summaryrefslogtreecommitdiff
path: root/backends/lean
diff options
context:
space:
mode:
Diffstat (limited to 'backends/lean')
-rw-r--r--backends/lean/Base/Diverge.lean657
-rw-r--r--backends/lean/Base/Primitives.lean13
2 files changed, 333 insertions, 337 deletions
diff --git a/backends/lean/Base/Diverge.lean b/backends/lean/Base/Diverge.lean
index 2e77c5e0..65c061bd 100644
--- a/backends/lean/Base/Diverge.lean
+++ b/backends/lean/Base/Diverge.lean
@@ -3,12 +3,32 @@ import Lean.Meta.Tactic.Simp
import Init.Data.List.Basic
import Mathlib.Tactic.RunCmd
import Mathlib.Tactic.Linarith
-import Mathlib.Tactic.Tauto
---import Mathlib.Logic
+
+/-
+TODO:
+- we want an easier to use cases:
+ - keeps in the goal an equation of the shape: `t = case`
+ - if called on Prop terms, uses Classical.em
+ Actually, the cases from mathlib seems already quite powerful
+ (https://leanprover-community.github.io/mathlib_docs/tactics.html#cases)
+ For instance: cases h : e
+ Also: cases_matching
+- better split tactic
+- we need conversions to operate on the head of applications.
+ Actually, something like this works:
+ ```
+ conv at Hl =>
+ apply congr_fun
+ simp [fix_fuel_P]
+ ```
+ Maybe we need a rpt ... ; focus?
+- simplifier/rewriter have a strange behavior sometimes
+-/
namespace Diverge
namespace Primitives
+/-! # Copy-pasting from Primitives to make the file self-contained -/
inductive Error where
| assertionFailure: Error
@@ -29,12 +49,6 @@ deriving Repr, BEq
open Result
--- instance Result_Inhabited (α : Type u) : Inhabited (Result α) :=
--- Inhabited.mk (fail panic)
-
--- instance Result_Nonempty (α : Type u) : Nonempty (Result α) :=
--- Nonempty.intro div
-
def bind (x: Result α) (f: α -> Result β) : Result β :=
match x with
| ret v => f v
@@ -71,312 +85,276 @@ end Primitives
namespace Fix
-open Primitives
-open Result
-
-variable {a b c d : Type}
-
-/-
-TODO:
-- we want an easier to use cases:
- - keeps in the goal an equation of the shape: `t = case`
- - if called on Prop terms, uses Classical.em
- Actually, the cases from mathlib seems already quite powerful
- (https://leanprover-community.github.io/mathlib_docs/tactics.html#cases)
- For instance: cases h : e
- Also: cases_matching
-- better split tactic
-- we need conversions to operate on the head of applications.
- Actually, something like this works:
- ```
- conv at Hl =>
- apply congr_fun
- simp [fix_fuel_P]
- ```
- Maybe we need a rpt ... ; focus?
-- simplifier/rewriter have a strange behavior sometimes
--/
-
-/-! # The least fixed point definition and its properties -/
-
-def least_p (p : Nat → Prop) (n : Nat) : Prop := p n ∧ (∀ m, m < n → ¬ p m)
-noncomputable def least (p : Nat → Prop) : Nat :=
- Classical.epsilon (least_p p)
-
--- Auxiliary theorem for [least_spec]: if there exists an `n` satisfying `p`,
--- there there exists a least `m` satisfying `p`.
-theorem least_spec_aux (p : Nat → Prop) : ∀ (n : Nat), (hn : p n) → ∃ m, least_p p m := by
- apply Nat.strongRec'
- intros n hi hn
- -- Case disjunction on: is n the smallest n satisfying p?
- match Classical.em (∀ m, m < n → ¬ p m) with
- | .inl hlt =>
- -- Yes: trivial
- exists n
- | .inr hlt =>
- simp at *
- let ⟨ m, ⟨ hmlt, hm ⟩ ⟩ := hlt
- have hi := hi m hmlt hm
- apply hi
-
--- The specification of [least]: either `p` is never satisfied, or it is satisfied
--- by `least p` and no `n < least p` satisfies `p`.
-theorem least_spec (p : Nat → Prop) : (∀ n, ¬ p n) ∨ (p (least p) ∧ ∀ n, n < least p → ¬ p n) := by
- -- Case disjunction on the existence of an `n` which satisfies `p`
- match Classical.em (∀ n, ¬ p n) with
- | .inl h =>
- -- There doesn't exist: trivial
- apply (Or.inl h)
- | .inr h =>
- -- There exists: we simply use `least_spec_aux` in combination with the property
- -- of the epsilon operator
- simp at *
- let ⟨ n, hn ⟩ := h
- apply Or.inr
- have hl := least_spec_aux p n hn
- have he := Classical.epsilon_spec hl
- apply he
-
-/-! # The fixed point definitions -/
-
-def fix_fuel (n : Nat) (f : (a → Result b) → a → Result b) (x : a) : Result b :=
- match n with
- | 0 => .div
- | n + 1 =>
- f (fix_fuel n f) x
-
-@[simp] def fix_fuel_pred (f : (a → Result b) → a → Result b) (x : a) (n : Nat) :=
- not (div? (fix_fuel n f x))
-
-def fix_fuel_P (f : (a → Result b) → a → Result b) (x : a) (n : Nat) : Prop :=
- fix_fuel_pred f x n
-
-noncomputable def fix (f : (a → Result b) → a → Result b) (x : a) : Result b :=
- fix_fuel (least (fix_fuel_P f x)) f x
-
-/-! # The proof of the fixed point equation -/
-
--- Monotonicity relation over results
--- TODO: generalize
-def result_rel {a : Type u} (x1 x2 : Result a) : Prop :=
- match x1 with
- | div => True
- | fail _ => x2 = x1
- | ret _ => x2 = x1 -- TODO: generalize
-
--- Monotonicity relation over monadic arrows
--- TODO: Kleisli arrow
--- TODO: generalize
-def marrow_rel (f g : a → Result b) : Prop :=
- ∀ x, result_rel (f x) (g x)
-
--- Monotonicity property
-def is_mono (f : (a → Result b) → a → Result b) : Prop :=
- ∀ {{g h}}, marrow_rel g h → marrow_rel (f g) (f h)
-
--- "Continuity" property.
