summaryrefslogtreecommitdiff
path: root/backends/lean
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--backends/lean/Base/Diverge/Base.lean102
-rw-r--r--backends/lean/Base/Diverge/Elab.lean50
-rw-r--r--backends/lean/Base/Primitives/Alloc.lean4
-rw-r--r--backends/lean/Base/Primitives/ArraySlice.lean54
-rw-r--r--backends/lean/Base/Primitives/Base.lean30
-rw-r--r--backends/lean/Base/Primitives/Scalar.lean144
-rw-r--r--backends/lean/Base/Primitives/Vec.lean26
-rw-r--r--backends/lean/Base/Progress/Progress.lean22
8 files changed, 215 insertions, 217 deletions
diff --git a/backends/lean/Base/Diverge/Base.lean b/backends/lean/Base/Diverge/Base.lean
index e40432bd..717a3e64 100644
--- a/backends/lean/Base/Diverge/Base.lean
+++ b/backends/lean/Base/Diverge/Base.lean
@@ -169,7 +169,7 @@ namespace Fix
match x1 with
| div => True
| fail _ => x2 = x1
- | ret _ => x2 = x1 -- TODO: generalize
+ | ok _ => x2 = x1 -- TODO: generalize
-- Monotonicity relation over monadic arrows (i.e., Kleisli arrows)
def karrow_rel (k1 k2 : (x:a) → Result (b x)) : Prop :=
@@ -388,7 +388,7 @@ namespace Fix
have Hgeq := Hgmono Hffmono
simp [result_rel] at Hgeq
cases Heq: g (fix_fuel n k) <;> rename_i y <;> simp_all
- -- Remains the .ret case
+ -- Remains the .ok case
-- Use Hdiv to prove that: ∀ n, h y (fix_fuel n f) = div
-- We do this in two steps: first we prove it for m ≥ n
have Hhdiv: ∀ m, h y (fix_fuel m k) = .div := by
@@ -509,7 +509,7 @@ namespace FixI
specific case.
Remark: the index designates the function in the mutually recursive group
- (it should be a finite type). We make the return type depend on the input
+ (it should be a finite type). We make the output type depend on the input
type because we group the type parameters in the input type.
-/
open Primitives Fix
@@ -945,7 +945,7 @@ namespace Ex1
match ls with
| [] => .fail .panic
| hd :: tl =>
- if i = 0 then .ret hd
+ if i = 0 then .ok hd
else k (tl, i - 1)
theorem list_nth_body_is_valid: ∀ k x, is_valid_p k (λ k => @list_nth_body a k x) := by
@@ -962,7 +962,7 @@ namespace Ex1
match ls with
| [] => .fail .panic
| hd :: tl =>
- if i = 0 then .ret hd
+ if i = 0 then .ok hd
else list_nth tl (i - 1)
:= by
have Heq := is_valid_fix_fixed_eq (@list_nth_body_is_valid a)
@@ -983,11 +983,11 @@ namespace Ex2
match ls with
| [] => .fail .panic
| hd :: tl =>
- if i = 0 then .ret hd
+ if i = 0 then .ok hd
else
do
let y ← k (tl, i - 1)
- .ret y
+ .ok y
theorem list_nth_body_is_valid: ∀ k x, is_valid_p k (λ k => @list_nth_body a k x) := by
intro k x
@@ -1004,11 +1004,11 @@ namespace Ex2
match ls with
| [] => .fail .panic
| hd :: tl =>
- if i = 0 then .ret hd
+ if i = 0 then .ok hd
else
do
let y ← list_nth tl (i - 1)
- .ret y)
+ .ok y)
:= by
have Heq := is_valid_fix_fixed_eq (@list_nth_body_is_valid a)
simp [list_nth]
@@ -1025,9 +1025,9 @@ namespace Ex3
- inputs: the sum allows to select the function to call in the recursive
calls (and the functions may not have the same input types)
- outputs: this case is degenerate because `even` and `odd` have the same
- return type `Bool`, but generally speaking we need a sum type because
+ output type `Bool`, but generally speaking we need a sum type because
the functions in the mutually recursive group may have different
- return types.
+ output types.
-/
variable (k : (Int ⊕ Int) → Result (Bool ⊕ Bool))
@@ -1036,7 +1036,7 @@ namespace Ex3
| .inl i =>
-- Body of `is_even`
if i = 0
- then .ret (.inl true) -- We use .inl because this is `is_even`
+ then .ok (.inl true) -- We use .inl because this is `is_even`
else
do
let b ←
@@ -1046,13 +1046,13 @@ namespace Ex3
let r ← k (.inr (i- 1))
match r with
| .inl _ => .fail .panic -- Invalid output
- | .inr b => .ret b
- -- Wrap the return value
- .ret (.inl b)
+ | .inr b => .ok b
+ -- Wrap the output value
+ .ok (.inl b)
| .inr i =>
-- Body of `is_odd`
if i = 0
- then .ret (.inr false) -- We use .inr because this is `is_odd`
+ then .ok (.inr false) -- We use .inr because this is `is_odd`
else
do
let b ←
@@ -1061,10 +1061,10 @@ namespace Ex3
-- extract the output value
let r ← k (.inl (i- 1))
match r with
- | .inl b => .ret b
+ | .inl b => .ok b
| .inr _ => .fail .panic -- Invalid output
- -- Wrap the return value
- .ret (.inr b)
+ -- Wrap the output value
+ .ok (.inr b)
theorem is_even_is_odd_body_is_valid:
∀ k x, is_valid_p k (λ k => is_even_is_odd_body k x) := by
@@ -1080,7 +1080,7 @@ namespace Ex3
do
let r ← fix is_even_is_odd_body (.inl i)
match r with
- | .inl b => .ret b
+ | .inl b => .ok b
| .inr _ => .fail .panic
def is_odd (i : Int): Result Bool :=
@@ -1088,11 +1088,11 @@ namespace Ex3
let r ← fix is_even_is_odd_body (.inr i)
match r with
| .inl _ => .fail .panic
- | .inr b => .ret b
+ | .inr b => .ok b
-- The unfolding equation for `is_even` - diverges if `i < 0`
theorem is_even_eq (i : Int) :
- is_even i = (if i = 0 then .ret true else is_odd (i - 1))
+ is_even i = (if i = 0 then .ok true else is_odd (i - 1))
:= by
have Heq := is_valid_fix_fixed_eq is_even_is_odd_body_is_valid
simp [is_even, is_odd]
@@ -1110,7 +1110,7 @@ namespace Ex3
-- The unfolding equation for `is_odd` - diverges if `i < 0`
theorem is_odd_eq (i : Int) :
- is_odd i = (if i = 0 then .ret false else is_even (i - 1))
+ is_odd i = (if i = 0 then .ok false else is_even (i - 1))
:= by
have Heq := is_valid_fix_fixed_eq is_even_is_odd_body_is_valid
simp [is_even, is_odd]
@@ -1136,17 +1136,17 @@ namespace Ex4
/- The bodies are more natural -/
def is_even_body (k : (i : Fin 2) → (x : input_ty i) → Result (output_ty i x)) (i : Int) : Result Bool :=
