diff options
Diffstat (limited to '')
-rw-r--r-- | backends/lean/primitives.lean | 16 |
1 files changed, 9 insertions, 7 deletions
diff --git a/backends/lean/primitives.lean b/backends/lean/primitives.lean index d86c0423..9e72b708 100644 --- a/backends/lean/primitives.lean +++ b/backends/lean/primitives.lean @@ -131,26 +131,28 @@ macro_rules def vec (α : Type u) := { l : List α // List.length l < USize.size } -def vec_new : result (vec α) := return ⟨ [], by { +def vec_new (α : Type u): result (vec α) := return ⟨ [], by { match USize.size, usize_size_eq with | _, Or.inl rfl => simp | _, Or.inr rfl => simp } ⟩ -def vec_len (v : vec α) : USize := +#check vec_new + +def vec_len (α : Type u) (v : vec α) : USize := let ⟨ v, l ⟩ := v USize.ofNatCore (List.length v) l #eval do - return (vec_len (<- @vec_new Nat)) + return (vec_len Nat (<- vec_new Nat)) -def vec_push_fwd (_ : vec α) (_ : α) : Unit := () +def vec_push_fwd (α : Type u) (_ : vec α) (_ : α) : Unit := () -- TODO: more precise error condition here for the fail case -- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one -- make the proof work in that case? Probably need to import tactics from -- mathlib to deal with inequalities... would love to see an example. -def vec_push_back (v : vec α) (x : α) : { res: result (vec α) // +def vec_push_back (α : Type u) (v : vec α) (x : α) : { res: result (vec α) // match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1} := if h : List.length v.val + 1 < USize.size then @@ -168,7 +170,7 @@ def vec_push_back (v : vec α) (x : α) : { res: result (vec α) // -- select the `val` field if the context provides a type annotation. We -- annotate `x`, which relieves us of having to write `.val` on the right-hand -- side of the monadic let. - let x: vec Nat ← vec_push_back (<- vec_new) 1 + let x: vec Nat ← vec_push_back Nat (<- vec_new Nat) 1 -- TODO: strengthen post-condition above and do a demo to show that we can -- safely eliminate the `fail` case - return (vec_len x) + return (vec_len Nat x) |