--- We need this, and this looks a lot like continuity. Also see this paper:
--- https://inria.hal.science/file/index/docid/216187/filename/tarski.pdf
-def is_cont (f : (a → Result b) → a → Result b) : Prop :=
- ∀ x, (Hdiv : ∀ n, fix_fuel (.succ n) f x = div) → f (fix f) x = div
-
--- Validity property for a body
-structure is_valid (f : (a → Result b) → a → Result b) :=
- intro::
- hmono : is_mono f
- hcont : is_cont f
-
-/-
-
- -/
-
-theorem fix_fuel_mono {f : (a → Result b) → a → Result b} (Hmono : is_mono f) :
- ∀ {{n m}}, n ≤ m → marrow_rel (fix_fuel n f) (fix_fuel m f) := by
- intros n
- induction n
- case zero => simp [marrow_rel, fix_fuel, result_rel]
- case succ n1 Hi =>
- intros m Hle x
+ open Primitives
+ open Result
+
+ variable {a b c d : Type}
+
+ /-! # The least fixed point definition and its properties -/
+
+ def least_p (p : Nat → Prop) (n : Nat) : Prop := p n ∧ (∀ m, m < n → ¬ p m)
+ noncomputable def least (p : Nat → Prop) : Nat :=
+ Classical.epsilon (least_p p)
+
+ -- Auxiliary theorem for [least_spec]: if there exists an `n` satisfying `p`,
+ -- there there exists a least `m` satisfying `p`.
+ theorem least_spec_aux (p : Nat → Prop) : ∀ (n : Nat), (hn : p n) → ∃ m, least_p p m := by
+ apply Nat.strongRec'
+ intros n hi hn
+ -- Case disjunction on: is n the smallest n satisfying p?
+ match Classical.em (∀ m, m < n → ¬ p m) with
+ | .inl hlt =>
+ -- Yes: trivial
+ exists n
+ | .inr hlt =>
+ simp at *
+ let ⟨ m, ⟨ hmlt, hm ⟩ ⟩ := hlt
+ have hi := hi m hmlt hm
+ apply hi
+
+ -- The specification of [least]: either `p` is never satisfied, or it is satisfied
+ -- by `least p` and no `n < least p` satisfies `p`.
+ theorem least_spec (p : Nat → Prop) : (∀ n, ¬ p n) ∨ (p (least p) ∧ ∀ n, n < least p → ¬ p n) := by
+ -- Case disjunction on the existence of an `n` which satisfies `p`
+ match Classical.em (∀ n, ¬ p n) with
+ | .inl h =>
+ -- There doesn't exist: trivial
+ apply (Or.inl h)
+ | .inr h =>
+ -- There exists: we simply use `least_spec_aux` in combination with the property
+ -- of the epsilon operator
+ simp at *
+ let ⟨ n, hn ⟩ := h
+ apply Or.inr
+ have hl := least_spec_aux p n hn
+ have he := Classical.epsilon_spec hl
+ apply he
+
+ /-! # The fixed point definitions -/
+
+ def fix_fuel (n : Nat) (f : (a → Result b) → a → Result b) (x : a) : Result b :=
+ match n with
+ | 0 => .div
+ | n + 1 =>
+ f (fix_fuel n f) x
+
+ @[simp] def fix_fuel_pred (f : (a → Result b) → a → Result b) (x : a) (n : Nat) :=
+ not (div? (fix_fuel n f x))
+
+ def fix_fuel_P (f : (a → Result b) → a → Result b) (x : a) (n : Nat) : Prop :=
+ fix_fuel_pred f x n
+
+ noncomputable def fix (f : (a → Result b) → a → Result b) (x : a) : Result b :=
+ fix_fuel (least (fix_fuel_P f x)) f x
+
+ /-! # The validity property -/
+
+ -- Monotonicity relation over results
+ -- TODO: generalize (we should parameterize the definition by a relation over `a`)
+ def result_rel {a : Type u} (x1 x2 : Result a) : Prop :=
+ match x1 with
+ | div => True
+ | fail _ => x2 = x1
+ | ret _ => x2 = x1 -- TODO: generalize
+
+ -- Monotonicity relation over monadic arrows (i.e., Kleisli arrows)
+ def karrow_rel (k1 k2 : a → Result b) : Prop :=
+ ∀ x, result_rel (k1 x) (k2 x)
+
+ -- Monotonicity property for function bodies
+ def is_mono (f : (a → Result b) → a → Result b) : Prop :=
+ ∀ {{k1 k2}}, karrow_rel k1 k2 → karrow_rel (f k1) (f k2)
+
+ -- "Continuity" property.
