summaryrefslogtreecommitdiff
path: root/backends/lean
diff options
context:
space:
mode:
Diffstat (limited to 'backends/lean')
-rw-r--r--backends/lean/Base/Arith/Int.lean6
-rw-r--r--backends/lean/Base/Arith/Scalar.lean47
-rw-r--r--backends/lean/Base/Progress/Progress.lean4
-rw-r--r--backends/lean/Base/Utils.lean16
4 files changed, 36 insertions, 37 deletions
diff --git a/backends/lean/Base/Arith/Int.lean b/backends/lean/Base/Arith/Int.lean
index 4a3db5f8..59cdca25 100644
--- a/backends/lean/Base/Arith/Int.lean
+++ b/backends/lean/Base/Arith/Int.lean
@@ -180,7 +180,7 @@ def introInstances (declToUnfold : Name) (lookup : Expr → MetaM (Option Expr))
-- Add a declaration
let nval ← Utils.addDeclTac name e type (asLet := false)
-- Simplify to unfold the declaration to unfold (i.e., the projector)
- Utils.simpAt true [declToUnfold] [] [] (Location.targets #[mkIdent name] false)
+ Utils.simpAt true {} [declToUnfold] [] [] (Location.targets #[mkIdent name] false)
-- Return the new value
pure nval
@@ -214,7 +214,7 @@ def intTacPreprocess (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM U
extraPreprocess
-- Reduce all the terms in the goal - note that the extra preprocessing step
-- might have proven the goal, hence the `Tactic.allGoals`
- Tactic.allGoals do tryTac (dsimpAt false [] [] [] Tactic.Location.wildcard)
+ Tactic.allGoals do tryTac (dsimpAt false {} [] [] [] Tactic.Location.wildcard)
elab "int_tac_preprocess" : tactic =>
intTacPreprocess (do pure ())
@@ -231,7 +231,7 @@ def intTac (tacName : String) (splitGoalConjs : Bool) (extraPreprocess : Tactic
-- the goal. I think before leads to a smaller proof term?
Tactic.allGoals (intTacPreprocess extraPreprocess)
-- More preprocessing
- Tactic.allGoals (Utils.tryTac (Utils.simpAt true [] [``nat_zero_eq_int_zero] [] .wildcard))
+ Tactic.allGoals (Utils.tryTac (Utils.simpAt true {} [] [``nat_zero_eq_int_zero] [] .wildcard))
-- Split the conjunctions in the goal
if splitGoalConjs then Tactic.allGoals (Utils.repeatTac Utils.splitConjTarget)
-- Call linarith
diff --git a/backends/lean/Base/Arith/Scalar.lean b/backends/lean/Base/Arith/Scalar.lean
index 86b2e216..c2e4e24e 100644
--- a/backends/lean/Base/Arith/Scalar.lean
+++ b/backends/lean/Base/Arith/Scalar.lean
@@ -8,30 +8,29 @@ open Lean Lean.Elab Lean.Meta
open Primitives
def scalarTacExtraPreprocess : Tactic.TacticM Unit := do
- Tactic.withMainContext do
- -- Inroduce the bounds for the isize/usize types
- let add (e : Expr) : Tactic.TacticM Unit := do
- let ty ← inferType e
- let _ ← Utils.addDeclTac (← Utils.mkFreshAnonPropUserName) e ty (asLet := false)
- add (← mkAppM ``Scalar.cMin_bound #[.const ``ScalarTy.Isize []])
- add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Usize []])
- add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Isize []])
- -- Reveal the concrete bounds, simplify calls to [ofInt]
- Utils.simpAt true
- -- Unfoldings
- [``Scalar.min, ``Scalar.max, ``Scalar.cMin, ``Scalar.cMax,
- ``I8.min, ``I16.min, ``I32.min, ``I64.min, ``I128.min,
- ``I8.max, ``I16.max, ``I32.max, ``I64.max, ``I128.max,
- ``U8.min, ``U16.min, ``U32.min, ``U64.min, ``U128.min,
- ``U8.max, ``U16.max, ``U32.max, ``U64.max, ``U128.max,
- ``Usize.min
- ]
- -- Simp lemmas
- [``Scalar.ofInt_val_eq, ``Scalar.neq_to_neq_val,
- ``Scalar.lt_equiv, ``Scalar.le_equiv, ``Scalar.eq_equiv]
- -- Hypotheses
- [] .wildcard
-
+ Tactic.withMainContext do
+ -- Inroduce the bounds for the isize/usize types
+ let add (e : Expr) : Tactic.TacticM Unit := do
+ let ty ← inferType e
+ let _ ← Utils.addDeclTac (← Utils.mkFreshAnonPropUserName) e ty (asLet := false)
+ add (← mkAppM ``Scalar.cMin_bound #[.const ``ScalarTy.Isize []])
+ add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Usize []])
+ add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Isize []])
+ -- Reveal the concrete bounds, simplify calls to [ofInt]
+ Utils.simpAt true {}
+ -- Unfoldings
+ [``Scalar.min, ``Scalar.max, ``Scalar.cMin, ``Scalar.cMax,
+ ``I8.min, ``I16.min, ``I32.min, ``I64.min, ``I128.min,
+ ``I8.max, ``I16.max, ``I32.max, ``I64.max, ``I128.max,
