diff options
Diffstat (limited to 'backends/lean')
-rw-r--r-- | backends/lean/Base/IList/IList.lean | 57 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/Array.lean | 9 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/Scalar.lean | 127 |
3 files changed, 168 insertions, 25 deletions
diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean index a940da25..79de93d5 100644 --- a/backends/lean/Base/IList/IList.lean +++ b/backends/lean/Base/IList/IList.lean @@ -112,7 +112,19 @@ def pairwise_rel section Lemmas -variable {α : Type u} +variable {α : Type u} + +def ireplicate {α : Type u} (i : ℤ) (x : α) : List α := + if i ≤ 0 then [] + else x :: ireplicate (i - 1) x +termination_by ireplicate i x => i.toNat +decreasing_by + simp_wf + -- TODO: simplify this kind of proofs + simp at * + have : 0 ≤ i := by linarith + have : 1 ≤ i := by linarith + simp [Int.toNat_sub_of_le, *] @[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update] @[simp] theorem update_zero_cons : update ((x :: tl) : List α) 0 y = y :: tl := by simp [update] @@ -129,6 +141,10 @@ variable {α : Type u} @[simp] theorem slice_nil : slice i j ([] : List α) = [] := by simp [slice] @[simp] theorem slice_zero : slice 0 0 (ls : List α) = [] := by cases ls <;> simp [slice] +@[simp] theorem ireplicate_zero : ireplicate 0 x = [] := by rw [ireplicate]; simp +@[simp] theorem ireplicate_nzero_cons (hne : 0 < i) : ireplicate i x = x :: ireplicate (i - 1) x := by + rw [ireplicate]; simp [*]; intro; linarith + @[simp] theorem slice_nzero_cons (i j : Int) (x : α) (tl : List α) (hne : i ≠ 0) : slice i j ((x :: tl) : List α) = slice (i - 1) (j - 1) tl := match tl with @@ -144,6 +160,45 @@ theorem slice_nzero_cons (i j : Int) (x : α) (tl : List α) (hne : i ≠ 0) : s conv at this => lhs; simp [slice, *] simp [*, slice] +@[simp] +theorem ireplicate_replicate {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) : + ireplicate l x = replicate l.toNat x := + if hz: l = 0 then by + simp [*] + else by + have : 0 < l := by int_tac + have hr := ireplicate_replicate (l - 1) x (by int_tac) + simp [*] + have hl : l.toNat = .succ (l.toNat - 1) := by + cases hl: l.toNat <;> simp_all + conv => rhs; rw[hl] +termination_by ireplicate_replicate l x h => l.toNat +decreasing_by + simp_wf + -- TODO: simplify this kind of proofs + simp at * + have : 0 ≤ l := by linarith + have : 1 ≤ l := by linarith + simp [Int.toNat_sub_of_le, *] + +@[simp] +theorem ireplicate_len {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) : + (ireplicate l x).len = l := + if hz: l = 0 then by + simp [*] + else by + have : 0 < l := by int_tac + have hr := ireplicate_len (l - 1) x (by int_tac) + simp [*] +termination_by ireplicate_len l x h => l.toNat +decreasing_by + simp_wf + -- TODO: simplify this kind of proofs + simp at * + have : 0 ≤ l := by linarith + have : 1 ≤ l := by linarith + simp [Int.toNat_sub_of_le, *] + theorem len_eq_length (ls : List α) : ls.len = ls.length := by induction ls . rfl diff --git a/backends/lean/Base/Primitives/Array.lean b/backends/lean/Base/Primitives/Array.lean index 6c95fd78..49c84bee 100644 --- a/backends/lean/Base/Primitives/Array.lean +++ b/backends/lean/Base/Primitives/Array.lean @@ -51,6 +51,15 @@ def Array.index_shared (α : Type u) (n : Usize) (v: Array α n) (i: Usize) : Re | none => fail .arrayOutOfBounds | some x => ret x +-- For initialization +def Array.repeat (α : Type u) (n : Usize) (x : α) : Array α n := + ⟨ List.ireplicate n.val x, by have h := n.hmin; simp_all [Scalar.min] ⟩ + +@[pspec] +theorem Array.repeat_spec {α : Type u} (n : Usize) (x : α) : + ∃ a, Array.repeat α n x = a ∧ a.val = List.ireplicate n.val x := by + simp [Array.repeat] + /- In the theorems below: we don't always need the `∃ ..