_i128 n) = n
[usize_to_int_int_to_usize] Axiom
[oracles: ] [axioms: usize_to_int_int_to_usize] []
⊢ ∀n. 0 ≤ n ∧ n ≤ usize_max ⇒ usize_to_int (int_to_usize n) = n
- [i128_to_int_int_to_i128] Axiom
-
- [oracles: ] [axioms: i128_to_int_int_to_i128] []
- ⊢ ∀n. i128_min ≤ n ∧ n ≤ i128_max ⇒ i128_to_int (int_to_i128 n) = n
-
- [i64_to_int_int_to_i64] Axiom
+ [u8_to_int_int_to_u8] Axiom
- [oracles: ] [axioms: i64_to_int_int_to_i64] []
- ⊢ ∀n. i64_min ≤ n ∧ n ≤ i64_max ⇒ i64_to_int (int_to_i64 n) = n
+ [oracles: ] [axioms: u8_to_int_int_to_u8] []
+ ⊢ ∀n. 0 ≤ n ∧ n ≤ u8_max ⇒ u8_to_int (int_to_u8 n) = n
- [i32_to_int_int_to_i32] Axiom
+ [u16_to_int_int_to_u16] Axiom
- [oracles: ] [axioms: i32_to_int_int_to_i32] []
- ⊢ ∀n. i32_min ≤ n ∧ n ≤ i32_max ⇒ i32_to_int (int_to_i32 n) = n
+ [oracles: ] [axioms: u16_to_int_int_to_u16] []
+ ⊢ ∀n. 0 ≤ n ∧ n ≤ u16_max ⇒ u16_to_int (int_to_u16 n) = n
- [i16_to_int_int_to_i16] Axiom
+ [u32_to_int_int_to_u32] Axiom
- [oracles: ] [axioms: i16_to_int_int_to_i16] []
- ⊢ ∀n. i16_min ≤ n ∧ n ≤ i16_max ⇒ i16_to_int (int_to_i16 n) = n
+ [oracles: ] [axioms: u32_to_int_int_to_u32] []
+ ⊢ ∀n. 0 ≤ n ∧ n ≤ u32_max ⇒ u32_to_int (int_to_u32 n) = n
- [i8_to_int_int_to_i8] Axiom
+ [u64_to_int_int_to_u64] Axiom
- [oracles: ] [axioms: i8_to_int_int_to_i8] []
- ⊢ ∀n. i8_min ≤ n ∧ n ≤ i8_max ⇒ i8_to_int (int_to_i8 n) = n
+ [oracles: ] [axioms: u64_to_int_int_to_u64] []
+ ⊢ ∀n. 0 ≤ n ∧ n ≤ u64_max ⇒ u64_to_int (int_to_u64 n) = n
- [isize_to_int_int_to_isize] Axiom
+ [u128_to_int_int_to_u128] Axiom
- [oracles: ] [axioms: isize_to_int_int_to_isize] []
- ⊢ ∀n. isize_min ≤ n ∧ n ≤ isize_max ⇒
- isize_to_int (int_to_isize n) = n
+ [oracles: ] [axioms: u128_to_int_int_to_u128] []
+ ⊢ ∀n. 0 ≤ n ∧ n ≤ u128_max ⇒ u128_to_int (int_to_u128 n) = n
- [u128_to_int_bounds] Axiom
+ [int_to_i8_i8_to_int] Axiom
- [oracles: ] [axioms: u128_to_int_bounds] []
- ⊢ ∀n. 0 ≤ u128_to_int n ∧ u128_to_int n ≤ u128_max
+ [oracles: ] [axioms: int_to_i8_i8_to_int] []
+ ⊢ ∀i. int_to_i8 (i8_to_int i) = i
- [u64_to_int_bounds] Axiom
+ [int_to_i16_i16_to_int] Axiom
- [oracles: ] [axioms: u64_to_int_bounds] []
- ⊢ ∀n. 0 ≤ u64_to_int n ∧ u64_to_int n ≤ u64_max
+ [oracles: ] [axioms: int_to_i16_i16_to_int] []
+ ⊢ ∀i. int_to_i16 (i16_to_int i) = i
- [u32_to_int_bounds] Axiom
+ [int_to_i32_i32_to_int] Axiom
- [oracles: ] [axioms: u32_to_int_bounds] []
- ⊢ ∀n. 0 ≤ u32_to_int n ∧ u32_to_int n ≤ u32_max
+ [oracles: ] [axioms: int_to_i32_i32_to_int] []
+ ⊢ ∀i. int_to_i32 (i32_to_int i) = i
- [u16_to_int_bounds] Axiom
+ [int_to_i64_i64_to_int] Axiom
- [oracles: ] [axioms: u16_to_int_bounds] []
- ⊢ ∀n. 0 ≤ u16_to_int n ∧ u16_to_int n ≤ u16_max
+ [oracles: ] [axioms: int_to_i64_i64_to_int] []
