summaryrefslogtreecommitdiff
path: root/backends/lean
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--backends/lean/Base/Arith.lean413
-rw-r--r--backends/lean/Base/ArithBase.lean10
-rw-r--r--backends/lean/Base/Diverge/ElabBase.lean112
3 files changed, 267 insertions, 268 deletions
diff --git a/backends/lean/Base/Arith.lean b/backends/lean/Base/Arith.lean
index bb776b55..df48a6a2 100644
--- a/backends/lean/Base/Arith.lean
+++ b/backends/lean/Base/Arith.lean
@@ -8,6 +8,7 @@ import Mathlib.Tactic.Linarith
-- TODO: there is no Omega tactic for now - it seems it hasn't been ported yet
--import Mathlib.Tactic.Omega
import Base.Primitives
+import Base.ArithBase
/-
Mathlib tactics:
@@ -53,9 +54,24 @@ namespace Arith
open Primitives
---set_option pp.explicit true
---set_option pp.notation false
---set_option pp.coercions false
+-- TODO: move?
+theorem ne_zero_is_lt_or_gt {x : Int} (hne : x ≠ 0) : x < 0 ∨ x > 0 := by
+ cases h: x <;> simp_all
+ . rename_i n;
+ cases n <;> simp_all
+ . apply Int.negSucc_lt_zero
+
+-- TODO: move?
+theorem ne_is_lt_or_gt {x y : Int} (hne : x ≠ y) : x < y ∨ x > y := by
+ have hne : x - y ≠ 0 := by
+ simp
+ intro h
+ have: x = y := by linarith
+ simp_all
+ have h := ne_zero_is_lt_or_gt hne
+ match h with
+ | .inl _ => left; linarith
+ | .inr _ => right; linarith
-- TODO: move
instance Vec.cast (a : Type): Coe (Vec a) (List a) where coe := λ v => v.val
@@ -71,17 +87,9 @@ instance Vec.cast (a : Type): Coe (Vec a) (List a) where coe := λ v => v.val
-/
def Scalar.toInt {ty : ScalarTy} (x : Scalar ty) : Int := x.val
--- We use this type-class to test if an expression is a scalar (if we manage
--- to lookup an instance of this type-class, then it is)
-class IsScalar (a : Type) where
-
-instance (ty : ScalarTy) : IsScalar (Scalar ty) where
-
-example (ty : ScalarTy) : IsScalar (Scalar ty) := inferInstance
-
-- Remark: I tried a version of the shape `HasProp {a : Type} (x : a)`
-- but the lookup didn't work
-class HasProp (a : Type) where
+class HasProp (a : Sort u) where
prop_ty : a → Prop
prop : ∀ x:a, prop_ty x
@@ -93,73 +101,50 @@ instance (a : Type) : HasProp (Vec a) where
prop_ty := λ v => v.val.length ≤ Scalar.max ScalarTy.Usize
prop := λ ⟨ _, l ⟩ => l
-open Lean Lean.Elab Command Term Lean.Meta
-
--- Return true if the expression is a scalar expression
-def isScalarExpr (e : Expr) : MetaM Bool := do
- -- Try to convert the expression to a scalar
- -- TODO: I tried to do it with Lean.Meta.mkAppM but it didn't work: how
- -- do we allow Lean to perform (controlled) unfoldings for instantiation
- -- purposes?
- let r ← Lean.observing? do
- let ty ← Lean.Meta.inferType e
- let isScalar ← mkAppM `Arith.IsScalar #[ty]
- let isScalar ← trySynthInstance isScalar
- match isScalar with
- | LOption.some x => some x
- | _ => none
- match r with
- | .some _ => pure true
- | _ => pure false
+class PropHasImp (x : Prop) where
+ concl : Prop
+ prop : x → concl
--- Return an instance of `HasProp` for `e` if it has some
-def lookupHasProp (e : Expr) : MetaM (Option Expr) := do
- logInfo f!"lookupHasProp"
- -- TODO: do we need Lean.observing?