if i = 0
- then .ret true
+ then .ok true
else do
let b ← k 1 (i - 1)
- .ret b
+ .ok b
def is_odd_body (k : (i : Fin 2) → (x : input_ty i) → Result (output_ty i x)) (i : Int) : Result Bool :=
if i = 0
- then .ret false
+ then .ok false
else do
let b ← k 0 (i - 1)
- .ret b
+ .ok b
@[simp] def bodies :
Funs (Fin 2) input_ty output_ty
@@ -1179,19 +1179,19 @@ namespace Ex4
theorem is_even_eq (i : Int) : is_even i =
(if i = 0
- then .ret true
+ then .ok true
else do
let b ← is_odd (i - 1)
- .ret b) := by
+ .ok b) := by
simp [is_even, is_odd];
conv => lhs; rw [body_fix_eq]
theorem is_odd_eq (i : Int) : is_odd i =
(if i = 0
- then .ret false
+ then .ok false
else do
let b ← is_even (i - 1)
- .ret b) := by
+ .ok b) := by
simp [is_even, is_odd];
conv => lhs; rw [body_fix_eq]
end Ex4
@@ -1205,12 +1205,12 @@ namespace Ex5
/- An auxiliary function, which doesn't require the fixed-point -/
def map (f : a → Result b) (ls : List a) : Result (List b) :=
match ls with
- | [] => .ret []
+ | [] => .ok []
| hd :: tl =>
do
let hd ← f hd
let tl ← map f tl
- .ret (hd :: tl)
+ .ok (hd :: tl)
/- The validity theorem for `map`, generic in `f` -/
theorem map_is_valid
@@ -1231,11 +1231,11 @@ namespace Ex5
def id_body (k : Tree a → Result (Tree a)) (t : Tree a) : Result (Tree a) :=
match t with
- | .leaf x => .ret (.leaf x)
+ | .leaf x => .ok (.leaf x)
| .node tl =>
do
let tl ← map k tl
- .ret (.node tl)
+ .ok (.node tl)
theorem id_body_is_valid :
∀ k x, is_valid_p k (λ k => @id_body a k x) := by
@@ -1256,11 +1256,11 @@ namespace Ex5
theorem id_eq (t : Tree a) :
(id t =
match t with
- | .leaf x => .ret (.leaf x)
+ | .leaf x => .ok (.leaf x)
| .node tl =>
do
let tl ← map id tl
- .ret (.node tl))
+ .ok (.node tl))
:= by
have Heq := is_valid_fix_fixed_eq (@id_body_is_valid a)
simp [id]
@@ -1285,7 +1285,7 @@ namespace Ex6
match ls with
| [] => .fail .panic
| hd :: tl =>
- if i = 0 then .ret hd
+ if i = 0 then .ok hd
else k 0 ⟨ a, tl, i - 1 ⟩
@[simp] def bodies :
@@ -1316,7 +1316,7 @@ namespace Ex6
match ls with
| [] => is_valid_p_same k (.fail .panic)
| hd :: tl =>
- is_valid_p_ite k (Eq i 0) (is_valid_p_same k (.ret hd)) (is_valid_p_rec k 0 ⟨a, tl, i-1⟩)
+ is_valid_p_ite k (Eq i 0) (is_valid_p_same k (.ok hd)) (is_valid_p_rec k 0 ⟨a, tl, i-1⟩)
theorem body_is_valid' : is_valid body :=
fun k =>
@@ -1332,7 +1332,7 @@ namespace Ex6
match ls with
| [] => .fail .panic
| hd :: tl =>
- if i = 0 then .ret hd
+ if i = 0 then .ok hd
else list_nth tl (i - 1)
:= by
have Heq := is_valid_fix_fixed_eq body_is_valid
@@ -1347,7 +1347,7 @@ namespace Ex6
match ls with
| [] => .fail .panic
| hd :: tl =>
- if i = 0 then .ret hd
+ if i = 0 then .ok hd
else list_nth tl (i - 1)
:=
-- Use the fixed-point equation
@@ -1378,7 +1378,7 @@ namespace Ex7
match ls with
| [] => .fail .panic
| hd :: tl =>
- if i = 0 then .ret hd
+ if i = 0 then .ok hd
else k 0 a ⟨ tl, i - 1 ⟩
@[simp] def bodies :
@@ -1409,7 +1409,7 @@ namespace Ex7
match ls with
| [] => is_valid_p_same k (.fail .panic)
| hd :: tl =>
- is_valid_p_ite k (Eq i 0) (is_valid_p_same k (.ret hd)) (is_valid_p_rec k 0 a ⟨tl, i-1⟩)
+ is_valid_p_ite k (Eq i 0) (is_valid_p_same k (.ok hd)) (is_valid_p_rec k 0 a ⟨tl, i-1⟩)
theorem body_is_valid' : is_valid body :=
fun k =>
@@ -1425,7 +1425,7 @@ namespace Ex7
match ls with
| [] => .fail .panic
| hd :: tl =>
- if i = 0 then .ret hd
+ if i = 0 then .ok hd
else list_nth tl (i - 1)
:= by
have Heq := is_valid_fix_fixed_eq body_is_valid
@@ -1440,7 +1440,7 @@ namespace Ex7
match ls with
| [] => .fail .panic
| hd :: tl =>
- if i = 0 then .ret hd
+ if i = 0 then .ok hd
else list_nth tl (i - 1)
:=
-- Use the fixed-point equation
@@ -1466,12 +1466,12 @@ namespace Ex8
/- An auxiliary function, which doesn't require the fixed-point -/
def map {a : Type y} {b : Type z} (f : a → Result b) (ls : List a) : Result (List b) :=
match ls with
- | [] => .ret []
+ | [] => .ok []
| hd :: tl =>
do
let hd ← f hd
let tl ← map f tl
- .ret (hd :: tl)
+ .ok (hd :: tl)
/- The validity theorems for `map`, generic in `f` -/
@@ -1520,11 +1520,11 @@ namespace Ex9
def id_body.{u} (k : (i:Fin 1) → (t:ty i) → input_ty i t → Result (output_ty i t))
(a : Type u) (t : Tree a) : Result (Tree a) :=
match t with
- | .leaf x => .ret (.leaf x)
+ | .leaf x => .ok (.leaf x)
| .node tl =>
do
let tl ← map (k 0 a) tl
- .ret (.node tl)
+ .ok (.node tl)
@[simp] def bodies :
Funs (Fin 1) ty input_ty output_ty tys :=
@@ -1558,11 +1558,11 @@ namespace Ex9
theorem id_eq' {a : Type u} (t : Tree a) :
id t =
(match t with
- | .leaf x => .ret (.leaf x)
+ | .leaf x => .ok (.leaf x)
| .node tl =>
do
let tl ← map id tl
- .ret (.node tl))
+ .ok (.node tl))
:=
-- The unfolding equation
have Heq := is_valid_fix_fixed_eq body_is_valid.{u}
diff --git a/backends/lean/Base/Diverge/Elab.lean b/backends/lean/Base/Diverge/Elab.lean
index f30148dc..d2dc3922 100644
--- a/backends/lean/Base/Diverge/Elab.lean
+++ b/backends/lean/Base/Diverge/Elab.lean
@@ -36,7 +36,7 @@ def mkProd (x y : Expr) : MetaM Expr :=
def mkInOutTy (x y z : Expr) : MetaM Expr := do
mkAppM ``FixII.mk_in_out_ty #[x, y, z]
--- Return the `a` in `Return a`
+-- Return the `a` in `Result a`
def getResultTy (ty : Expr) : MetaM Expr :=
ty.withApp fun f args => do
if ¬ f.isConstOf ``Result ∨ args.size ≠ 1 then
@@ -412,7 +412,7 @@ structure TypeInfo where
For `list_nth`: `λ a => List a × Int`
-/
in_ty : Expr
- /- The output type, without the `Return`. This is a function taking
+ /- The output type, without the `Result`. This is a function taking
as input a value of type `params_ty`.