+ ``U8.min, ``U16.min, ``U32.min, ``U64.min, ``U128.min,
+ ``U8.max, ``U16.max, ``U32.max, ``U64.max, ``U128.max,
+ ``Usize.min
+ ]
+ -- Simp lemmas
+ [``Scalar.ofInt_val_eq, ``Scalar.neq_to_neq_val,
+ ``Scalar.lt_equiv, ``Scalar.le_equiv, ``Scalar.eq_equiv]
+ -- Hypotheses
+ [] .wildcard
elab "scalar_tac_preprocess" : tactic =>
intTacPreprocess scalarTacExtraPreprocess
diff --git a/backends/lean/Base/Progress/Progress.lean b/backends/lean/Base/Progress/Progress.lean
index f2a56e50..39a48044 100644
--- a/backends/lean/Base/Progress/Progress.lean
+++ b/backends/lean/Base/Progress/Progress.lean
@@ -135,7 +135,7 @@ def progressWith (fExpr : Expr) (th : TheoremOrLocal)
Tactic.focus do
let _ ←
tryTac
- (simpAt true []
+ (simpAt true {} []
[``Primitives.bind_tc_ok, ``Primitives.bind_tc_fail, ``Primitives.bind_tc_div]
[hEq.fvarId!] (.targets #[] true))
-- It may happen that at this point the goal is already solved (though this is rare)
@@ -144,7 +144,7 @@ def progressWith (fExpr : Expr) (th : TheoremOrLocal)
else
trace[Progress] "goal after applying the eq and simplifying the binds: {← getMainGoal}"
-- TODO: remove this (some types get unfolded too much: we "fold" them back)
- let _ ← tryTac (simpAt true [] scalar_eqs [] .wildcard_dep)
+ let _ ← tryTac (simpAt true {} [] scalar_eqs [] .wildcard_dep)
trace[Progress] "goal after folding back scalar types: {← getMainGoal}"
-- Clear the equality, unless the user requests not to do so
let mgoal ← do
diff --git a/backends/lean/Base/Utils.lean b/backends/lean/Base/Utils.lean
index 7ae5a832..6ee854cc 100644
--- a/backends/lean/Base/Utils.lean
+++ b/backends/lean/Base/Utils.lean
@@ -664,7 +664,7 @@ example (h : ∃ x y z, x + y + z ≥ 0) : ∃ x, x ≥ 0 := by
Something very annoying is that there is no function which allows to
initialize a simp context without doing an elaboration - as a consequence
we write our own here. -/
-def mkSimpCtx (simpOnly : Bool) (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId) :
+def mkSimpCtx (simpOnly : Bool) (config : Simp.Config) (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId) :
Tactic.TacticM Simp.Context := do
-- Initialize either with the builtin simp theorems or with all the simp theorems
let simpThms ←
@@ -693,7 +693,7 @@ def mkSimpCtx (simpOnly : Bool) (declsToUnfold : List Name) (thms : List Name) (
throwError "Not a proposition: {thmName}"
) simpThms
let congrTheorems ← getSimpCongrTheorems
- pure { simpTheorems := #[simpThms], congrTheorems }
+ pure { config, simpTheorems := #[simpThms], congrTheorems }
inductive Location where
/-- Apply the tactic everywhere. Same as `Tactic.Location.wildcard` -/
@@ -731,28 +731,28 @@ where
return usedSimps
/- Call the simp tactic. -/
-def simpAt (simpOnly : Bool) (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId)
+def simpAt (simpOnly : Bool) (config : Simp.Config) (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId)
(loc : Location) :
Tactic.TacticM Unit := do
-- Initialize the simp context
- let ctx ← mkSimpCtx simpOnly declsToUnfold thms hypsToUse
+ let ctx ← mkSimpCtx simpOnly config declsToUnfold thms hypsToUse
-- Apply the simplifier
let _ ← customSimpLocation ctx (discharge? := .none) loc
/- Call the dsimp tactic. -/
-def dsimpAt (simpOnly : Bool) (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId)
+def dsimpAt (simpOnly : Bool) (config : Simp.Config) (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId)
(loc : Tactic.Location) :
Tactic.TacticM Unit := do
-- Initialize the simp context
- let ctx ← mkSimpCtx simpOnly declsToUnfold thms hypsToUse
+ let ctx ← mkSimpCtx simpOnly config declsToUnfold thms hypsToUse
-- Apply the simplifier
dsimpLocation ctx loc
-- Call the simpAll tactic
-def simpAll (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId) :
+def simpAll (config : Simp.Config) (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId) :
Tactic.TacticM Unit := do
-- Initialize the simp context
- let ctx ← mkSimpCtx false declsToUnfold thms hypsToUse
+ let ctx ← mkSimpCtx false config declsToUnfold thms hypsToUse
-- Apply the simplifier
let _ ← Lean.Meta.simpAll (← getMainGoal) ctx