- -- This actually eliminates the error messages
- Lean.observing? do
- logInfo f!"lookupHasProp: observing"
- let ty ← Lean.Meta.inferType e
- let hasProp ← mkAppM ``Arith.HasProp #[ty]
- let hasPropInst ← trySynthInstance hasProp
- match hasPropInst with
- | LOption.some i =>
- logInfo m!"Found HasProp instance"
- let i_prop ← mkProjection i `prop
- some (← mkAppM' i_prop #[e])
- | _ => none
+-- This also works for `x ≠ y` because this expression reduces to `¬ x = y`
+-- and `Ne` is marked as `reducible`
+instance (x y : Int) : PropHasImp (¬ x = y) where
+ concl := x < y ∨ x > y
+ prop := λ (h:x ≠ y) => ne_is_lt_or_gt h
--- Auxiliary function for `collectHasPropInstances`
-private partial def collectHasPropInstancesAux (hs : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do
- -- We do it in a very simpler manner: we deconstruct applications,
- -- and recursively explore the sub-expressions. Note that we do
- -- not go inside foralls and abstractions (should we?).
- e.withApp fun f args => do
- let hasPropInst ← lookupHasProp f
- let hs := Option.getD (hasPropInst.map hs.insert) hs
- let hs ← args.foldlM collectHasPropInstancesAux hs
- pure hs
+open Lean Lean.Elab Command Term Lean.Meta
--- Explore a term and return the instances of `HasProp` found for the sub-expressions
-def collectHasPropInstances (e : Expr) : MetaM (HashSet Expr) :=
- collectHasPropInstancesAux HashSet.empty e
+-- Small utility: print all the declarations in the context
+elab "print_all_decls" : tactic => do
+ let ctx ← Lean.MonadLCtx.getLCtx
+ for decl in ← ctx.getDecls do
+ let ty ← Lean.Meta.inferType decl.toExpr
+ logInfo m!"{decl.toExpr} : {ty}"
+ pure ()
--- Explore a term and return the set of scalar expressions found inside
-partial def collectScalarExprsAux (hs : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do
+-- Explore a term by decomposing the applications (we explore the applied
+-- functions and their arguments, but ignore lambdas, forall, etc. -
+-- should we go inside?).
+partial def foldTermApps (k : α → Expr → MetaM α) (s : α) (e : Expr) : MetaM α := do
-- We do it in a very simpler manner: we deconstruct applications,
-- and recursively explore the sub-expressions. Note that we do
-- not go inside foralls and abstractions (should we?).
e.withApp fun f args => do
- let hs ← if ← isScalarExpr f then pure (hs.insert f) else pure hs
- let hs ← args.foldlM collectScalarExprsAux hs
- pure hs
-
--- Explore a term and return the list of scalar expressions found inside
-def collectScalarExprs (e : Expr) : MetaM (HashSet Expr) :=
- collectScalarExprsAux HashSet.empty e
-
--- Collect the scalar expressions in the context
-def getScalarExprsFromMainCtx : Tactic.TacticM (HashSet Expr) := do
+ let s ← k s f
+ args.foldlM (foldTermApps k) s
+
+-- Provided a function `k` which lookups type class instances on an expression,
+-- collect all the instances lookuped by applying `k` on the sub-expressions of `e`.
+def collectInstances
+ (k : Expr → MetaM (Option Expr)) (s : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do
+ let k s e := do
+ match ← k e with
+ | none => pure s
+ | some i => pure (s.insert i)
+ foldTermApps k s e
+
+-- Similar to `collectInstances`, but explores all the local declarations in the
+-- main context.