For `list_nth`: `λ a => a`
@@ -1480,9 +1480,9 @@ namespace Tests
divergent def list_nth {a: Type u} (ls : List a) (i : Int) : Result a :=
match ls with
| [] => .fail .panic
- | x :: ls =>
- if i = 0 then return x
- else return (← list_nth ls (i - 1))
+ | x :: ls => do
+ if i = 0 then pure x
+ else pure (← list_nth ls (i - 1))
--set_option trace.Diverge false
@@ -1491,7 +1491,7 @@ namespace Tests
example {a: Type} (ls : List a) :
∀ (i : Int),
0 ≤ i → i < ls.length →
- ∃ x, list_nth ls i = .ret x := by
+ ∃ x, list_nth ls i = .ok x := by
induction ls
. intro i hpos h; simp at h; linarith
. rename_i hd tl ih
@@ -1539,7 +1539,7 @@ namespace Tests
if i > 10 then return (← foo (i / 10)) + (← bar i) else bar 10
divergent def bar (i : Int) : Result Nat :=
- if i > 20 then foo (i / 20) else .ret 42
+ if i > 20 then foo (i / 20) else .ok 42
end
#check foo.unfold
@@ -1558,8 +1558,8 @@ namespace Tests
divergent def iInBounds {a : Type} (ls : List a) (i : Int) : Result Bool :=
let i0 := ls.length
if i < i0
- then Result.ret True
- else Result.ret False
+ then Result.ok True
+ else Result.ok False
#check iInBounds.unfold
@@ -1567,8 +1567,8 @@ namespace Tests
{a : Type} (ls : List a) : Result Bool :=
let ls1 := ls
match ls1 with
- | [] => Result.ret False
- | _ :: _ => Result.ret True
+ | [] => Result.ok False
+ | _ :: _ => Result.ok True
#check isCons.unfold
@@ -1585,7 +1585,7 @@ namespace Tests
divergent def infinite_loop : Result Unit :=
do
let _ ← infinite_loop
- Result.ret ()
+ Result.ok ()
#check infinite_loop.unfold
@@ -1605,51 +1605,51 @@ namespace Tests
divergent def id {a : Type u} (t : Tree a) : Result (Tree a) :=
match t with
- | .leaf x => .ret (.leaf x)
+ | .leaf x => .ok (.leaf x)
| .node tl =>
do
let tl ← map id tl
- .ret (.node tl)
+ .ok (.node tl)
#check id.unfold
divergent def id1 {a : Type u} (t : Tree a) : Result (Tree a) :=
match t with
- | .leaf x => .ret (.leaf x)
+ | .leaf x => .ok (.leaf x)
| .node tl =>
do
let tl ← map (fun x => id1 x) tl
- .ret (.node tl)
+ .ok (.node tl)
#check id1.unfold
divergent def id2 {a : Type u} (t : Tree a) : Result (Tree a) :=
match t with
- | .leaf x => .ret (.leaf x)
+ | .leaf x => .ok (.leaf x)
| .node tl =>
do
let tl ← map (fun x => do let _ ← id2 x; id2 x) tl
- .ret (.node tl)
+ .ok (.node tl)
#check id2.unfold
divergent def incr (t : Tree Nat) : Result (Tree Nat) :=
match t with
- | .leaf x => .ret (.leaf (x + 1))
+ | .leaf x => .ok (.leaf (x + 1))
| .node tl =>
do
let tl ← map incr tl
- .ret (.node tl)
+ .ok (.node tl)
-- We handle this by inlining the let-binding
divergent def id3 (t : Tree Nat) : Result (Tree Nat) :=
match t with
- | .leaf x => .ret (.leaf (x + 1))
+ | .leaf x => .ok (.leaf (x + 1))
| .node tl =>
do
let f := id3
let tl ← map f tl
- .ret (.node tl)
+ .ok (.node tl)
#check id3.unfold
@@ -1659,12 +1659,12 @@ namespace Tests
-- be parameterized by something).
divergent def id4 (t : Tree Nat) : Result (Tree Nat) :=
match t with
- | .leaf x => .ret (.leaf (x + 1))
+ | .leaf x => .ok (.leaf (x + 1))
| .node tl =>
do
- let f ← .ret id4
+ let f ← .ok id4
let tl ← map f tl
- .ret (.node tl)
+ .ok (.node tl)
#check id4.unfold
-/
diff --git a/backends/lean/Base/Primitives/Alloc.lean b/backends/lean/Base/Primitives/Alloc.lean
index 1f470fe1..15fe1ff9 100644
--- a/backends/lean/Base/Primitives/Alloc.lean
+++ b/backends/lean/Base/Primitives/Alloc.lean
@@ -11,8 +11,8 @@ namespace boxed -- alloc.boxed
namespace Box -- alloc.boxed.Box
-def deref (T : Type) (x : T) : Result T := ret x
-def deref_mut (T : Type) (x : T) : Result (T × (T → Result T)) := ret (x, λ x => ret x)
+def deref (T : Type) (x : T) : Result T := ok x
+def deref_mut (T : Type) (x : T) : Result (T × (T → Result T)) := ok (x, λ x => ok x)
/-- Trait instance -/
def coreopsDerefInst (Self : Type) :
diff --git a/backends/lean/Base/Primitives/ArraySlice.lean b/backends/lean/Base/Primitives/ArraySlice.lean
index e1a39d40..ef658e1b 100644
--- a/backends/lean/Base/Primitives/ArraySlice.lean
+++ b/backends/lean/Base/Primitives/ArraySlice.lean
@@ -50,7 +50,7 @@ abbrev Array.slice {α : Type u} {n : Usize} [Inhabited α] (v : Array α n) (i
def Array.index_usize (α : Type u) (n : Usize) (v: Array α n) (i: Usize) : Result α :=
match v.val.indexOpt i.val with
| none => fail .arrayOutOfBounds
- | some x => ret x
+ | some x => ok x
-- For initialization
def Array.repeat (α : Type u) (n : Usize) (x : α) : Array α n :=
@@ -69,7 +69,7 @@ theorem Array.repeat_spec {α : Type u} (n : Usize) (x : α) :
@[pspec]
theorem Array.index_usize_spec {α : Type u} {n : Usize} [Inhabited α] (v: Array α n) (i: Usize)
(hbound : i.val < v.length) :
- ∃ x, v.index_usize α n i = ret x ∧ x = v.val.index i.val := by
+ ∃ x, v.index_usize α n i = ok x ∧ x = v.val.index i.val := by
simp only [index_usize]
-- TODO: dependent rewrite
have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*])
@@ -79,12 +79,12 @@ def Array.update_usize (α : Type u) (n : Usize) (v: Array α n) (i: Usize) (x:
match v.val.indexOpt i.val with
| none => fail .arrayOutOfBounds
| some _ =>
- .ret ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩
+ ok ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩
@[pspec]
theorem Array.update_usize_spec {α : Type u} {n : Usize} (v: Array α n) (i: Usize) (x : α)
(hbound : i.val < v.length) :
- ∃ nv, v.update_usize α n i x = ret nv ∧
+ ∃ nv, v.update_usize α n i x = ok nv ∧
nv.val = v.val.update i.val x
:= by
simp only [update_usize]
@@ -96,12 +96,12 @@ theorem Array.update_usize_spec {α : Type u} {n : Usize} (v: Array α n) (i: Us
def Array.index_mut_usize (α : Type u) (n : Usize) (v: Array α n) (i: Usize) :
Result (α × (α -> Result (Array α n))) := do