+ -- We need this, and this looks a lot like continuity. Also see this paper:
+ -- https://inria.hal.science/file/index/docid/216187/filename/tarski.pdf
+ -- We define our "continuity" criteria so that it gives us what we need to
+ -- prove the fixed-point equation, and we can also easily manipulate it.
+ def is_cont (f : (a → Result b) → a → Result b) : Prop :=
+ ∀ x, (Hdiv : ∀ n, fix_fuel (.succ n) f x = div) → f (fix f) x = div
+
+ /-! # The proof of the fixed-point equation -/
+ theorem fix_fuel_mono {f : (a → Result b) → a → Result b} (Hmono : is_mono f) :
+ ∀ {{n m}}, n ≤ m → karrow_rel (fix_fuel n f) (fix_fuel m f) := by
+ intros n
+ induction n
+ case zero => simp [karrow_rel, fix_fuel, result_rel]
+ case succ n1 Hi =>
+ intros m Hle x
+ simp [result_rel]
+ match m with
+ | 0 =>
+ exfalso
+ zify at *
+ linarith
+ | Nat.succ m1 =>
+ simp_arith at Hle
+ simp [fix_fuel]
+ have Hi := Hi Hle
+ have Hmono := Hmono Hi x
+ simp [result_rel] at Hmono
+ apply Hmono
+
+ @[simp] theorem neg_fix_fuel_P {f : (a → Result b) → a → Result b} {x : a} {n : Nat} :
+ ¬ fix_fuel_P f x n ↔ (fix_fuel n f x = div) := by
+ simp [fix_fuel_P, div?]
+ cases fix_fuel n f x <;> simp
+
+ theorem fix_fuel_fix_mono {f : (a → Result b) → a → Result b} (Hmono : is_mono f) :
+ ∀ n, karrow_rel (fix_fuel n f) (fix f) := by
+ intros n x
simp [result_rel]
- match m with
- | 0 =>
- exfalso
- zify at *
- linarith
- | Nat.succ m1 =>
- simp_arith at Hle
- simp [fix_fuel]
- have Hi := Hi Hle
- have Hmono := Hmono Hi x
- simp [result_rel] at Hmono
- apply Hmono
-
-@[simp] theorem neg_fix_fuel_P {f : (a → Result b) → a → Result b} {x : a} {n : Nat} :
- ¬ fix_fuel_P f x n ↔ (fix_fuel n f x = div) := by
- simp [fix_fuel_P, div?]
- cases fix_fuel n f x <;> simp
-
-theorem fix_fuel_fix_mono {f : (a → Result b) → a → Result b} (Hmono : is_mono f) :
- ∀ n, marrow_rel (fix_fuel n f) (fix f) := by
- intros n x
- simp [result_rel]
- have Hl := least_spec (fix_fuel_P f x)
- simp at Hl
- match Hl with
- | .inl Hl => simp [*]
- | .inr ⟨ Hl, Hn ⟩ =>
- match Classical.em (fix_fuel n f x = div) with
- | .inl Hd =>
- simp [*]
- | .inr Hd =>
- have Hineq : least (fix_fuel_P f x) ≤ n := by
- -- Proof by contradiction
- cases Classical.em (least (fix_fuel_P f x) ≤ n) <;> simp [*]
- simp at *
- rename_i Hineq
- have Hn := Hn n Hineq
- contradiction
- have Hfix : ¬ (fix f x = div) := by
- simp [fix]
- -- By property of the least upper bound
- revert Hd Hl
- -- TODO: there is no conversion to select the head of a function!
- have : fix_fuel_P f x (least (fix_fuel_P f x)) = fix_fuel_pred f x (least (fix_fuel_P f x)) :=
- by simp[fix_fuel_P]
- simp [this, div?]
- clear this
- cases fix_fuel (least (fix_fuel_P f x)) f x <;> simp
- have Hmono := fix_fuel_mono Hmono Hineq x
- simp [result_rel] at Hmono
- -- TODO: there is no conversion to select the head of a function!