+def collectInstancesFromMainCtx (k : Expr → MetaM (Option Expr)) : Tactic.TacticM (HashSet Expr) := do
Lean.Elab.Tactic.withMainContext do
-- Get the local context
let ctx ← Lean.MonadLCtx.getLCtx
@@ -169,40 +154,37 @@ def getScalarExprsFromMainCtx : Tactic.TacticM (HashSet Expr) := do
let hs := HashSet.empty
-- Explore the declarations
let decls ← ctx.getDecls
- let hs ← decls.foldlM (fun hs d => collectScalarExprsAux hs d.toExpr) hs
- -- Return
- pure hs
+ decls.foldlM (fun hs d => collectInstances k hs d.toExpr) hs
+
+-- Return an instance of `HasProp` for `e` if it has some
+def lookupHasProp (e : Expr) : MetaM (Option Expr) := do
+ trace[Arith] "lookupHasProp"
+ -- TODO: do we need Lean.observing?
+ -- This actually eliminates the error messages
+ Lean.observing? do
+ trace[Arith] "lookupHasProp: observing"
+ let ty ← Lean.Meta.inferType e
+ let hasProp ← mkAppM ``HasProp #[ty]
+ let hasPropInst ← trySynthInstance hasProp
+ match hasPropInst with
+ | LOption.some i =>
+ trace[Arith] "Found HasProp instance"
+ let i_prop ← mkProjection i (Name.mkSimple "prop")
+ some (← mkAppM' i_prop #[e])
+ | _ => none
-- Collect the instances of `HasProp` for the subexpressions in the context
-def getHasPropInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do
- Lean.Elab.Tactic.withMainContext do
- -- Get the local context
- let ctx ← Lean.MonadLCtx.getLCtx
- -- Just a matter of precaution
- let ctx ← instantiateLCtxMVars ctx
- -- Initialize the hashset
- let hs := HashSet.empty
- -- Explore the declarations
- let decls ← ctx.getDecls
- let hs ← decls.foldlM (fun hs d => collectHasPropInstancesAux hs d.toExpr) hs
- -- Return
- pure hs
+def collectHasPropInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do
+ collectInstancesFromMainCtx lookupHasProp
-elab "list_scalar_exprs" : tactic => do
- logInfo m!"Listing scalar expressions"
- let hs ← getScalarExprsFromMainCtx
+elab "display_has_prop_instances" : tactic => do
+ trace[Arith] "Displaying the HasProp instances"
+ let hs ← collectHasPropInstancesFromMainCtx
hs.forM fun e => do
- logInfo m!"+ Scalar expression: {e}"
+ trace[Arith] "+ HasProp instance: {e}"
-example (x y : U32) (z : Usize) : True := by
- list_scalar_exprs
- simp
-elab "display_has_prop_instances" : tactic => do
- logInfo m!"Displaying the HasProp instances"
- let hs ← getHasPropInstancesFromMainCtx
- hs.forM fun e => do
- logInfo m!"+ HasProp instance: {e}"
+set_option trace.Arith true
example (x : U32) : True := by
let i : HasProp U32 := inferInstance
@@ -211,34 +193,45 @@ example (x : U32) : True := by
display_has_prop_instances
simp
-elab "list_local_decls_1" : tactic =>
- Lean.Elab.Tactic.withMainContext do
- -- Get the local context
- let ctx ← Lean.MonadLCtx.getLCtx
- let ctx ← instantiateLCtxMVars ctx
- let decls ← ctx.getDecls
- -- Filter the scalar expressions
- let decls ← decls.filterMapM fun decl: Lean.LocalDecl => do
- let declExpr := decl.toExpr
- let declName := decl.userName
- let declType ← Lean.Meta.inferType declExpr
- dbg_trace f!"+ local decl: name: {declName} | expr: {declExpr} | ty: {declType}"
- -- Try to convert the expression to a scalar
- -- TODO: I tried to do it with Lean.Meta.mkAppM but it didn't work: how
- -- do we allow Lean to perform (controlled) unfoldings for instantiation
- -- purposes?