let x ← index_usize α n v i
- ret (x, update_usize α n v i)
+ ok (x, update_usize α n v i)
@[pspec]
theorem Array.index_mut_usize_spec {α : Type u} {n : Usize} [Inhabited α] (v: Array α n) (i: Usize)
(hbound : i.val < v.length) :
- ∃ x back, v.index_mut_usize α n i = ret (x, back) ∧
+ ∃ x back, v.index_mut_usize α n i = ok (x, back) ∧
x = v.val.index i.val ∧
back = update_usize α n v i := by
simp only [index_mut_usize, Bind.bind, bind]
@@ -148,7 +148,7 @@ abbrev Slice.slice {α : Type u} [Inhabited α] (s : Slice α) (i j : Int) : Lis
def Slice.index_usize (α : Type u) (v: Slice α) (i: Usize) : Result α :=
match v.val.indexOpt i.val with
| none => fail .arrayOutOfBounds
- | some x => ret x
+ | some x => ok x
/- In the theorems below: we don't always need the `∃ ..`, but we use one
so that `progress` introduces an opaque variable and an equality. This
@@ -158,7 +158,7 @@ def Slice.index_usize (α : Type u) (v: Slice α) (i: Usize) : Result α :=
@[pspec]
theorem Slice.index_usize_spec {α : Type u} [Inhabited α] (v: Slice α) (i: Usize)
(hbound : i.val < v.length) :
- ∃ x, v.index_usize α i = ret x ∧ x = v.val.index i.val := by
+ ∃ x, v.index_usize α i = ok x ∧ x = v.val.index i.val := by
simp only [index_usize]
-- TODO: dependent rewrite
have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*])
@@ -168,12 +168,12 @@ def Slice.update_usize (α : Type u) (v: Slice α) (i: Usize) (x: α) : Result (
match v.val.indexOpt i.val with
| none => fail .arrayOutOfBounds
| some _ =>
- .ret ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩
+ ok ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩
@[pspec]
theorem Slice.update_usize_spec {α : Type u} (v: Slice α) (i: Usize) (x : α)
(hbound : i.val < v.length) :
- ∃ nv, v.update_usize α i x = ret nv ∧
+ ∃ nv, v.update_usize α i x = ok nv ∧
nv.val = v.val.update i.val x
:= by
simp only [update_usize]
@@ -185,12 +185,12 @@ theorem Slice.update_usize_spec {α : Type u} (v: Slice α) (i: Usize) (x : α)
def Slice.index_mut_usize (α : Type u) (v: Slice α) (i: Usize) :
Result (α × (α → Result (Slice α))) := do
let x ← Slice.index_usize α v i
- ret (x, Slice.update_usize α v i)
+ ok (x, Slice.update_usize α v i)
@[pspec]
theorem Slice.index_mut_usize_spec {α : Type u} [Inhabited α] (v: Slice α) (i: Usize)
(hbound : i.val < v.length) :
- ∃ x back, v.index_mut_usize α i = ret (x, back) ∧
+ ∃ x back, v.index_mut_usize α i = ok (x, back) ∧
x = v.val.index i.val ∧
back = Slice.update_usize α v i := by
simp only [index_mut_usize, Bind.bind, bind]
@@ -204,30 +204,30 @@ theorem Slice.index_mut_usize_spec {α : Type u} [Inhabited α] (v: Slice α) (i
`progress` tactic), meaning `Array.to_slice` should be considered as opaque.
All what the spec theorem reveals is that the "representative" lists are the same. -/
def Array.to_slice (α : Type u) (n : Usize) (v : Array α n) : Result (Slice α) :=
- ret ⟨ v.val, by simp [← List.len_eq_length]; scalar_tac ⟩
+ ok ⟨ v.val, by simp [← List.len_eq_length]; scalar_tac ⟩
@[pspec]
theorem Array.to_slice_spec {α : Type u} {n : Usize} (v : Array α n) :
- ∃ s, to_slice α n v = ret s ∧ v.val = s.val := by simp [to_slice]
+ ∃ s, to_slice α n v = ok s ∧ v.val = s.val := by simp [to_slice]
def Array.from_slice (α : Type u) (n : Usize) (_ : Array α n) (s : Slice α) : Result (Array α n) :=
if h: s.val.len = n.val then
- ret ⟨ s.val, by simp [← List.len_eq_length, *] ⟩
+ ok ⟨ s.val, by simp [← List.len_eq_length, *] ⟩
else fail panic
@[pspec]
theorem Array.from_slice_spec {α : Type u} {n : Usize} (a : Array α n) (ns : Slice α) (h : ns.val.len = n.val) :
- ∃ na, from_slice α n a ns = ret na ∧ na.val = ns.val
+ ∃ na, from_slice α n a ns = ok na ∧ na.val = ns.val
:= by simp [from_slice, *]
def Array.to_slice_mut (α : Type u) (n : Usize) (a : Array α n) :
Result (Slice α × (Slice α → Result (Array α n))) := do
let s ← Array.to_slice α n a
- ret (s, Array.from_slice α n a)
+ ok (s, Array.from_slice α n a)
@[pspec]
theorem Array.to_slice_mut_spec {α : Type u} {n : Usize} (v : Array α n) :
- ∃ s back, to_slice_mut α n v = ret (s, back) ∧
+ ∃ s back, to_slice_mut α n v = ok (s, back) ∧
v.val = s.val ∧
back = Array.from_slice α n v
:= by simp [to_slice_mut, to_slice]
@@ -235,7 +235,7 @@ theorem Array.to_slice_mut_spec {α : Type u} {n : Usize} (v : Array α n) :
def Array.subslice (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) : Result (Slice α) :=
-- TODO: not completely sure here
if r.start.val < r.end_.val ∧ r.end_.val ≤ a.val.len then
- ret ⟨ a.val.slice r.start.val r.end_.val,
+ ok ⟨ a.val.slice r.start.val r.end_.val,
by
simp [← List.len_eq_length]
have := a.val.slice_len_le r.start.val r.end_.val
@@ -246,7 +246,7 @@ def Array.subslice (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize)
@[pspec]
theorem Array.subslice_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize)
(h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ a.val.len) :
- ∃ s, subslice α n a r = ret s ∧
+ ∃ s, subslice α n a r = ok s ∧
s.val = a.val.slice r.start.val r.end_.val ∧
(∀ i, 0 ≤ i → i + r.start.val < r.end_.val → s.val.index i = a.val.index (r.start.val + i))
:= by
@@ -270,7 +270,7 @@ def Array.update_subslice (α : Type u) (n : Usize) (a : Array α n) (r : Range
. scalar_tac
let na := s_beg.append (s.val.append s_end)
have : na.len = a.val.len := by simp [*]
- ret ⟨ na, by simp_all [← List.len_eq_length]; scalar_tac ⟩
+ ok ⟨ na, by simp_all [← List.len_eq_length]; scalar_tac ⟩
else
fail panic
@@ -282,7 +282,7 @@ def Array.update_subslice (α : Type u) (n : Usize) (a : Array α n) (r : Range
@[pspec]
theorem Array.update_subslice_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize) (s : Slice α)
