diff options
Diffstat (limited to 'backends/lean')
-rw-r--r-- | backends/lean/Base/Primitives/Array.lean | 80 |
1 files changed, 38 insertions, 42 deletions
diff --git a/backends/lean/Base/Primitives/Array.lean b/backends/lean/Base/Primitives/Array.lean index d19e9144..2d4a567b 100644 --- a/backends/lean/Base/Primitives/Array.lean +++ b/backends/lean/Base/Primitives/Array.lean @@ -14,7 +14,7 @@ namespace Primitives open Result Error -abbrev Array (α : Type u) (n : Usize) := { l : List α // l.length = n.val } +def Array (α : Type u) (n : Usize) := { l : List α // l.length = n.val } instance (a : Type u) (n : Usize) : Arith.HasIntProp (Array a n) where prop_ty := λ v => v.val.len = n.val @@ -33,19 +33,10 @@ abbrev Array.v {α : Type u} {n : Usize} (v : Array α n) : List α := v.val example {α: Type u} {n : Usize} (v : Array α n) : v.length ≤ Scalar.max ScalarTy.Usize := by scalar_tac -def Array.mk (α : Type u) (n : Usize) (init : List α) (hl : init.len = n.val := by decide) : +def Array.make (α : Type u) (n : Usize) (init : List α) (hl : init.len = n.val := by decide) : Array α n := ⟨ init, by simp [← List.len_eq_length]; apply hl ⟩ -example : Array Int (Usize.ofInt 2) := Array.mk Int (Usize.ofInt 2) [0, 1] - --- Remark: not used yet, but could be used if explicit calls to Len are used in Rust --- TODO: very annoying that the α and the n are explicit parameters -def Array.len (α : Type u) (n : Usize) (v : Array α n) : Usize := - Usize.ofIntCore v.val.len (by scalar_tac) (by scalar_tac) - -@[simp] -theorem Array.len_val {α : Type u} {n : Usize} (v : Array α n) : (Array.len α n v).val = v.length := - by rfl +example : Array Int (Usize.ofInt 2) := Array.make Int (Usize.ofInt 2) [0, 1] @[simp] abbrev Array.index {α : Type u} {n : Usize} [Inhabited α] (v : Array α n) (i : Int) : α := @@ -81,7 +72,7 @@ def Array.index_shared_back (α : Type u) (n : Usize) (v: Array α n) (i: Usize) else .fail arrayOutOfBounds -def Array.index_mut (α : Type u) (v: Array α n) (i: Usize) : Result α := +def Array.index_mut (α : Type u) (n : Usize) (v: Array α n) (i: Usize) : Result α := match v.val.indexOpt i.val with | none => fail .arrayOutOfBounds | some x => ret x @@ -89,13 +80,13 @@ def Array.index_mut (α : Type u) (v: Array α n) (i: Usize) : Result α := @[pspec] theorem Array.index_mut_spec {α : Type u} {n : Usize} [Inhabited α] (v: Array α n) (i: Usize) (hbound : i.val < v.length) : - ∃ x, v.index_mut α i = ret x ∧ x = v.val.index i.val := by + ∃ x, v.index_mut α n i = ret x ∧ x = v.val.index i.val := by simp only [index_mut] -- TODO: dependent rewrite have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*]) simp [*] -def Array.index_mut_back (α : Type u) (v: Array α n) (i: Usize) (x: α) : Result (Array α n) := +def Array.index_mut_back (α : Type u) (n : Usize) (v: Array α n) (i: Usize) (x: α) : Result (Array α n) := match v.val.indexOpt i.val with | none => fail .arrayOutOfBounds | some _ => @@ -104,7 +95,7 @@ def Array.index_mut_back (α : Type u) (v: Array α n) (i: Usize) (x: α) : Resu @[pspec] theorem Array.index_mut_back_spec {α : Type u} {n : Usize} (v: Array α n) (i: Usize) (x : α) (hbound : i.val < v.length) : - ∃ nv, v.index_mut_back α i x = ret nv ∧ + ∃ nv, v.index_mut_back α n i x = ret nv ∧ nv.val = v.val.update i.val x := by simp only [index_mut_back] @@ -209,6 +200,11 @@ theorem Slice.index_mut_back_spec {α : Type u} (v: Slice α) (i: Usize) (x : α . simp_all /- Array to slice/subslices -/ + +/- We could make this function not use the `Result` type. By making it monadic, we + push the user to use the `Array.to_slice_spec` spec theorem below (through the + `progress` tactic), meaning `Array.to_slice` should be considered as opaque. + All what the