- let r ← Lean.observing? do
- let isScalar ← mkAppM `Arith.IsScalar #[declType]
- let isScalar ← trySynthInstance isScalar
- match isScalar with
- | LOption.some x => some x
- | _ => none
- match r with
- | .some _ => dbg_trace f!" Scalar expression"; pure r
- | _ => dbg_trace f!" Not a scalar"; pure .none
- pure ()
+set_option trace.Arith false
-def evalAddDecl (name : Name) (val : Expr) (type : Expr) (asLet : Bool := false) : Tactic.TacticM Unit :=
+-- Return an instance of `PropHasImp` for `e` if it has some
+def lookupPropHasImp (e : Expr) : MetaM (Option Expr) := do
+ trace[Arith] "lookupPropHasImp"
+ -- TODO: do we need Lean.observing?
+ -- This actually eliminates the error messages
+ Lean.observing? do
+ trace[Arith] "lookupPropHasImp: observing"
+ let ty ← Lean.Meta.inferType e
+ trace[Arith] "lookupPropHasImp: ty: {ty}"
+ let cl ← mkAppM ``PropHasImp #[ty]
+ let inst ← trySynthInstance cl
+ match inst with
+ | LOption.some i =>
+ trace[Arith] "Found PropHasImp instance"
+ let i_prop ← mkProjection i (Name.mkSimple "prop")
+ some (← mkAppM' i_prop #[e])
+ | _ => none
+
+-- Collect the instances of `PropHasImp` for the subexpressions in the context
+def collectPropHasImpInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do
+ collectInstancesFromMainCtx lookupPropHasImp
+
+elab "display_prop_has_imp_instances" : tactic => do
+ trace[Arith] "Displaying the PropHasImp instances"
+ let hs ← collectPropHasImpInstancesFromMainCtx
+ hs.forM fun e => do
+ trace[Arith] "+ PropHasImp instance: {e}"
+
+set_option trace.Arith true
+
+example (x y : Int) (h0 : x ≠ y) (h1 : ¬ x = y) : True := by
+ display_prop_has_imp_instances
+ simp
+
+set_option trace.Arith false
+
+def addDecl (name : Name) (val : Expr) (type : Expr) (asLet : Bool) (k : Expr → Tactic.TacticM Unit) : Tactic.TacticM Unit :=
-- I don't think we need that
Lean.Elab.Tactic.withMainContext do
-- Insert the new declaration
@@ -248,8 +241,7 @@ def evalAddDecl (name : Name) (val : Expr) (type : Expr) (asLet : Bool := false)
let lctx ← Lean.MonadLCtx.getLCtx
let fid := nval.fvarId!
let decl := lctx.get! fid
- -- Remark: logInfo instantiates the mvars (contrary to dbg_trace):
- logInfo m!" new decl: \"{decl.userName}\" ({nval}) : {decl.type} := {decl.value}"
+ trace[Arith] " new decl: \"{decl.userName}\" ({nval}) : {decl.type} := {decl.value}"
--
-- Tranform the main goal `?m0` to `let x = nval in ?m1`
let mvarId ← Tactic.getMainGoal
@@ -260,17 +252,14 @@ def evalAddDecl (name : Name) (val : Expr) (type : Expr) (asLet : Bool := false)
-- - asLet is false: ewVal is `λ $name => $newMVar`
-- We need to apply it to `val`
let newVal := if asLet then newVal else mkAppN newVal #[val]
- -- Focus on the current goal
- Tactic.focus do
- -- Assign the main goal.
- -- We must do this *after* we focused on the current goal, because
- -- after we assigned the meta variable the goal is considered as solved
+ -- Assign the main goal and update the current goal
mvarId.assign newVal
- -- Replace the list of goals with the new goal - we can do this because
- -- we focused on the current goal
- Lean.Elab.Tactic.setGoals [newMVar.mvarId!]
