diff options
Diffstat (limited to 'backends/lean')
-rw-r--r-- | backends/lean/primitives.lean | 115 |
1 files changed, 105 insertions, 10 deletions
diff --git a/backends/lean/primitives.lean b/backends/lean/primitives.lean index 6a41d1f4..3f1d13f1 100644 --- a/backends/lean/primitives.lean +++ b/backends/lean/primitives.lean @@ -1,4 +1,5 @@ import Lean +import Init.Data.List.Basic ------------- -- PRELUDE -- @@ -130,11 +131,37 @@ def USize.checked_sub (n: USize) (m: USize): result USize := else fail integerOverflow --- TODO: settle the style for usize_sub before we write these -def USize.checked_add (n: USize) (m: USize): result USize := sorry -def USize.checked_rem (n: USize) (m: USize): result USize := sorry -def USize.checked_mul (n: USize) (m: USize): result USize := sorry -def USize.checked_div (n: USize) (m: USize): result USize := sorry +def USize.checked_add (n: USize) (m: USize): result USize := + if h: n.val + m.val < USize.size then + .ret ⟨ n.val + m.val, h ⟩ + else + .fail integerOverflow + +def USize.checked_rem (n: USize) (m: USize): result USize := + if h: m > 0 then + .ret ⟨ n.val % m.val, by + have h1: m.val < USize.size := m.val.isLt + have h2: n.val.val % m.val.val < m.val.val := @Nat.mod_lt n.val m.val h + apply Nat.lt_trans h2 h1 + ⟩ + else + .fail integerOverflow + +def USize.checked_mul (n: USize) (m: USize): result USize := + if h: n.val * m.val < USize.size then + .ret ⟨ n.val * m.val, h ⟩ + else + .fail integerOverflow + +def USize.checked_div (n: USize) (m: USize): result USize := + if m > 0 then + .ret ⟨ n.val / m.val, by + have h1: n.val < USize.size := n.val.isLt + have h2: n.val.val / m.val.val <= n.val.val := @Nat.div_le_self n.val m.val + apply Nat.lt_of_le_of_lt h2 h1 + ⟩ + else + .fail integerOverflow -- One needs to perform a little bit of reasoning in order to successfully -- inject constants into USize, so we provide a general-purpose macro @@ -165,6 +192,8 @@ macro_rules -- VECTORS -- ------------- +-- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size) +-- rather than maximum values (usize_max). def vec (α : Type u) := { l : List α // List.length l < USize.size } def vec_new (α : Type u): vec α := ⟨ [], by { @@ -183,11 +212,12 @@ def vec_len (α : Type u) (v : vec α) : USize := def vec_push_fwd (α : Type u) (_ : vec α) (_ : α) : Unit := () --- TODO: more precise error condition here for the fail case +-- NOTE: old version trying to use a subtype notation, but probably better to +-- leave result elimination to auxiliary lemmas with suitable preconditions -- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one -- make the proof work in that case? Probably need to import tactics from -- mathlib to deal with inequalities... would love to see an example. -def vec_push_back (α : Type u) (v : vec α) (x : α) : { res: result (vec α) // +def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: result (vec α) // match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1} := if h : List.length v.val + 1 < USize.size then @@ -206,11 +236,76 @@ def vec_push_back (α : Type u) (v : vec α) (x : α) : { res: result (vec α) / -- annotate `x`, which relieves us of having to write `.val` on the right-hand -- side of the monadic let. let v := vec_new Nat - let x: vec Nat ← (vec_push_back Nat v 1: result (vec Nat)) -- WHY do we need the type annotation here? + let x: vec Nat ← (vec_push_back_old Nat v 1: result (vec Nat)) -- WHY do we need the type annotation here? -- TODO: strengthen post-condition above and do a demo to show that we can -- safely eliminate the `fail` case return (vec_len Nat x) +def vec_push_back (α : Type u) (v : vec α) (x : α) : result (vec α) + := + if h : List.length v.val + 1 < USize.size then + return ⟨List.concat v.val x, + by + rw [List.length_concat] + assumption + ⟩ + else + fail maximumSizeExceeded + +def vec_insert_fwd (α : Type u) (v: vec α) (i: USize) (_: α): result Unit := + if i.val < List.length v.val then + .ret () + else + .fail arrayOutOfBounds + +def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) := + if i.val < List.length v.val then + .ret ⟨ List.set v.val i.val x, by + have h: List.length v.val < USize.size := v.property + rewrite [ List.length_set v.val i.val x ] + assumption + ⟩ + else + .fail arrayOutOfBounds + +def vec_index_fwd (α : Type u) (v: vec α) (i: USize): result α := + if h: i.val < List.length v.val then + .ret (List.get v.val ⟨i.val, h⟩) + else + .fail arrayOutOfBounds + +def vec_index_back (α : Type u) (v: vec α) (i: USize) (_: α): result Unit := + if i.val < List.length v.val then + .ret () + else + .fail arrayOutOfBounds + +def vec_index_mut_fwd (α : Type u) (v: vec α) (i: USize): result α := + if h: i.val < List.length v.val then + .ret (List.get v.val ⟨i.val, h⟩) + else + .fail arrayOutOfBounds + +def vec_index_mut_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) := + if i.val < List.length v.val then + .ret ⟨ List.set v.val i.val x, by + have h: List.length v.val < USize.size := v.property + rewrite [ List.length_set v.val i.val x ] + assumption + ⟩ + else + .fail arrayOutOfBounds + +---------- +-- MISC -- +---------- + +def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := + x + +def mem_replace_back (a : Type) (_ : a) (y : a) : a := + y + -------------------- -- ASSERT COMMAND -- -------------------- @@ -220,10 +315,10 @@ open Lean Elab Command Term Meta syntax (name := assert) "#assert" term: command @[command_elab assert] -def assertImpl : CommandElab := fun (stx: Syntax) => do +def assertImpl : CommandElab := fun (_stx: Syntax) => do logInfo "Hello World" -def ignore (a: Prop) (x: a) := () +def ignore (a: Prop) (_x: a) := () #eval ignore (2 == 2) (by simp) |