+ ⊢ ∀i. int_to_i64 (i64_to_int i) = i
- [u8_to_int_bounds] Axiom
+ [int_to_i128_i128_to_int] Axiom
- [oracles: ] [axioms: u8_to_int_bounds] []
- ⊢ ∀n. 0 ≤ u8_to_int n ∧ u8_to_int n ≤ u8_max
+ [oracles: ] [axioms: int_to_i128_i128_to_int] []
+ ⊢ ∀i. int_to_i128 (i128_to_int i) = i
- [usize_to_int_bounds] Axiom
+ [int_to_isize_isize_to_int] Axiom
- [oracles: ] [axioms: usize_to_int_bounds] []
- ⊢ ∀n. 0 ≤ usize_to_int n ∧ usize_to_int n ≤ usize_max
+ [oracles: ] [axioms: int_to_isize_isize_to_int] []
+ ⊢ ∀i. int_to_isize (isize_to_int i) = i
- [i128_to_int_bounds] Axiom
+ [int_to_u8_u8_to_int] Axiom
- [oracles: ] [axioms: i128_to_int_bounds] []
- ⊢ ∀n. i128_min ≤ i128_to_int n ∧ i128_to_int n ≤ i128_max
+ [oracles: ] [axioms: int_to_u8_u8_to_int] []
+ ⊢ ∀i. int_to_u8 (u8_to_int i) = i
- [i64_to_int_bounds] Axiom
+ [int_to_u16_u16_to_int] Axiom
- [oracles: ] [axioms: i64_to_int_bounds] []
- ⊢ ∀n. i64_min ≤ i64_to_int n ∧ i64_to_int n ≤ i64_max
+ [oracles: ] [axioms: int_to_u16_u16_to_int] []
+ ⊢ ∀i. int_to_u16 (u16_to_int i) = i
- [i32_to_int_bounds] Axiom
+ [int_to_u32_u32_to_int] Axiom
- [oracles: ] [axioms: i32_to_int_bounds] []
- ⊢ ∀n. i32_min ≤ i32_to_int n ∧ i32_to_int n ≤ i32_max
+ [oracles: ] [axioms: int_to_u32_u32_to_int] []
+ ⊢ ∀i. int_to_u32 (u32_to_int i) = i
- [i16_to_int_bounds] Axiom
+ [int_to_u64_u64_to_int] Axiom
- [oracles: ] [axioms: i16_to_int_bounds] []
- ⊢ ∀n. i16_min ≤ i16_to_int n ∧ i16_to_int n ≤ i16_max
+ [oracles: ] [axioms: int_to_u64_u64_to_int] []
+ ⊢ ∀i. int_to_u64 (u64_to_int i) = i
- [i8_to_int_bounds] Axiom
+ [int_to_u128_u128_to_int] Axiom
- [oracles: ] [axioms: i8_to_int_bounds] []
- ⊢ ∀n. i8_min ≤ i8_to_int n ∧ i8_to_int n ≤ i8_max
+ [oracles: ] [axioms: int_to_u128_u128_to_int] []
+ ⊢ ∀i. int_to_u128 (u128_to_int i) = i
- [isize_to_int_bounds] Axiom
+ [int_to_usize_usize_to_int] Axiom
- [oracles: ] [axioms: isize_to_int_bounds] []
- ⊢ ∀n. isize_min ≤ isize_to_int n ∧ isize_to_int n ≤ isize_max
+ [oracles: ] [axioms: int_to_usize_usize_to_int] []
+ ⊢ ∀i. int_to_usize (usize_to_int i) = i
- [usize_bounds] Axiom
+ [vec_to_list_num_bounds] Axiom
- [oracles: ] [axioms: usize_bounds] [] ⊢ usize_max ≥ u16_max
+ [oracles: ] [axioms: vec_to_list_num_bounds] []
+ ⊢ ∀v. 0 ≤ LENGTH (vec_to_list v) ∧
+ LENGTH (vec_to_list v) ≤ Num usize_max
- [isize_bounds] Axiom
+ [mk_vec_spec] Axiom
- [oracles: ] [axioms: isize_bounds] []
- ⊢ isize_min ≤ i16_min ∧ isize_max ≥ i16_max
+ [oracles: ] [axioms: mk_vec_spec] []
+ ⊢ ∀l. len l ≤ usize_max ⇒ ∃v. mk_vec l = Return v ∧ vec_to_list v = l
[bind_def] Definition
@@ -648,12 +641,6 @@ sig
⊢ ∀x y. i8_sub x y = mk_i8 (i8_to_int x − i8_to_int y)
- [index_def] Definition
-
- ⊢ ∀i x ls.