- revert Hmono Hfix Hd
- simp [fix]
- -- TODO: it would be good if cases actually introduces an equation: this
- -- way we wouldn't have to do all the book-keeping
- cases fix_fuel (least (fix_fuel_P f x)) f x <;> cases fix_fuel n f x <;>
- intros <;> simp [*] at *
-
-theorem fix_fuel_P_least {f : (a → Result b) → a → Result b} (Hmono : is_mono f) :
- ∀ {{x n}}, fix_fuel_P f x n → fix_fuel_P f x (least (fix_fuel_P f x)) := by
- intros x n Hf
- have Hfmono := fix_fuel_fix_mono Hmono n x
- revert Hf Hfmono
- -- TODO: would be good to be able to unfold fix_fuel_P only on the left
- simp [fix_fuel_P, div?, result_rel, fix]
- cases fix_fuel n f x <;> simp_all
-
--- Prove the fixed point equation in the case there exists some fuel for which
--- the execution terminates
-theorem fix_fixed_eq_terminates (f : (a → Result b) → a → Result b) (Hmono : is_mono f)
- (x : a) (n : Nat) (He : fix_fuel_P f x n) :
- fix f x = f (fix f) x := by
- have Hl := fix_fuel_P_least Hmono He
- -- TODO: better control of simplification
- conv at Hl =>
- apply congr_fun
- simp [fix_fuel_P]
- -- The least upper bound is > 0
- have ⟨ n, Hsucc ⟩ : ∃ n, least (fix_fuel_P f x) = Nat.succ n := by
+ have Hl := least_spec (fix_fuel_P f x)
+ simp at Hl
+ match Hl with
+ | .inl Hl => simp [*]
+ | .inr ⟨ Hl, Hn ⟩ =>
+ match Classical.em (fix_fuel n f x = div) with
+ | .inl Hd =>
+ simp [*]
+ | .inr Hd =>
+ have Hineq : least (fix_fuel_P f x) ≤ n := by
+ -- Proof by contradiction
+ cases Classical.em (least (fix_fuel_P f x) ≤ n) <;> simp [*]
+ simp at *
+ rename_i Hineq
+ have Hn := Hn n Hineq
+ contradiction
+ have Hfix : ¬ (fix f x = div) := by
+ simp [fix]
+ -- By property of the least upper bound
+ revert Hd Hl
+ -- TODO: there is no conversion to select the head of a function!
+ conv => lhs; apply congr_fun; apply congr_fun; apply congr_fun; simp [fix_fuel_P, div?]
+ cases fix_fuel (least (fix_fuel_P f x)) f x <;> simp
+ have Hmono := fix_fuel_mono Hmono Hineq x
+ simp [result_rel] at Hmono
+ simp [fix] at *
+ cases Heq: fix_fuel (least (fix_fuel_P f x)) f x <;>
+ cases Heq':fix_fuel n f x <;>
+ simp_all
+
+ theorem fix_fuel_P_least {f : (a → Result b) → a → Result b} (Hmono : is_mono f) :
+ ∀ {{x n}}, fix_fuel_P f x n → fix_fuel_P f x (least (fix_fuel_P f x)) := by
+ intros x n Hf
+ have Hfmono := fix_fuel_fix_mono Hmono n x
+ -- TODO: there is no conversion to select the head of a function!
+ conv => apply congr_fun; simp [fix_fuel_P]
+ simp [fix_fuel_P] at Hf
+ revert Hf Hfmono
+ simp [div?, result_rel, fix]
+ cases fix_fuel n f x <;> simp_all
+
+ -- Prove the fixed point equation in the case there exists some fuel for which
+ -- the execution terminates
+ theorem fix_fixed_eq_terminates (f : (a → Result b) → a → Result b) (Hmono : is_mono f)
+ (x : a) (n : Nat) (He : fix_fuel_P f x n) :
+ fix f x = f (fix f) x := by
+ have Hl := fix_fuel_P_least Hmono He
+ -- TODO: better control of simplification
+ conv at Hl =>
+ apply congr_fun
+ simp [fix_fuel_P]
+ -- The least upper bound is > 0
+ have ⟨ n, Hsucc ⟩ : ∃ n, least (fix_fuel_P f x) = Nat.succ n := by
+ revert Hl
+ simp [div?]
+ cases least (fix_fuel_P f x) <;> simp [fix_fuel]
+ simp [Hsucc] at Hl
revert Hl
- simp [div?]
- cases least (fix_fuel_P f x) <;> simp [fix_fuel]
- simp [Hsucc] at Hl
- revert Hl
- simp [*, div?, fix, fix_fuel]
- -- Use the monotonicity
- have Hfixmono := fix_fuel_fix_mono Hmono n
- have Hvm := Hmono Hfixmono x
- -- Use functional extensionality
- simp [result_rel, fix] at Hvm
- revert Hvm
- split <;> simp [*] <;> intros <;> simp [*]
-
--- The final fixed point equation
--- TODO: remove the `forall x`
-theorem fix_fixed_eq {{f : (a → Result b) → a → Result b}} (Hvalid : is_valid f) :
- ∀ x, fix f x = f (fix f) x := by
- intros x
- -- conv => lhs; simp [fix]
- -- Case disjunction: is there a fuel such that the execution successfully execute?