+ let goals ← Tactic.getUnsolvedGoals
+ Lean.Elab.Tactic.setGoals (newMVar.mvarId! :: goals)
+ -- Call the continuation
+ k nval
-def evalAddDeclSyntax (name : Name) (val : Syntax) (asLet : Bool := false) : Tactic.TacticM Unit :=
+def addDeclSyntax (name : Name) (val : Syntax) (asLet : Bool) (k : Expr → Tactic.TacticM Unit) : Tactic.TacticM Unit :=
-- I don't think we need that
Lean.Elab.Tactic.withMainContext do
--
@@ -281,13 +270,13 @@ def evalAddDeclSyntax (name : Name) (val : Syntax) (asLet : Bool := false) : Tac
-- not choose): we force the instantiation of the meta-variable
synthesizeSyntheticMVarsUsingDefault
--
- evalAddDecl name val type asLet
+ addDecl name val type asLet k
elab "custom_let " n:ident " := " v:term : tactic =>
- evalAddDeclSyntax n.getId v (asLet := true)
+ addDeclSyntax n.getId v (asLet := true) (λ _ => pure ())
elab "custom_have " n:ident " := " v:term : tactic =>
- evalAddDeclSyntax n.getId v (asLet := false)
+ addDeclSyntax n.getId v (asLet := false) (λ _ => pure ())
example : Nat := by
custom_let x := 4
@@ -297,26 +286,32 @@ example : Nat := by
example (x : Bool) : Nat := by
cases x <;> custom_let x := 3 <;> apply x
--- Lookup the instances of `HasProp for all the sub-expressions in the context,
--- and introduce the corresponding assumptions
-elab "intro_has_prop_instances" : tactic => do
- logInfo m!"Introducing the HasProp instances"
- let hs ← getHasPropInstancesFromMainCtx
+-- Lookup instances in a context and introduce them with additional declarations.
+def introInstances (declToUnfold : Name) (lookup : Expr → MetaM (Option Expr)) (k : Expr → Tactic.TacticM Unit) : Tactic.TacticM Unit := do
+ let hs ← collectInstancesFromMainCtx lookup
hs.forM fun e => do
let type ← inferType e
- let name := `h
- evalAddDecl name e type (asLet := false)
- -- Simplify to unfold the `prop_ty` projector
+ let name ← mkFreshUserName `h
+ -- Add a declaration
+ addDecl name e type (asLet := false) λ nval => do
+ -- Simplify to unfold the declaration to unfold (i.e., the projector)
let simpTheorems ← Tactic.simpOnlyBuiltins.foldlM (·.addConst ·) ({} : SimpTheorems)
- -- Add the equational theorem for `HashProp'.prop_ty`
- let simpTheorems ← simpTheorems.addDeclToUnfold ``HasProp.prop_ty
+ -- Add the equational theorem for the decl to unfold
+ let simpTheorems ← simpTheorems.addDeclToUnfold declToUnfold
let congrTheorems ← getSimpCongrTheorems
let ctx : Simp.Context := { simpTheorems := #[simpTheorems], congrTheorems }
-- Where to apply the simplifier
let loc := Tactic.Location.targets #[mkIdent name] false
-- Apply the simplifier
let _ ← Tactic.simpLocation ctx (discharge? := .none) loc
- pure ()
+ -- Call the continuation
+ k nval
+
+-- Lookup the instances of `HasProp for all the sub-expressions in the context,
+-- and introduce the corresponding assumptions
+elab "intro_has_prop_instances" : tactic => do
+ trace[Arith] "Introducing the HasProp instances"
+ introInstances ``HasProp.prop_ty lookupHasProp (fun _ => pure ())
example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by
intro_has_prop_instances