spec theorem reveals is that the "representative" lists are the same. -/ def Array.to_slice (α : Type u) (n : Usize) (v : Array α n) : Result (Slice α) := ret ⟨ v.val, by simp [← List.len_eq_length]; scalar_tac ⟩ @@ -233,7 +229,7 @@ theorem Array.to_mut_slice_back_spec {α : Type u} {n : Usize} (a : Array α n) ∃ na, to_mut_slice_back α n a ns = ret na ∧ na.val = ns.val := by simp [to_mut_slice_back, *] -def Array.shared_subslice (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) : Result (Slice α) := +def Array.subslice_shared (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) : Result (Slice α) := -- TODO: not completely sure here if r.start.val < r.end_.val ∧ r.end_.val ≤ a.val.len then ret ⟨ a.val.slice r.start.val r.end_.val, @@ -245,29 +241,29 @@ def Array.shared_subslice (α : Type u) (n : Usize) (a : Array α n) (r : Range fail panic @[pspec] -theorem Array.shared_subslice_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize) +theorem Array.subslice_shared_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize) (h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ a.val.len) : - ∃ s, shared_subslice α n a r = ret s ∧ + ∃ s, subslice_shared α n a r = ret s ∧ s.val = a.val.slice r.start.val r.end_.val ∧ (∀ i, 0 ≤ i → i + r.start.val < r.end_.val → s.val.index i = a.val.index (r.start.val + i)) := by - simp [shared_subslice, *] + simp [subslice_shared, *] intro i _ _ have := List.index_slice r.start.val r.end_.val i a.val (by scalar_tac) (by scalar_tac) (by trivial) (by scalar_tac) simp [*] -def Array.mut_subslice (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) : Result (Slice α) := - Array.shared_subslice α n a r +def Array.subslice_mut (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) : Result (Slice α) := + Array.subslice_shared α n a r @[pspec] -theorem Array.mut_subslice_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize) +theorem Array.subslice_mut_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize) (h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ a.val.len) : - ∃ s, mut_subslice α n a r = ret s ∧ + ∃ s, subslice_mut α n a r = ret s ∧ s.val = a.slice r.start.val r.end_.val ∧ (∀ i, 0 ≤ i → i + r.start.val < r.end_.val → s.val.index i = a.val.index (r.start.val + i)) - := shared_subslice_spec a r h0 h1 + := subslice_shared_spec a r h0 h1 -def Array.mut_subslice_back (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) (s : Slice α) : Result (Array α n) := +def Array.subslice_mut_back (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) (s : Slice α) : Result (Array α n) := -- TODO: not completely sure here if h: r.start.val < r.end_.val ∧ r.end_.val ≤ a.length ∧ s.val.len = r.end_.val - r.start.val then let s_beg := a.val.itake r.start.val @@ -292,13 +288,13 @@ def Array.mut_subslice_back (α : Type u) (n : Usize) (a : Array α n) (r : Rang -- We should introduce special symbols for the monadic arithmetic operations -- (the use will never write those symbols directly). @[pspec] -theorem Array.mut_subslice_back_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize) (s : Slice α) +theorem Array.subslice_mut_back_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize) (s : Slice α) (_ : r.start.val < r.end_.val) (_ : r.end_.val ≤ a.length) (_ : s.length = r.end_.val - r.start.val) : - ∃ na, mut_subslice_back α n a r s = ret na ∧ + ∃ na, subslice_mut_back α n a r s = ret na ∧ (∀ i, 0 ≤ i → i < r.start.val → na.index i = a.index i) ∧ (∀ i, r.start.val ≤ i → i < r.end_.val → na.index i = s.index (i - r.start.val)) ∧ (∀ i, r.end_.val ≤ i → i < n.val → na.index i = a.index i) := by - simp [mut_subslice_back, *] + simp [subslice_mut_back, *] have h := List.replace_slice_index r.start.val