(_ : r.start.val < r.end_.val) (_ : r.end_.val ≤ a.length) (_ : s.length = r.end_.val - r.start.val) :
- ∃ na, update_subslice α n a r s = ret na ∧
+ ∃ na, update_subslice α n a r s = ok na ∧
(∀ i, 0 ≤ i → i < r.start.val → na.index_s i = a.index_s i) ∧
(∀ i, r.start.val ≤ i → i < r.end_.val → na.index_s i = s.index_s (i - r.start.val)) ∧
(∀ i, r.end_.val ≤ i → i < n.val → na.index_s i = a.index_s i) := by
@@ -306,7 +306,7 @@ theorem Array.update_subslice_spec {α : Type u} {n : Usize} [Inhabited α] (a :
def Slice.subslice (α : Type u) (s : Slice α) (r : Range Usize) : Result (Slice α) :=
-- TODO: not completely sure here
if r.start.val < r.end_.val ∧ r.end_.val ≤ s.length then
- ret ⟨ s.val.slice r.start.val r.end_.val,
+ ok ⟨ s.val.slice r.start.val r.end_.val,
by
simp [← List.len_eq_length]
have := s.val.slice_len_le r.start.val r.end_.val
@@ -317,7 +317,7 @@ def Slice.subslice (α : Type u) (s : Slice α) (r : Range Usize) : Result (Slic
@[pspec]
theorem Slice.subslice_spec {α : Type u} [Inhabited α] (s : Slice α) (r : Range Usize)
(h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ s.val.len) :
- ∃ ns, subslice α s r = ret ns ∧
+ ∃ ns, subslice α s r = ok ns ∧
ns.val = s.slice r.start.val r.end_.val ∧
(∀ i, 0 ≤ i → i + r.start.val < r.end_.val → ns.index_s i = s.index_s (r.start.val + i))
:= by
@@ -344,14 +344,14 @@ def Slice.update_subslice (α : Type u) (s : Slice α) (r : Range Usize) (ss : S
. scalar_tac
let ns := s_beg.append (ss.val.append s_end)
have : ns.len = s.val.len := by simp [*]
- ret ⟨ ns, by simp_all [← List.len_eq_length]; scalar_tac ⟩
+ ok ⟨ ns, by simp_all [← List.len_eq_length]; scalar_tac ⟩
else
fail panic
@[pspec]
theorem Slice.update_subslice_spec {α : Type u} [Inhabited α] (a : Slice α) (r : Range Usize) (ss : Slice α)
(_ : r.start.val < r.end_.val) (_ : r.end_.val ≤ a.length) (_ : ss.length = r.end_.val - r.start.val) :
- ∃ na, update_subslice α a r ss = ret na ∧
+ ∃ na, update_subslice α a r ss = ok na ∧
(∀ i, 0 ≤ i → i < r.start.val → na.index_s i = a.index_s i) ∧
(∀ i, r.start.val ≤ i → i < r.end_.val → na.index_s i = ss.index_s (i - r.start.val)) ∧
(∀ i, r.end_.val ≤ i → i < a.length → na.index_s i = a.index_s i) := by
@@ -393,7 +393,7 @@ def core.slice.index.Slice.index
let x ← inst.get i slice
match x with
| none => fail panic
- | some x => ret x
+ | some x => ok x
/- [core::slice::index::Range:::get]: forward function -/
def core.slice.index.RangeUsize.get (T : Type) (i : Range Usize) (slice : Slice T) :
diff --git a/backends/lean/Base/Primitives/Base.lean b/backends/lean/Base/Primitives/Base.lean
index 0c64eca1..4c5b2795 100644
--- a/backends/lean/Base/Primitives/Base.lean
+++ b/backends/lean/Base/Primitives/Base.lean
@@ -41,7 +41,7 @@ deriving Repr, BEq
open Error
inductive Result (α : Type u) where
- | ret (v: α): Result α
+ | ok (v: α): Result α
| fail (e: Error): Result α
| div
deriving Repr, BEq
@@ -56,31 +56,31 @@ instance Result_Nonempty (α : Type u) : Nonempty (Result α) :=
/- HELPERS -/
-def ret? {α: Type u} (r: Result α): Bool :=
+def ok? {α: Type u} (r: Result α): Bool :=
match r with
- | ret _ => true
+ | ok _ => true
| fail _ | div => false
def div? {α: Type u} (r: Result α): Bool :=
match r with
| div => true
- | ret _ | fail _ => false
+ | ok _ | fail _ => false
def massert (b:Bool) : Result Unit :=
- if b then ret () else fail assertionFailure
+ if b then ok () else fail assertionFailure
macro "prove_eval_global" : tactic => `(tactic| first | apply Eq.refl | decide)
-def eval_global {α: Type u} (x: Result α) (_: ret? x := by prove_eval_global) : α :=
+def eval_global {α: Type u} (x: Result α) (_: ok? x := by prove_eval_global) : α :=
match x with
| fail _ | div => by contradiction
- | ret x => x
+ | ok x => x
/- DO-DSL SUPPORT -/
def bind {α : Type u} {β : Type v} (x: Result α) (f: α → Result β) : Result β :=
match x with
- | ret v => f v
+ | ok v => f v
| fail v => fail v
| div => div
@@ -88,11 +88,11 @@ def bind {α : Type u} {β : Type v} (x: Result α) (f: α → Result β) : Resu
instance : Bind Result where
bind := bind
--- Allows using return x in do-blocks
+-- Allows using pure x in do-blocks
instance : Pure Result where
- pure := fun x => ret x
+ pure := fun x => ok x
-@[simp] theorem bind_ret (x : α) (f : α → Result β) : bind (.ret x) f = f x := by simp [bind]
+@[simp] theorem bind_ok (x : α) (f : α → Result β) : bind (.ok x) f = f x := by simp [bind]
@[simp] theorem bind_fail (x : Error) (f : α → Result β) : bind (.fail x) f = .fail x := by simp [bind]
@[simp] theorem bind_div (f : α → Result β) : bind .div f = .div := by simp [bind]
@@ -103,14 +103,14 @@ instance : Pure Result where
-- rely on subtype, and a custom let-binding operator, in effect recreating our
-- own variant of the do-dsl
-def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } :=
+def Result.attach {α: Type} (o : Result α): Result { x : α // o = ok x } :=
match o with
- | ret x => ret ⟨x, rfl⟩
+ | ok x => ok ⟨x, rfl⟩
| fail e => fail e
| div => div
-@[simp] theorem bind_tc_ret (x : α) (f : α → Result β) :
- (do let y ← .ret x; f y) = f x := by simp [Bind.bind, bind]
+@[simp] theorem bind_tc_ok (x : α) (f : α → Result β) :
+ (do let y ← .ok x; f y) = f x := by simp [Bind.bind, bind]
@[simp] theorem bind_tc_fail (x : Error) (f : α → Result β) :
(do let y ← fail x; f y) = fail x := by simp [Bind.bind, bind]
diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean
index 3d90f1a5..c298ba92 100644
--- a/backends/lean/Base/Primitives/Scalar.lean
+++ b/backends/lean/Base/Primitives/Scalar.lean
@@ -339,7 +339,7 @@ def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) :=
-- ```
-- then normalization blocks (for instance, some proofs which use reflexivity fail).