`, but we use one so that `progress` introduces an opaque variable and an equality. This helps control the context. diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean index 55227a9f..ec9665a5 100644 --- a/backends/lean/Base/Primitives/Scalar.lean +++ b/backends/lean/Base/Primitives/Scalar.lean @@ -230,6 +230,20 @@ def Scalar.cMax (ty : ScalarTy) : Int := | .Usize => Scalar.max .U32 | _ => Scalar.max ty +theorem Scalar.min_lt_max (ty : ScalarTy) : Scalar.min ty < Scalar.max ty := by + cases ty <;> simp [Scalar.min, Scalar.max] + . simp [Isize.min, Isize.max] + have h1 := Isize.refined_min.property + have h2 := Isize.refined_max.property + cases h1 <;> cases h2 <;> simp [*] + . simp [Usize.max] + have h := Usize.refined_max.property + cases h <;> simp [*] + +theorem Scalar.min_le_max (ty : ScalarTy) : Scalar.min ty ≤ Scalar.max ty := by + have := Scalar.min_lt_max ty + int_tac + theorem Scalar.cMin_bound ty : Scalar.min ty ≤ Scalar.cMin ty := by cases ty <;> simp [Scalar.min, Scalar.max, Scalar.cMin, Scalar.cMax] at * have h := Isize.refined_min.property @@ -395,6 +409,34 @@ def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Re @[reducible] def U64 := Scalar .U64 @[reducible] def U128 := Scalar .U128 +-- TODO: reducible? +@[reducible] def core_isize_min : Isize := Scalar.ofInt Isize.min (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize)) +@[reducible] def core_isize_max : Isize := Scalar.ofInt Isize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize)) +@[reducible] def core_i8_min : I8 := Scalar.ofInt I8.min +@[reducible] def core_i8_max : I8 := Scalar.ofInt I8.max +@[reducible] def core_i16_min : I16 := Scalar.ofInt I16.min +@[reducible] def core_i16_max : I16 := Scalar.ofInt I16.max +@[reducible] def core_i32_min : I32 := Scalar.ofInt I32.min +@[reducible] def core_i32_max : I32 := Scalar.ofInt I32.max +@[reducible] def core_i64_min : I64 := Scalar.ofInt I64.min +@[reducible] def core_i64_max : I64 := Scalar.ofInt I64.max +@[reducible] def core_i128_min : I128 := Scalar.ofInt I128.min +@[reducible] def core_i128_max : I128 := Scalar.ofInt I128.max + +-- TODO: reducible? +@[reducible] def core_usize_min : Usize := Scalar.ofInt Usize.min +@[reducible] def core_usize_max : Usize := Scalar.ofInt Usize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Usize)) +@[reducible] def core_u8_min : U8 := Scalar.ofInt U8.min +@[reducible] def core_u8_max : U8 := Scalar.ofInt U8.max +@[reducible] def core_u16_min : U16 := Scalar.ofInt U16.min +@[reducible] def core_u16_max : U16 := Scalar.ofInt U16.max +@[reducible] def core_u32_min : U32 := Scalar.ofInt U32.min +@[reducible] def core_u32_max : U32 := Scalar.ofInt U32.max +@[reducible] def core_u64_min : U64 := Scalar.ofInt U64.min +@[reducible] def core_u64_max : U64 := Scalar.ofInt U64.max +@[reducible] def core_u128_min : U128 := Scalar.ofInt U128.min +@[reducible] def core_u128_max : U128 := Scalar.ofInt U128.max + -- TODO: below: not sure this is the best way. -- Should we rather overload operations like +, -, etc.? -- Also, it is possible to automate the generation of those definitions @@ -861,33 +903,33 @@ theorem Scalar.rem_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : S -- ofIntCore -- TODO: typeclass? -@[reducible] def Isize.ofIntCore := @Scalar.ofIntCore .Isize -@[reducible] def I8.ofIntCore := @Scalar.ofIntCore .I8 -@[reducible] def I16.ofIntCore := @Scalar.ofIntCore .I16 -@[reducible] def I32.ofIntCore := @Scalar.ofIntCore .I32 -@[reducible] def I64.ofIntCore := @Scalar.ofIntCore .I64 -@[reducible] def I128.ofIntCore := @Scalar.ofIntCore .I128 -@[reducible] def Usize.ofIntCore := @Scalar.ofIntCore .Usize -@[reducible] def U8.ofIntCore := @Scalar.ofIntCore .U8 -@[reducible] def U16.ofIntCore := @Scalar.ofIntCore .U16 -@[reducible] def U32.ofIntCore := @Scalar.ofIntCore .U32 -@[reducible] def U64.ofIntCore := @Scalar.ofIntCore .U64 -@[reducible] def U128.ofIntCore := @Scalar.ofIntCore .U128 +def Isize.ofIntCore := @Scalar.ofIntCore .Isize +def I8.ofIntCore := @Scalar.ofIntCore .I8 +def I16.ofIntCore := @Scalar.ofIntCore .I16 +def I32.ofIntCore := @Scalar.ofIntCore .I32 +def I64.ofIntCore := @Scalar.ofIntCore .I64 +def I128.ofIntCore := @Scalar.ofIntCore .I128 +def Usize.ofIntCore := @Scalar.ofIntCore .Usize +def U8.ofIntCore := @Scalar.ofIntCore .U8 +def U16.ofIntCore := @Scalar.ofIntCore .U16 +def U32.ofIntCore := @Scalar.ofIntCore .U32 +def U64.ofIntCore := @Scalar.ofIntCore .U64 +def U128.ofIntCore := @Scalar.ofIntCore .U128 -- ofInt -- TODO: typeclass? -@[reducible] def Isize.ofInt := @Scalar.ofInt .Isize -@[reducible] def I8.ofInt := @Scalar.ofInt .I8 -@[reducible] def I16.ofInt := @Scalar.ofInt .I16 -@[reducible] def I32.ofInt := @Scalar.ofInt .I32 -@[reducible] def I64.ofInt := @Scalar.ofInt .I64 -@[reducible] def I128.ofInt := @Scalar.ofInt .I128 -@[reducible] def Usize.ofInt := @Scalar.ofInt .Usize -@[reducible] def U8.ofInt := @Scalar.ofInt .U8 -@[reducible] def U16.ofInt := @Scalar.ofInt .U16 -@[reducible] def U32.ofInt := @Scalar.ofInt .U32 -@[reducible] def U64.ofInt := @Scalar.ofInt .U64 -@[reducible] def U128.ofInt := @Scalar.ofInt .U128 +abbrev Isize.ofInt := @Scalar.ofInt .Isize +abbrev I8.ofInt := @Scalar.ofInt .I8 +abbrev I16.ofInt := @Scalar.ofInt .I16 +abbrev I32.ofInt := @Scalar.ofInt .I32 +abbrev I64.ofInt := @Scalar.ofInt .I64 +abbrev I128.ofInt := @Scalar.ofInt .I128 +abbrev Usize.ofInt := @Scalar.ofInt .Usize +abbrev U8.ofInt := @Scalar.ofInt .U8 +abbrev U16.ofInt := @Scalar.ofInt .U16 +abbrev U32.ofInt := @Scalar.ofInt .U32 +abbrev U64.ofInt := @Scalar.ofInt .U64 +abbrev U128.ofInt := @Scalar.ofInt .U128 postfix:max "#isize" => Isize.ofInt postfix:max "#i8" => I8.ofInt @@ -905,9 +947,46 @@ postfix:max "#u128" => U128.ofInt -- Testing the notations example : Result Usize := 0#usize + 1#usize +-- TODO: factor those lemmas out @[simp] theorem Scalar.ofInt_val_eq {ty} (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : (Scalar.ofInt x h).val = x := by simp [Scalar.ofInt, Scalar.ofIntCore] +@[simp] theorem Isize.ofInt_val_eq (h : Scalar.min ScalarTy.Isize ≤ x ∧ x ≤ Scalar.max ScalarTy.Isize) : (Isize.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem I8.ofInt_val_eq (h : Scalar.min ScalarTy.I8 ≤ x ∧ x ≤ Scalar.max ScalarTy.I8) : (I8.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem I16.ofInt_val_eq (h : Scalar.min ScalarTy.I16 ≤ x ∧ x ≤ Scalar.max ScalarTy.I16) : (I16.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem I32.ofInt_val_eq (h : Scalar.min ScalarTy.I32 ≤ x ∧ x ≤ Scalar.max ScalarTy.I32) : (I32.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem I64.ofInt_val_eq (h : Scalar.min ScalarTy.I64 ≤ x ∧ x ≤ Scalar.max ScalarTy.I64) : (I64.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem I128.ofInt_val_eq (h : Scalar.min ScalarTy.I128 ≤ x ∧ x ≤ Scalar.max ScalarTy.I128) : (I128.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem Usize.ofInt_val_eq (h : Scalar.min ScalarTy.Usize ≤ x ∧ x ≤ Scalar.max ScalarTy.Usize) : (Usize.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem U8.ofInt_val_eq (h : Scalar.min ScalarTy.U8 ≤ x ∧ x ≤ Scalar.max ScalarTy.U8) : (U8.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem U16.ofInt_val_eq (h : Scalar.min ScalarTy.U16 ≤ x ∧ x ≤ Scalar.max ScalarTy.U16) : (U16.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem U32.ofInt_val_eq (h : Scalar.min ScalarTy.U32 ≤ x ∧ x ≤ Scalar.max ScalarTy.U32) : (U32.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem U64.ofInt_val_eq (h : Scalar.min ScalarTy.U64 ≤ x ∧ x ≤ Scalar.max ScalarTy.U64) : (U64.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem U128.ofInt_val_eq (h : Scalar.min ScalarTy.U128 ≤ x ∧ x ≤ Scalar.max ScalarTy.U128) : (U128.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + -- Comparisons instance {ty} : LT (Scalar ty) where lt a b := LT.lt a.val b.val |