- match Classical.em (∃ n, fix_fuel_P f x n) with
- | .inr He =>
- -- No fuel: the fixed point evaluates to `div`
- --simp [fix] at *
- simp at *
- conv => lhs; simp [fix]
- have Hel := He (Nat.succ (least (fix_fuel_P f x))); simp [*, fix_fuel] at *; clear Hel
- -- Use the "continuity" of `f`
- have He : ∀ n, fix_fuel (.succ n) f x = div := by intros; simp [*]
- have Hcont := Hvalid.hcont x He
- simp [Hcont]
- | .inl ⟨ n, He ⟩ => apply fix_fixed_eq_terminates f Hvalid.hmono x n He
-
- /- Making the proofs more systematic -/
-
- -- TODO: rewrite is_mono in terms of is_mono_p
- def is_mono_p (body : (a → Result b) → Result c) : Prop :=
- ∀ {{g h}}, marrow_rel g h → result_rel (body g) (body h)
-
- @[simp] theorem is_mono_p_same (x : Result c) :
+ simp [*, div?, fix, fix_fuel]
+ -- Use the monotonicity
+ have Hfixmono := fix_fuel_fix_mono Hmono n
+ have Hvm := Hmono Hfixmono x
+ -- Use functional extensionality
+ simp [result_rel, fix] at Hvm
+ revert Hvm
+ split <;> simp [*] <;> intros <;> simp [*]
+
+ -- The final fixed point equation
+ -- TODO: remove the `forall x`
+ theorem fix_fixed_eq {{f : (a → Result b) → a → Result b}}
+ (Hmono : is_mono f) (Hcont : is_cont f) :
+ ∀ x, fix f x = f (fix f) x := by
+ intros x
+ -- Case disjunction: is there a fuel such that the execution successfully execute?
+ match Classical.em (∃ n, fix_fuel_P f x n) with
+ | .inr He =>
+ -- No fuel: the fixed point evaluates to `div`
+ --simp [fix] at *
+ simp at *
+ conv => lhs; simp [fix]
+ have Hel := He (Nat.succ (least (fix_fuel_P f x))); simp [*, fix_fuel] at *; clear Hel
+ -- Use the "continuity" of `f`
+ have He : ∀ n, fix_fuel (.succ n) f x = div := by intros; simp [*]
+ have Hcont := Hcont x He
+ simp [Hcont]
+ | .inl ⟨ n, He ⟩ => apply fix_fixed_eq_terminates f Hmono x n He
+
+
+ /-! # Making the proofs of validity manageable (and automatable) -/
+
+ -- Monotonicity property for expressions
+ def is_mono_p (e : (a → Result b) → Result c) : Prop :=
+ ∀ {{k1 k2}}, karrow_rel k1 k2 → result_rel (e k1) (e k2)
+
+ theorem is_mono_p_same (x : Result c) :
@is_mono_p a b c (λ _ => x) := by
- simp [is_mono_p, marrow_rel, result_rel]
+ simp [is_mono_p, karrow_rel, result_rel]
split <;> simp
- -- TODO: remove
- @[simp] theorem is_mono_p_tail_rec (x : a) :
+ theorem is_mono_p_rec (x : a) :
@is_mono_p a b b (λ f => f x) := by
- simp_all [is_mono_p, marrow_rel, result_rel]
+ simp_all [is_mono_p, karrow_rel, result_rel]
- -- TODO: rewrite is_cont in terms of is_cont_p
- def is_cont_p (f : (a → Result b) → a → Result b)
- (body : (a → Result b) → Result c) : Prop :=
- (Hc : ∀ n, body (fix_fuel n f) = .div) →
- body (fix f) = .div
-
- @[simp] theorem is_cont_p_same (f : (a → Result b) → a → Result b) (x : Result c) :
- is_cont_p f (λ _ => x) := by
- simp [is_cont_p]
-
- -- TODO: remove
- @[simp] theorem is_cont_p_tail_rec (f : (a → Result b) → a → Result b) (x : a) :
- is_cont_p f (λ f => f x) := by
- simp_all [is_cont_p, fix]
-
- -- Lean is good at unification: we can write a very general version
+ -- The important lemma about `is_mono_p`
theorem is_mono_p_bind
(g : (a → Result b) → Result c)
(h : c → (a → Result b) → Result d) :
is_mono_p g →
(∀ y, is_mono_p (h y)) →
- is_mono_p (λ f => do let y ← g f; h y f) := by
+ is_mono_p (λ k => do let y ← g k; h y k) := by
intro hg hh
simp [is_mono_p]
intro fg fh Hrgh
- simp [marrow_rel, result_rel]
+ simp [karrow_rel, result_rel]
have hg := hg Hrgh; simp [result_rel] at hg
cases heq0: g fg <;> simp_all
rename_i y _
have hh := hh y Hrgh; simp [result_rel] at hh
simp_all
- -- Lean is good at unification: we can write a very general version
- -- (in particular, it will manage to figure out `g` and `h` when we
- -- apply the lemma)
+ -- Continuity property for expressions - note that we take the continuation
+ -- as parameter
+ def is_cont_p (k : (a → Result b) → a → Result b)
+ (e : (a → Result b) → Result c) : Prop :=
+ (Hc : ∀ n, e (fix_fuel n k) = .div) →
+ e (fix k) = .div
+
+ theorem is_cont_p_same (k : (a → Result b) → a → Result b) (x : Result c) :
+ is_cont_p k (λ _ => x) := by
+ simp [is_cont_p]
+
+ theorem is_cont_p_rec (f : (a → Result b) → a → Result b) (x : a) :
+ is_cont_p f (λ f => f x) := by
+ simp_all [is_cont_p, fix]
+
+ -- The important lemma about `is_cont_p`
theorem is_cont_p_bind
- (f : (a → Result b) → a → Result b)
- (Hfmono : is_mono f)
+ (k : (a → Result b) → a → Result b)
+ (Hkmono : is_mono k)
(g : (a → Result b) → Result c)
(h : c → (a → Result b) → Result d) :
is_mono_p g →
- is_cont_p f g →
+ is_cont_p k g →
(∀ y, is_mono_p (h y)) →
- (∀ y, is_cont_p f (h y)) →
- is_cont_p f (λ f => do let y ← g f; h y f) := by
+ (∀ y, is_cont_p k (h y)) →
+ is_cont_p k (λ k => do let y ← g k; h y k) := by
intro Hgmono Hgcont Hhmono Hhcont
simp [is_cont_p]
intro Hdiv
- -- Case on `g (fix... f)`: is there an n s.t. it terminates?