-- However, the version below doesn't block reduction (TODO: investigate):
- return Scalar.ofIntCore x (Scalar.check_bounds_prop h)
+ ok (Scalar.ofIntCore x (Scalar.check_bounds_prop h))
else fail integerOverflow
def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val)
@@ -573,7 +573,7 @@ instance {ty} : HAnd (Scalar ty) (Scalar ty) (Scalar ty) where
theorem Scalar.add_spec {ty} {x y : Scalar ty}
(hmin : Scalar.min ty ≤ ↑x + y.val)
(hmax : ↑x + ↑y ≤ Scalar.max ty) :
- (∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y) := by
+ (∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y) := by
-- Applying the unfoldings only on the left
conv => congr; ext; lhs; unfold HAdd.hAdd instHAddScalarResult; simp [add, tryMk]
split
@@ -582,7 +582,7 @@ theorem Scalar.add_spec {ty} {x y : Scalar ty}
theorem Scalar.add_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty}
(hmax : ↑x + ↑y ≤ Scalar.max ty) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
have hmin : Scalar.min ty ≤ ↑x + ↑y := by
have hx := x.hmin
have hy := y.hmin
@@ -591,57 +591,57 @@ theorem Scalar.add_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty}
/- Fine-grained theorems -/
@[pspec] theorem Usize.add_spec {x y : Usize} (hmax : ↑x + ↑y ≤ Usize.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem U8.add_spec {x y : U8} (hmax : ↑x + ↑y ≤ U8.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem U16.add_spec {x y : U16} (hmax : ↑x + ↑y ≤ U16.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem U32.add_spec {x y : U32} (hmax : ↑x + ↑y ≤ U32.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem U64.add_spec {x y : U64} (hmax : ↑x + ↑y ≤ U64.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem U128.add_spec {x y : U128} (hmax : ↑x + ↑y ≤ U128.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem Isize.add_spec {x y : Isize}
(hmin : Isize.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ Isize.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y :=
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I8.add_spec {x y : I8}
(hmin : I8.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I8.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y :=
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I16.add_spec {x y : I16}
(hmin : I16.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I16.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y :=
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I32.add_spec {x y : I32}
(hmin : I32.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I32.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y :=
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I64.add_spec {x y : I64}
(hmin : I64.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I64.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y :=
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I128.add_spec {x y : I128}
(hmin : I128.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I128.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y :=
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
-- Generic theorem - shouldn't be used much
@@ -649,7 +649,7 @@ theorem Scalar.add_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty}
theorem Scalar.sub_spec {ty} {x y : Scalar ty}
(hmin : Scalar.min ty ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ Scalar.max ty) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
conv => congr; ext; lhs; simp [HSub.hSub, sub, tryMk, Sub.sub]
split
. simp [pure]
@@ -658,7 +658,7 @@ theorem Scalar.sub_spec {ty} {x y : Scalar ty}
theorem Scalar.sub_unsigned_spec {ty : ScalarTy} (s : ¬ ty.isSigned)
{x y : Scalar ty} (hmin : Scalar.min ty ≤ ↑x - ↑y) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
have : ↑x - ↑y ≤ Scalar.max ty := by
have hx := x.hmin
have hxm := x.hmax
@@ -669,64 +669,64 @@ theorem Scalar.sub_unsigned_spec {ty : ScalarTy} (s : ¬ ty.isSigned)
/- Fine-grained theorems -/
@[pspec] theorem Usize.sub_spec {x y : Usize} (hmin : Usize.min ≤ ↑x - ↑y) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
@[pspec] theorem U8.sub_spec {x y : U8} (hmin : U8.min ≤ ↑x - ↑y) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
@[pspec] theorem U16.sub_spec {x y : U16} (hmin : U16.min ≤ ↑x - ↑y) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
@[pspec] theorem U32.sub_spec {x y : U32} (hmin : U32.min ≤ ↑x - ↑y) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
@[pspec] theorem U64.sub_spec {x y : U64} (hmin : U64.min ≤ ↑x - ↑y) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
@[pspec] theorem U128.sub_spec {x y : U128} (hmin : U128.min ≤ ↑x - ↑y) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
@[pspec] theorem Isize.sub_spec {x y : Isize} (hmin : Isize.min ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ Isize.max) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y :=
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
@[pspec] theorem I8.sub_spec {x y : I8} (hmin : I8.min ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ I8.max) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y :=
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
@[pspec] theorem I16.sub_spec {x y : I16} (hmin : I16.min ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ I16.max) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y :=
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
@[pspec] theorem I32.sub_spec {x y : I32} (hmin : I32.min ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ I32.max) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y :=
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
@[pspec] theorem I64.sub_spec {x y : I64} (hmin : I64.min ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ I64.max) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y :=
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
@[pspec] theorem I128.sub_spec {x y : I128} (hmin : I128.min ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ I128.max) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y :=
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
-- Generic theorem - shouldn't be used much
theorem Scalar.mul_spec {ty} {x y : Scalar ty}
(hmin : Scalar.min ty ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ Scalar.max ty) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
conv => congr; ext; lhs; simp [HMul.hMul]
simp [mul, tryMk]
split
@@ -736,7 +736,7 @@ theorem Scalar.mul_spec {ty} {x y : Scalar ty}
theorem Scalar.mul_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty}
(hmax : ↑x * ↑y ≤ Scalar.max ty) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
have : Scalar.min ty ≤ ↑x * ↑y := by
have hx := x.hmin
have hy := y.hmin
@@ -745,57 +745,57 @@ theorem Scalar.mul_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty}
/- Fine-grained theorems -/
@[pspec] theorem Usize.mul_spec {x y : Usize} (hmax : ↑x * ↑y ≤ Usize.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
@[pspec] theorem U8.mul_spec {x y : U8} (hmax : ↑x * ↑y ≤ U8.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
@[pspec] theorem U16.mul_spec {x y : U16} (hmax : ↑x * ↑y ≤ U16.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
@[pspec] theorem U32.mul_spec {x y : U32} (hmax : ↑x * ↑y ≤ U32.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
