diff options
Diffstat (limited to 'backends/lean')
-rw-r--r-- | backends/lean/Base/Arith.lean | 41 |
1 files changed, 18 insertions, 23 deletions
diff --git a/backends/lean/Base/Arith.lean b/backends/lean/Base/Arith.lean index 8cdf75a3..364447ed 100644 --- a/backends/lean/Base/Arith.lean +++ b/backends/lean/Base/Arith.lean @@ -183,9 +183,6 @@ elab "display_has_prop_instances" : tactic => do hs.forM fun e => do trace[Arith] "+ HasProp instance: {e}" - -set_option trace.Arith true - example (x : U32) : True := by let i : HasProp U32 := inferInstance have p := @HasProp.prop _ i x @@ -193,8 +190,6 @@ example (x : U32) : True := by display_has_prop_instances simp -set_option trace.Arith false - -- Return an instance of `PropHasImp` for `e` if it has some def lookupPropHasImp (e : Expr) : MetaM (Option Expr) := do trace[Arith] "lookupPropHasImp" @@ -223,14 +218,10 @@ elab "display_prop_has_imp_instances" : tactic => do hs.forM fun e => do trace[Arith] "+ PropHasImp instance: {e}" -set_option trace.Arith true - -example (x y : Int) (h0 : x ≠ y) (h1 : ¬ x = y) : True := by +example (x y : Int) (_ : x ≠ y) (_ : ¬ x = y) : True := by display_prop_has_imp_instances simp -set_option trace.Arith false - def addDecl (name : Name) (val : Expr) (type : Expr) (asLet : Bool) : Tactic.TacticM Expr := -- I don't think we need that Lean.Elab.Tactic.withMainContext do @@ -322,12 +313,15 @@ example {a: Type} (v : Vec a) : v.val.length ≤ Scalar.max ScalarTy.Usize := by intro_has_prop_instances simp_all [Scalar.max, Scalar.min] --- Tactic to split on a disjunction +-- Tactic to split on a disjunction. +-- The expression `h` should be an fvar. def splitDisj (h : Expr) (kleft kright : Tactic.TacticM Unit) : Tactic.TacticM Unit := do trace[Arith] "assumption on which to split: {h}" -- Retrieve the main goal Lean.Elab.Tactic.withMainContext do let goalType ← Lean.Elab.Tactic.getMainTarget + let hDecl := (← getLCtx).get! h.fvarId! + let hName := hDecl.userName -- Case disjunction let hTy ← inferType h hTy.withApp fun f xs => do @@ -341,14 +335,16 @@ def splitDisj (h : Expr) (kleft kright : Tactic.TacticM Unit) : Tactic.TacticM U -- - the match branch -- - a fresh new mvar id let mkGoal (hTy : Expr) (nGoalName : String) : MetaM (Expr × MVarId) := do - -- Introduce a variable for the assumption (`a` or `b`) - let asmName ← mkFreshUserName `h - withLocalDeclD asmName hTy fun var => do + -- Introduce a variable for the assumption (`a` or `b`). Note that we reuse + -- the name of the assumption we split. + withLocalDeclD hName hTy fun var => do -- The new goal let mgoal ← mkFreshExprSyntheticOpaqueMVar goalType (tag := Name.mkSimple nGoalName) + -- Clear the assumption that we split + let mgoal ← mgoal.mvarId!.tryClearMany #[h.fvarId!] -- The branch expression - let branch ← mkLambdaFVars #[var] mgoal - pure (branch, mgoal.mvarId!) + let branch ← mkLambdaFVars #[var] (mkMVar mgoal) + pure (branch, mgoal) let (inl, mleft) ← mkGoal a "left" let (inr, mright) ← mkGoal b "right" trace[Arith] "left: {inl}: {mleft}" @@ -398,8 +394,6 @@ example (x y : Int) (h0 : x ≤ y) (h1 : x ≠ y) : x < y := by . linarith . linarith ---syntax "int_tac_preprocess" : tactic - /- Boosting a bit the linarith tac. We do the following: @@ -412,7 +406,7 @@ def intTacPreprocess : Tactic.TacticM Unit := do -- Lookup the instances of PropHasImp (this is how we detect assumptions -- of the proper shape), introduce assumptions in the context and split -- on those - -- TODO: get rid of the assumption that we split + -- TODO: get rid of the assumptions that we split let rec splitOnAsms (asms : List Expr) : Tactic.TacticM Unit := match asms with | [] => pure () @@ -436,14 +430,16 @@ syntax "int_tac" : tactic macro_rules | `(tactic| int_tac) => `(tactic| + (repeat (apply And.intro)) <;> -- TODO: improve this int_tac_preprocess <;> linarith) -example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by int_tac +example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by + int_tac -- Checking that things append correctly when there are several disjunctions example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y := by - int_tac_preprocess <;> apply And.intro <;> linarith + int_tac -- A tactic to solve linear arithmetic goals in the presence of scalars syntax "scalar_tac" : tactic @@ -457,8 +453,7 @@ macro_rules have := Scalar.cMax_bound ScalarTy.Isize; -- TODO: not too sure about that simp only [*, Scalar.max, Scalar.min, Scalar.cMin, Scalar.cMax] at *; - -- TODO: use int_tac - linarith) + int_tac) example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by scalar_tac |