r.end_.val a.val s.val (by scalar_tac) (by scalar_tac) (by scalar_tac) (by scalar_tac) simp [List.replace_slice] at h @@ -315,7 +311,7 @@ theorem Array.mut_subslice_back_spec {α : Type u} {n : Usize} [Inhabited α] (a have := h2 i (by int_tac) (by int_tac) simp [*] -def Slice.shared_subslice (α : Type u) (s : Slice α) (r : Range Usize) : Result (Slice α) := +def Slice.subslice_shared (α : Type u) (s : Slice α) (r : Range Usize) : Result (Slice α) := -- TODO: not completely sure here if r.start.val < r.end_.val ∧ r.end_.val ≤ s.length then ret ⟨ s.val.slice r.start.val r.end_.val, @@ -327,32 +323,32 @@ def Slice.shared_subslice (α : Type u) (s : Slice α) (r : Range Usize) : Resul fail panic @[pspec] -theorem Slice.shared_subslice_spec {α : Type u} [Inhabited α] (s : Slice α) (r : Range Usize) +theorem Slice.subslice_shared_spec {α : Type u} [Inhabited α] (s : Slice α) (r : Range Usize) (h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ s.val.len) : - ∃ ns, shared_subslice α s r = ret ns ∧ + ∃ ns, subslice_shared α s r = ret ns ∧ ns.val = s.slice r.start.val r.end_.val ∧ (∀ i, 0 ≤ i → i + r.start.val < r.end_.val → ns.index i = s.index (r.start.val + i)) := by - simp [shared_subslice, *] + simp [subslice_shared, *] intro i _ _ have := List.index_slice r.start.val r.end_.val i s.val (by scalar_tac) (by scalar_tac) (by trivial) (by scalar_tac) simp [*] -def Slice.mut_subslice (α : Type u) (s : Slice α) (r : Range Usize) : Result (Slice α) := - Slice.shared_subslice α s r +def Slice.subslice_mut (α : Type u) (s : Slice α) (r : Range Usize) : Result (Slice α) := + Slice.subslice_shared α s r @[pspec] -theorem Slice.mut_subslice_spec {α : Type u} [Inhabited α] (s : Slice α) (r : Range Usize) +theorem Slice.subslice_mut_spec {α : Type u} [Inhabited α] (s : Slice α) (r : Range Usize) (h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ s.val.len) : - ∃ ns, mut_subslice α s r = ret ns ∧ + ∃ ns, subslice_mut α s r = ret ns ∧ ns.val = s.slice r.start.val r.end_.val ∧ (∀ i, 0 ≤ i → i + r.start.val < r.end_.val → ns.index i = s.index (r.start.val + i)) - := shared_subslice_spec s r h0 h1 + := subslice_shared_spec s r h0 h1 attribute [pp_dot] List.len List.length List.index -- use the dot notation when printing set_option pp.coercions false -- do not print coercions with ↑ (this doesn't parse) -def Slice.mut_subslice_back (α : Type u) (s : Slice α) (r : Range Usize) (ss : Slice α) : Result (Slice α) := +def Slice.subslice_mut_back (α : Type u) (s : Slice α) (r : Range Usize) (ss : Slice α) : Result (Slice α) := -- TODO: not completely sure here if h: r.start.val < r.end_.val ∧ r.end_.val ≤ s.length ∧ ss.val.len = r.end_.val - r.start.val then let s_beg := s.val.itake r.start.val @@ -372,13 +368,13 @@ def Slice.mut_subslice_back (α : Type u) (s : Slice α) (r : Range Usize) (ss : fail panic @[pspec] -theorem Slice.mut_subslice_back_spec {α : Type u} [Inhabited α] (a : Slice α) (r : Range Usize) (ss : Slice α) +theorem Slice.subslice_mut_back_spec {α : Type u} [Inhabited α] (a : Slice α) (r : Range Usize) (ss : Slice α) (_ : r.start.val < r.end_.val) (_ : r.end_.val ≤ a.length) (_ : ss.length = r.end_.val - r.start.val) : - ∃ na, mut_subslice_back α a r ss = ret na ∧ + ∃ na, subslice_mut_back α a r ss = ret na ∧ (∀ i, 0 ≤ i → i < r.start.val → na.index i = a.index i) ∧ (∀ i, r.start.val ≤ i → i < r.end_.val → na.index i = ss.index (i - r.start.val)) ∧ (∀ i, r.end_.val ≤ i → i < a.length → na.index i = a.index i) := by - simp [mut_subslice_back, *] + simp [subslice_mut_back, *] have h := List.replace_slice_index r.start.val r.end_.val a.val ss.val (by scalar_tac) (by scalar_tac) (by scalar_tac) (by scalar_tac) simp [List.replace_slice, *] at h |