@[pspec] theorem U64.mul_spec {x y : U64} (hmax : ↑x * ↑y ≤ U64.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
@[pspec] theorem U128.mul_spec {x y : U128} (hmax : ↑x * ↑y ≤ U128.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
@[pspec] theorem Isize.mul_spec {x y : Isize} (hmin : Isize.min ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ Isize.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y :=
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
@[pspec] theorem I8.mul_spec {x y : I8} (hmin : I8.min ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ I8.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y :=
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
@[pspec] theorem I16.mul_spec {x y : I16} (hmin : I16.min ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ I16.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y :=
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
@[pspec] theorem I32.mul_spec {x y : I32} (hmin : I32.min ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ I32.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y :=
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
@[pspec] theorem I64.mul_spec {x y : I64} (hmin : I64.min ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ I64.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y :=
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
@[pspec] theorem I128.mul_spec {x y : I128} (hmin : I128.min ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ I128.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y :=
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
-- Generic theorem - shouldn't be used much
@@ -804,15 +804,14 @@ theorem Scalar.div_spec {ty} {x y : Scalar ty}
(hnz : ↑y ≠ (0 : Int))
(hmin : Scalar.min ty ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ Scalar.max ty) :
- ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y := by
+ ∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y := by
simp [HDiv.hDiv, div, Div.div]
simp [tryMk, *]
- simp [pure]
rfl
theorem Scalar.div_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : Scalar ty}
(hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
+ ∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
have h : Scalar.min ty = 0 := by cases ty <;> simp [ScalarTy.isSigned, min] at *
have hx := x.hmin
have hy := y.hmin
@@ -828,69 +827,69 @@ theorem Scalar.div_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : S
/- Fine-grained theorems -/
@[pspec] theorem Usize.div_spec (x : Usize) {y : Usize} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
+ ∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U8.div_spec (x : U8) {y : U8} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
+ ∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U16.div_spec (x : U16) {y : U16} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
+ ∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U32.div_spec (x : U32) {y : U32} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
+ ∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U64.div_spec (x : U64) {y : U64} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
+ ∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U128.div_spec (x : U128) {y : U128} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
+ ∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem Isize.div_spec (x : Isize) {y : Isize}
(hnz : ↑y ≠ (0 : Int))
(hmin : Isize.min ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ Isize.max):
- ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
+ ∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I8.div_spec (x : I8) {y : I8}
(hnz : ↑y ≠ (0 : Int))
(hmin : I8.min ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ I8.max):
- ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
+ ∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I16.div_spec (x : I16) {y : I16}
(hnz : ↑y ≠ (0 : Int))
(hmin : I16.min ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ I16.max):
- ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
+ ∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I32.div_spec (x : I32) {y : I32}
(hnz : ↑y ≠ (0 : Int))
(hmin : I32.min ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ I32.max):
- ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
+ ∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I64.div_spec (x : I64) {y : I64}
(hnz : ↑y ≠ (0 : Int))
(hmin : I64.min ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ I64.max):
- ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
+ ∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I128.div_spec (x : I128) {y : I128}
(hnz : ↑y ≠ (0 : Int))
(hmin : I128.min ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ I128.max):
- ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
+ ∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
-- Generic theorem - shouldn't be used much
@@ -899,15 +898,14 @@ theorem Scalar.rem_spec {ty} {x y : Scalar ty}
(hnz : ↑y ≠ (0 : Int))
(hmin : Scalar.min ty ≤ scalar_rem ↑x ↑y)
(hmax : scalar_rem ↑x ↑y ≤ Scalar.max ty) :
- ∃ z, x % y = ret z ∧ (↑z : Int) = scalar_rem ↑x ↑y := by
+ ∃ z, x % y = ok z ∧ (↑z : Int) = scalar_rem ↑x ↑y := by
simp [HMod.hMod, rem]
simp [tryMk, *]
- simp [pure]
rfl
theorem Scalar.rem_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : Scalar ty}
(hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
+ ∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
have h : Scalar.min ty = 0 := by cases ty <;> simp [ScalarTy.isSigned, min] at *
have hx := x.hmin
have hy := y.hmin
@@ -923,62 +921,62 @@ theorem Scalar.rem_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : S
simp [*]
@[pspec] theorem Usize.rem_spec (x : Usize) {y : Usize} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
+ ∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U8.rem_spec (x : U8) {y : U8} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
+ ∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U16.rem_spec (x : U16) {y : U16} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
+ ∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U32.rem_spec (x : U32) {y : U32} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
+ ∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U64.rem_spec (x : U64) {y : U64} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
+ ∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U128.rem_spec (x : U128) {y : U128} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
+ ∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem I8.rem_spec (x : I8) {y : I8}
(hnz : ↑y ≠ (0 : Int))
(hmin : I8.min ≤ scalar_rem ↑x ↑y)
(hmax : scalar_rem ↑x ↑y ≤ I8.max):
- ∃ z, x % y = ret z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
+ ∃ z, x % y = ok z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
@[pspec] theorem I16.rem_spec (x : I16) {y : I16}
(hnz : ↑y ≠ (0 : Int))
(hmin : I16.min ≤ scalar_rem ↑x ↑y)
(hmax : scalar_rem ↑x ↑y ≤ I16.max):
- ∃ z, x % y = ret z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
+ ∃ z, x % y = ok z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
@[pspec] theorem I32.rem_spec (x : I32) {y : I32}