- cases Classical.em (∀ n, g (fix_fuel n f) = .div) <;> rename_i Hn
+ -- Case on `g (fix... k)`: is there an n s.t. it terminates?
+ cases Classical.em (∀ n, g (fix_fuel n k) = .div) <;> rename_i Hn
. -- Case 1: g diverges
have Hgcont := Hgcont Hn
simp_all
@@ -384,20 +362,20 @@ theorem fix_fixed_eq {{f : (a → Result b) → a → Result b}} (Hvalid : is_va
simp at Hn
let ⟨ n, Hn ⟩ := Hn
have Hdivn := Hdiv n
- have Hffmono := fix_fuel_fix_mono Hfmono n
+ have Hffmono := fix_fuel_fix_mono Hkmono n
have Hgeq := Hgmono Hffmono
simp [result_rel] at Hgeq
- cases Heq: g (fix_fuel n f) <;> rename_i y <;> simp_all
+ cases Heq: g (fix_fuel n k) <;> rename_i y <;> simp_all
-- Remains the .ret case
-- Use Hdiv to prove that: ∀ n, h y (fix_fuel n f) = div
-- We do this in two steps: first we prove it for m ≥ n
- have Hhdiv: ∀ m, h y (fix_fuel m f) = .div := by
- have Hhdiv : ∀ m, n ≤ m → h y (fix_fuel m f) = .div := by
+ have Hhdiv: ∀ m, h y (fix_fuel m k) = .div := by
+ have Hhdiv : ∀ m, n ≤ m → h y (fix_fuel m k) = .div := by
-- We use the fact that `g (fix_fuel n f) = .div`, combined with Hdiv
intro m Hle
have Hdivm := Hdiv m
-- Monotonicity of g
- have Hffmono := fix_fuel_mono Hfmono Hle
+ have Hffmono := fix_fuel_mono Hkmono Hle
have Hgmono := Hgmono Hffmono
-- We need to clear Hdiv because otherwise simp_all rewrites Hdivm with Hdiv
clear Hdiv
@@ -407,42 +385,41 @@ theorem fix_fixed_eq {{f : (a → Result b) → a → Result b}} (Hvalid : is_va
cases Classical.em (n ≤ m) <;> rename_i Hl
. apply Hhdiv; assumption
. simp at Hl
- -- Make a case disjunction on `h y (fix_fuel m f)`: if it is not equal
+ -- Make a case disjunction on `h y (fix_fuel m k)`: if it is not equal
-- to div, use the monotonicity of `h y`
have Hle : m ≤ n := by linarith
- have Hffmono := fix_fuel_mono Hfmono Hle
+ have Hffmono := fix_fuel_mono Hkmono Hle
have Hmono := Hhmono y Hffmono
simp [result_rel] at Hmono
- cases Heq: h y (fix_fuel m f) <;> simp_all
+ cases Heq: h y (fix_fuel m k) <;> simp_all
-- We can now use the continuity hypothesis for h
apply Hhcont; assumption
- -- TODO: move
+ -- The validity property for an expression
def is_valid_p (k : (a → Result b) → a → Result b)
- (body : (a → Result b) → Result c) : Prop :=
- is_mono_p body ∧
- (is_mono k → is_cont_p k body)
+ (e : (a → Result b) → Result c) : Prop :=
+ is_mono_p e ∧
+ (is_mono k → is_cont_p k e)
- @[simp] theorem is_valid_p_same (f : (a → Result b) → a → Result b) (x : Result c) :
- is_valid_p f (λ _ => x) := by
- simp [is_valid_p]
+ @[simp] theorem is_valid_p_same (k : (a → Result b) → a → Result b) (x : Result c) :
+ is_valid_p k (λ _ => x) := by
+ simp [is_valid_p, is_mono_p_same, is_cont_p_same]
- @[simp] theorem is_valid_p_rec (f : (a → Result b) → a → Result b) (x : a) :
- is_valid_p f (λ f => f x) := by
- simp [is_valid_p]
+ @[simp] theorem is_valid_p_rec (k : (a → Result b) → a → Result b) (x : a) :
+ is_valid_p k (λ k => k x) := by
+ simp_all [is_valid_p, is_mono_p_rec, is_cont_p_rec]
-- Lean is good at unification: we can write a very general version
-- (in particular, it will manage to figure out `g` and `h` when we
-- apply the lemma)
theorem is_valid_p_bind
- {{f : (a → Result b) → a → Result b}}
+ {{k : (a → Result b) → a → Result b}}
{{g : (a → Result b) → Result c}}
{{h : c → (a → Result b) → Result d}}
- (Hgvalid : is_valid_p f g)
- (Hhvalid : ∀ y, is_valid_p f (h y)) :
- is_valid_p f (λ f => do let y ← g f; h y f) := by
+ (Hgvalid : is_valid_p k g)
+ (Hhvalid : ∀ y, is_valid_p k (h y)) :
+ is_valid_p k (λ k => do let y ← g k; h y k) := by
let ⟨ Hgmono, Hgcont ⟩ := Hgvalid
- -- TODO: conversion to move forall below and conjunction?