- index i (x::ls) =
- if i = 0 then x else if 0 < i then index (i − 1) ls else ARB
-
[int_rem_def] Definition
⊢ ∀x y.
@@ -686,10 +673,6 @@ sig
⊢ ∀x y. isize_sub x y = mk_isize (isize_to_int x − isize_to_int y)
- [len_def] Definition
-
- ⊢ len [] = 0 ∧ ∀x ls. len (x::ls) = 1 + len ls
-
[massert_def] Definition
⊢ ∀b. massert b = if b then Return () else Fail Failure
@@ -961,15 +944,6 @@ sig
⊢ ∀x y. u8_sub x y = mk_u8 (u8_to_int x − u8_to_int y)
- [update_def] Definition
-
- ⊢ (∀i y. update [] i y = []) ∧
- ∀x ls i y.
- update (x::ls) i y =
- if i = 0 then y::ls
- else if 0 < i then x::update ls (i − 1) y
- else x::ls
-
[usize_add_def] Definition
⊢ ∀x y. usize_add x y = mk_usize (usize_to_int x + usize_to_int y)
@@ -1014,15 +988,6 @@ sig
⊢ ∀v. vec_len v = int_to_usize (len (vec_to_list v))
- [vec_new_def] Definition
-
- ⊢ vec_new =
- case mk_vec [] of Return v => v | Fail v2 => ARB | Loop => ARB
-
- [vec_push_back_def] Definition
-
- ⊢ ∀v x. vec_push_back v x = mk_vec (vec_to_list v ⧺ [x])
-
[datatype_error] Theorem
⊢ DATATYPE (error Failure)
@@ -1729,12 +1694,6 @@ sig
∃z. u8_sub x y = Return z ∧
u8_to_int z = u8_to_int x − u8_to_int y
- [update_ind] Theorem
-
- ⊢ ∀P. (∀i y. P [] i y) ∧ (∀v0 ls y. P (v0::ls) 0 y) ∧
- (∀x ls i y. P ls i y ⇒ P (x::ls) (SUC i) y) ⇒
- ∀v v1 v2. P v v1 v2
-
[update_len] Theorem
⊢ ∀ls i y. len (update ls i y) = len ls
@@ -1801,9 +1760,9 @@ sig
[vec_insert_back_spec] Theorem
- [oracles: DISK_THM, cheat]
- [axioms: usize_to_int_bounds, usize_to_int_int_to_usize, mk_vec_spec]
- []
+ [oracles: DISK_THM]
+ [axioms: vec_to_list_num_bounds, usize_bounds,
+ usize_to_int_int_to_usize, usize_to_int_bounds, mk_vec_spec] []
⊢ ∀v i x.
usize_to_int i < usize_to_int (vec_len v) ⇒
∃nv.
@@ -1815,13 +1774,13 @@ sig
[vec_len_spec] Theorem
- [oracles: DISK_THM, cheat] [axioms: ] []
+ [oracles: DISK_THM] [axioms: usize_bounds, vec_to_list_num_bounds] []
⊢ ∀v. vec_len v = int_to_usize (len (vec_to_list v)) ∧
0 ≤ len (vec_to_list v) ∧ len (vec_to_list v) ≤ usize_max
[vec_to_list_int_bounds] Theorem
- [oracles: cheat] [axioms: ] []
+ [oracles: DISK_THM] [axioms: usize_bounds, vec_to_list_num_bounds] []
⊢ ∀v. 0 ≤ len (vec_to_list v) ∧ len (vec_to_list v) ≤ usize_max