(hnz : ↑y ≠ (0 : Int))
(hmin : I32.min ≤ scalar_rem ↑x ↑y)
(hmax : scalar_rem ↑x ↑y ≤ I32.max):
- ∃ z, x % y = ret z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
+ ∃ z, x % y = ok z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
@[pspec] theorem I64.rem_spec (x : I64) {y : I64}
(hnz : ↑y ≠ (0 : Int))
(hmin : I64.min ≤ scalar_rem ↑x ↑y)
(hmax : scalar_rem ↑x ↑y ≤ I64.max):
- ∃ z, x % y = ret z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
+ ∃ z, x % y = ok z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
@[pspec] theorem I128.rem_spec (x : I128) {y : I128}
(hnz : ↑y ≠ (0 : Int))
(hmin : I128.min ≤ scalar_rem ↑x ↑y)
(hmax : scalar_rem ↑x ↑y ≤ I128.max):
- ∃ z, x % y = ret z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
+ ∃ z, x % y = ok z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
-- ofIntCore
@@ -1152,6 +1150,6 @@ instance (ty : ScalarTy) : DecidableEq (Scalar ty) :=
| isFalse h => isFalse (Scalar.ne_of_val_ne h)
@[simp] theorem Scalar.neq_to_neq_val {ty} : ∀ {i j : Scalar ty}, (¬ i = j) ↔ ¬ i.val = j.val := by
- intro i j; cases i; cases j; simp
+ simp [eq_equiv]
end Primitives
diff --git a/backends/lean/Base/Primitives/Vec.lean b/backends/lean/Base/Primitives/Vec.lean
index 65249c12..dbe5c8dd 100644
--- a/backends/lean/Base/Primitives/Vec.lean
+++ b/backends/lean/Base/Primitives/Vec.lean
@@ -61,34 +61,34 @@ def Vec.push (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
simp [Usize.max] at *
have hm := Usize.refined_max.property
cases h <;> cases hm <;> simp [U32.max, U64.max] at * <;> try linarith
- return ⟨ List.concat v.val x, by simp at *; assumption ⟩
+ ok ⟨ List.concat v.val x, by simp at *; assumption ⟩
else
fail maximumSizeExceeded
-- This shouldn't be used
def Vec.insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α) : Result Unit :=
if i.val < v.length then
- .ret ()
+ ok ()
else
- .fail arrayOutOfBounds
+ fail arrayOutOfBounds
-- This is actually the backward function
def Vec.insert (α : Type u) (v: Vec α) (i: Usize) (x: α) : Result (Vec α) :=
if i.val < v.length then
- .ret ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩
+ ok ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩
else
- .fail arrayOutOfBounds
+ fail arrayOutOfBounds
@[pspec]
theorem Vec.insert_spec {α : Type u} (v: Vec α) (i: Usize) (x: α)
(hbound : i.val < v.length) :
- ∃ nv, v.insert α i x = ret nv ∧ nv.val = v.val.update i.val x := by
+ ∃ nv, v.insert α i x = ok nv ∧ nv.val = v.val.update i.val x := by
simp [insert, *]
def Vec.index_usize {α : Type u} (v: Vec α) (i: Usize) : Result α :=
match v.val.indexOpt i.val with
| none => fail .arrayOutOfBounds
- | some x => ret x
+ | some x => ok x
/- In the theorems below: we don't always need the `∃ ..`, but we use one
so that `progress` introduces an opaque variable and an equality. This
@@ -98,7 +98,7 @@ def Vec.index_usize {α : Type u} (v: Vec α) (i: Usize) : Result α :=
@[pspec]
theorem Vec.index_usize_spec {α : Type u} [Inhabited α] (v: Vec α) (i: Usize)
(hbound : i.val < v.length) :
- ∃ x, v.index_usize i = ret x ∧ x = v.val.index i.val := by
+ ∃ x, v.index_usize i = ok x ∧ x = v.val.index i.val := by
simp only [index_usize]
-- TODO: dependent rewrite
have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*])
@@ -108,12 +108,12 @@ def Vec.update_usize {α : Type u} (v: Vec α) (i: Usize) (x: α) : Result (Vec
match v.val.indexOpt i.val with
| none => fail .arrayOutOfBounds
| some _ =>
- .ret ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩
+ ok ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩
@[pspec]
theorem Vec.update_usize_spec {α : Type u} (v: Vec α) (i: Usize) (x : α)
(hbound : i.val < v.length) :
- ∃ nv, v.update_usize i x = ret nv ∧
+ ∃ nv, v.update_usize i x = ok nv ∧
nv.val = v.val.update i.val x
:= by
simp only [update_usize]
@@ -125,15 +125,15 @@ theorem Vec.update_usize_spec {α : Type u} (v: Vec α) (i: Usize) (x : α)
def Vec.index_mut_usize {α : Type u} (v: Vec α) (i: Usize) :
Result (α × (α → Result (Vec α))) :=
match Vec.index_usize v i with
- | ret x =>
- ret (x, Vec.update_usize v i)
+ | ok x =>
+ ok (x, Vec.update_usize v i)
| fail e => fail e
| div => div
@[pspec]
theorem Vec.index_mut_usize_spec {α : Type u} [Inhabited α] (v: Vec α) (i: Usize)
(hbound : i.val < v.length) :
- ∃ x back, v.index_mut_usize i = ret (x, back) ∧
+ ∃ x back, v.index_mut_usize i = ok (x, back) ∧
x = v.val.index i.val ∧
-- Backward function
back = v.update_usize i
diff --git a/backends/lean/Base/Progress/Progress.lean b/backends/lean/Base/Progress/Progress.lean
index dc30c441..ea38c630 100644
--- a/backends/lean/Base/Progress/Progress.lean
+++ b/backends/lean/Base/Progress/Progress.lean
@@ -136,7 +136,7 @@ def progressWith (fExpr : Expr) (th : TheoremOrLocal)
let _ ←
tryTac
(simpAt true []
- [``Primitives.bind_tc_ret, ``Primitives.bind_tc_fail, ``Primitives.bind_tc_div]
+ [``Primitives.bind_tc_ok, ``Primitives.bind_tc_fail, ``Primitives.bind_tc_div]
[hEq.fvarId!] (.targets #[] true))
-- It may happen that at this point the goal is already solved (though this is rare)
-- TODO: not sure this is the best way of checking it
@@ -397,33 +397,33 @@ namespace Test
example {ty} {x y : Scalar ty}
(hmin : Scalar.min ty ≤ x.val + y.val)
(hmax : x.val + y.val ≤ Scalar.max ty) :
- ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+ ∃ z, x + y = ok z ∧ z.val = x.val + y.val := by
progress keep _ as ⟨ z, h1 .. ⟩
simp [*, h1]
example {ty} {x y : Scalar ty}
(hmin : Scalar.min ty ≤ x.val + y.val)
(hmax : x.val + y.val ≤ Scalar.max ty) :
- ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+ ∃ z, x + y = ok z ∧ z.val = x.val + y.val := by
progress keep h with Scalar.add_spec as ⟨ z ⟩
simp [*, h]
example {x y : U32}
(hmax : x.val + y.val ≤ U32.max) :
- ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+ ∃ z, x + y = ok z ∧ z.val = x.val + y.val := by
-- This spec theorem is suboptimal, but it is good to check that it works
progress with Scalar.add_spec as ⟨ z, h1 .. ⟩
simp [*, h1]
example {x y : U32}
(hmax : x.val + y.val ≤ U32.max) :
- ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+ ∃ z, x + y = ok z ∧ z.val = x.val + y.val := by
progress with U32.add_spec as ⟨ z, h1 .. ⟩
simp [*, h1]
example {x y : U32}
(hmax : x.val + y.val ≤ U32.max) :
- ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+ ∃ z, x + y = ok z ∧ z.val = x.val + y.val := by
progress keep _ as ⟨ z, h1 .. ⟩
simp [*, h1]
@@ -431,7 +431,7 @@ namespace Test
`α : Type u` where u is quantified, while here we use `α : Type 0` -/
example {α : Type} (v: Vec α) (i: Usize) (x : α)
(hbounds : i.val < v.length) :
- ∃ nv, v.update_usize i x = ret nv ∧
+ ∃ nv, v.update_usize i x = ok nv ∧
nv.val = v.val.update i.val x := by
progress
simp [*]
@@ -443,8 +443,8 @@ namespace Test
(do
(do
let _ ← v.update_usize i x
- .ret ())
- .ret ()) = ret nv
+ .ok ())
+ .ok ()) = ok nv
:= by
progress
simp [*]
@@ -454,8 +454,8 @@ namespace Test
not a constant. We also test the case where the function under scrutinee
is not a constant. -/
example {x : U32}
- (f : U32 → Result Unit) (h : ∀ x, f x = .ret ()) :
- f x = ret () := by
+ (f : U32 → Result Unit) (h : ∀ x, f x = .ok ()) :
+ f x = ok () := by
progress
end Test