simp [is_valid_p, forall_and] at Hhvalid
have ⟨ Hhmono, Hhcont ⟩ := Hhvalid
simp [← imp_forall_iff] at Hhcont
@@ -450,36 +427,37 @@ theorem fix_fixed_eq {{f : (a → Result b) → a → Result b}} (Hvalid : is_va
. -- Monotonicity
apply is_mono_p_bind <;> assumption
. -- Continuity
- intro Hfmono
- have Hgcont := Hgcont Hfmono
- have Hhcont := Hhcont Hfmono
+ intro Hkmono
+ have Hgcont := Hgcont Hkmono
+ have Hhcont := Hhcont Hkmono
apply is_cont_p_bind <;> assumption
- theorem is_valid_p_imp_is_valid {{body : (a → Result b) → a → Result b}}
- (Hvalid : ∀ f x, is_valid_p f (λ f => body f x)) :
- is_valid body := by
- have Hmono : is_mono body := by
+ theorem is_valid_p_imp_is_valid {{e : (a → Result b) → a → Result b}}
+ (Hvalid : ∀ k x, is_valid_p k (λ k => e k x)) :
+ is_mono e ∧ is_cont e := by
+ have Hmono : is_mono e := by
intro f h Hr x
have Hmono := Hvalid (λ _ _ => .div) x
have Hmono := Hmono.left
apply Hmono; assumption
- have Hcont : is_cont body := by
+ have Hcont : is_cont e := by
intro x Hdiv
- have Hcont := (Hvalid body x).right Hmono
+ have Hcont := (Hvalid e x).right Hmono
simp [is_cont_p] at Hcont
apply Hcont
intro n
have Hdiv := Hdiv n
simp [fix_fuel] at Hdiv
simp [*]
- apply is_valid.intro Hmono Hcont
+ simp [*]
-- TODO: functional extensionality
- theorem is_valid_p_fix_fixed_eq {{body : (a → Result b) → a → Result b}}
- (Hvalid : ∀ f x, is_valid_p f (λ f => body f x)) :
- fix body = body (fix body) := by
+ theorem is_valid_p_fix_fixed_eq {{e : (a → Result b) → a → Result b}}
+ (Hvalid : ∀ k x, is_valid_p k (λ k => e k x)) :
+ fix e = e (fix e) := by
apply funext
- exact fix_fixed_eq (is_valid_p_imp_is_valid Hvalid)
+ have ⟨ Hmono, Hcont ⟩ := is_valid_p_imp_is_valid Hvalid
+ exact fix_fixed_eq Hmono Hcont
end Fix
@@ -487,7 +465,7 @@ namespace Ex1
/- An example of use of the fixed-point -/
open Primitives Fix
- variable {a : Type} (f : (List a × Int) → Result a)
+ variable {a : Type} (k : (List a × Int) → Result a)
def list_nth_body (x : (List a × Int)) : Result a :=
let (ls, i) := x
@@ -495,9 +473,9 @@ namespace Ex1
| [] => .fail .panic
| hd :: tl =>
if i = 0 then .ret hd
- else f (tl, i - 1)
+ else k (tl, i - 1)
- theorem list_nth_body_valid: ∀ k x, is_valid_p k (λ k => @list_nth_body a k x) := by
+ theorem list_nth_body_is_valid: ∀ k x, is_valid_p k (λ k => @list_nth_body a k x) := by
intro k x
simp [list_nth_body]
split <;> simp
@@ -506,6 +484,7 @@ namespace Ex1
noncomputable
def list_nth (ls : List a) (i : Int) : Result a := fix list_nth_body (ls, i)
+ -- The unfolding equation
theorem list_nth_eq (ls : List a) (i : Int) :
list_nth ls i =
match ls with
@@ -514,17 +493,18 @@ namespace Ex1
if i = 0 then .ret hd
else list_nth tl (i - 1)
:= by
- have Heq := is_valid_p_fix_fixed_eq (@list_nth_body_valid a)
+ have Heq := is_valid_p_fix_fixed_eq (@list_nth_body_is_valid a)
simp [list_nth]
conv => lhs; rw [Heq]
end Ex1
namespace Ex2
- /- Same as Ex1, but we make the body of nth non tail-rec -/
+ /- Same as Ex1, but we make the body of nth non tail-rec (this is mostly
+ to see what happens when there are let-bindings) -/
open Primitives Fix
- variable {a : Type} (f : (List a × Int) → Result a)
+ variable {a : Type} (k : (List a × Int) → Result a)
def list_nth_body (x : (List a × Int)) : Result a :=
let (ls, i) := x
@@ -534,10 +514,10 @@ namespace Ex2
if i = 0 then .ret hd
else
do
- let y ← f (tl, i - 1)
+ let y ← k (tl, i - 1)
.ret y
- theorem list_nth_body_valid: ∀ k x, is_valid_p k (λ k => @list_nth_body a k x) := by
+ theorem list_nth_body_is_valid: ∀ k x, is_valid_p k (λ k => @list_nth_body a k x) := by
intro k x
simp [list_nth_body]
split <;> simp
@@ -547,6 +527,7 @@ namespace Ex2
noncomputable
def list_nth (ls : List a) (i : Int) : Result a := fix list_nth_body (ls, i)
+ -- The unfolding equation
theorem list_nth_eq (ls : List a) (i : Int) :
(list_nth ls i =
match ls with
@@ -558,7 +539,7 @@ namespace Ex2
let y ← list_nth tl (i - 1)
.ret y)
:= by
- have Heq := is_valid_p_fix_fixed_eq (@list_nth_body_valid a)
+ have Heq := is_valid_p_fix_fixed_eq (@list_nth_body_is_valid a)
simp [list_nth]
conv => lhs; rw [Heq]
@@ -577,7 +558,7 @@ namespace Ex3
the functions in the mutually recursive group may not have the same
return type.
-/
- variable (f : (Int ⊕ Int) → Result (Bool ⊕ Bool))
+ variable (k : (Int ⊕ Int) → Result (Bool ⊕ Bool))
def is_even_is_odd_body (x : (Int ⊕ Int)) : Result (Bool ⊕ Bool) :=
match x with
@@ -591,7 +572,7 @@ namespace Ex3
do
-- Call `odd`: we need to wrap the input value in `.inr`, then
-- extract the output value
- let r ← f (.inr (i- 1))
+ let r ← k (.inr (i- 1))
match r with
| .inl _ => .fail .panic -- Invalid output
| .inr b => .ret b
@@ -607,7 +588,7 @@ namespace Ex3
do
-- Call `is_even`: we need to wrap the input value in .inr, then
-- extract the output value
- let r ← f (.inl (i- 1))
+ let r ← k (.inl (i- 1))
match r with
| .inl b => .ret b
| .inr _ => .fail .panic -- Invalid output
@@ -642,7 +623,8 @@ namespace Ex3
-- TODO: move
-- TODO: this is not enough
- theorem swap_if_bind {a b : Type} (e : Prop) [Decidable e] (x y : Result a) (f : a → Result b) :
+ theorem swap_if_bind {a b : Type} (e : Prop) [Decidable e]
+ (x y : Result a) (f : a → Result b) :
(do
let z ← (if e then x else y)
f z)
@@ -651,6 +633,7 @@ namespace Ex3
else do let z ← y; f z) := by
split <;> simp
+ -- The unfolding equation for `is_even`
theorem is_even_eq (i : Int) :
is_even i = (if i = 0 then .ret true else is_odd (i - 1))
:= by
@@ -668,6 +651,7 @@ namespace Ex3
rename_i v
split <;> simp
+ -- The unfolding equation for `is_odd`
theorem is_odd_eq (i : Int) :
is_odd i = (if i = 0 then .ret false else is_even (i - 1))
:= by
@@ -699,7 +683,6 @@ namespace Ex4
.ret (hd :: tl)
/- The validity theorem for `map`, generic in `f` -/
- /- TODO: rename the continuation to k in all the lemma statements -/
theorem map_is_valid
{{f : (a → Result b) → a → Result c}}
(Hfvalid : ∀ k x, is_valid_p k (λ k => f k x))
@@ -724,7 +707,6 @@ namespace Ex4
let tl ← map f tl
.ret (.node tl)
- /- TODO: make the naming consistent (suffix with "_is") -/
theorem id_body_is_valid :
∀ k x, is_valid_p k (λ k => @id_body a k x) := by
intro k x
@@ -736,6 +718,7 @@ namespace Ex4
noncomputable def id (t : Tree a) := fix id_body t
+ -- The unfolding equation
theorem id_eq (t : Tree a) :
(id t =
match t with
diff --git a/backends/lean/Base/Primitives.lean b/backends/lean/Base/Primitives.lean
index d6cc0bad..1185a07d 100644
--- a/backends/lean/Base/Primitives.lean
+++ b/backends/lean/Base/Primitives.lean
@@ -94,6 +94,10 @@ instance : Bind Result where
instance : Pure Result where
pure := fun x => ret x
+@[simp] theorem bind_ret (x : α) (f : α → Result β) : bind (.ret x) f = f x := by simp [bind]
+@[simp] theorem bind_fail (x : Error) (f : α → Result β) : bind (.fail x) f = .fail x := by simp [bind]
+@[simp] theorem bind_div (f : α → Result β) : bind .div f = .div := by simp [bind]
+
/- CUSTOM-DSL SUPPORT -/
-- Let-binding the Result of a monadic operation is oftentimes not sufficient,
@@ -124,6 +128,15 @@ macro "let" e:term " <-- " f:term : doElem =>
let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩
.ret r
+@[simp] theorem bind_tc_ret (x : α) (f : α → Result β) :
+ (do let y ← .ret x; f y) = f x := by simp [Bind.bind, bind]
+
+@[simp] theorem bind_tc_fail (x : Error) (f : α → Result β) :
+ (do let y ← fail x; f y) = fail x := by simp [Bind.bind, bind]
+
+@[simp] theorem bind_tc_div (f : α → Result β) :
+ (do let y ← div; f y) = div := by simp [Bind.bind, bind]
+
----------------------
-- MACHINE INTEGERS --
----------------------