@@ -326,23 +321,129 @@ example {a: Type} (v : Vec a) : v.val.length ≤ Scalar.max ScalarTy.Usize := by
intro_has_prop_instances
simp_all [Scalar.max, Scalar.min]
--- A tactic to solve linear arithmetic goals
-syntax "int_tac" : tactic
+-- Tactic to split on a disjunction
+def splitDisj (h : Expr) : Tactic.TacticM Unit := do
+ trace[Arith] "assumption on which to split: {h}"
+ -- Retrieve the main goal
+ Lean.Elab.Tactic.withMainContext do
+ let goalType ← Lean.Elab.Tactic.getMainTarget
+ -- Case disjunction
+ let hTy ← inferType h
+ hTy.withApp fun f xs => do
+ trace[Arith] "as app: {f} {xs}"
+ -- Sanity check
+ if ¬ (f.isConstOf ``Or ∧ xs.size = 2) then throwError "Invalid argument to splitDisj"
+ let a := xs.get! 0
+ let b := xs.get! 1
+ -- Introduce the new goals
+ -- Returns:
+ -- - the match branch
+ -- - a fresh new mvar id
+ let mkGoal (hTy : Expr) (nGoalName : String) : MetaM (Expr × MVarId) := do
+ -- Introduce a variable for the assumption (`a` or `b`)
+ let asmName ← mkFreshUserName `h
+ withLocalDeclD asmName hTy fun var => do
+ -- The new goal
+ let mgoal ← mkFreshExprSyntheticOpaqueMVar goalType (tag := Name.mkSimple nGoalName)
+ -- The branch expression
+ let branch ← mkLambdaFVars #[var] mgoal
+ pure (branch, mgoal.mvarId!)
+ let (inl, mleft) ← mkGoal a "left"
+ let (inr, mright) ← mkGoal b "right"
+ trace[Arith] "left: {inl}: {mleft}"
+ trace[Arith] "right: {inr}: {mright}"
+ -- Create the match expression
+ withLocalDeclD (← mkFreshUserName `h) hTy fun hVar => do
+ let motive ← mkLambdaFVars #[hVar] goalType
+ let casesExpr ← mkAppOptM ``Or.casesOn #[a, b, motive, h, inl, inr]
+ let mgoal ← Tactic.getMainGoal
+ trace[Arith] "goals: {← Tactic.getUnsolvedGoals}"
+ trace[Arith] "main goal: {mgoal}"
+ mgoal.assign casesExpr
+ let goals ← Tactic.getUnsolvedGoals
+ Tactic.setGoals (mleft :: mright :: goals)
+ trace[Arith] "new goals: {← Tactic.getUnsolvedGoals}"
+
+elab "split_disj " n:ident : tactic => do
+ Lean.Elab.Tactic.withMainContext do
+ let decl ← Lean.Meta.getLocalDeclFromUserName n.getId
+ let fvar := mkFVar decl.fvarId
+ splitDisj fvar
+
+example (x y : Int) (h0 : x ≤ y ∨ x ≥ y) : x ≤ y ∨ x ≥ y := by
+ split_disj h0
+ . left; assumption
+ . right; assumption
+
+-- Lookup the instances of `PropHasImp for all the sub-expressions in the context,
+-- and introduce the corresponding assumptions
+elab "intro_prop_has_imp_instances" : tactic => do
+ trace[Arith] "Introducing the PropHasImp instances"
+ introInstances ``PropHasImp.concl lookupPropHasImp (fun _ => pure ())
+
+example (x y : Int) (h0 : x ≤ y) (h1 : x ≠ y) : x < y := by
+ intro_prop_has_imp_instances
+ rename_i h
+ split_disj h
+ . linarith
+ . linarith
+
+syntax "int_tac_preprocess" : tactic
+
+/- Boosting a bit the linarith tac.
+
+ We do the following:
+ - for all the assumptions of the shape `(x : Int) ≠ y` or `¬ (x = y), we
+ introduce two goals with the assumptions `x < y` and `x > y`
+ TODO: we could create a PR for mathlib.
+ -/
+def intTacPreprocess : Tactic.TacticM Unit := do
+ Lean.Elab.Tactic.withMainContext do
+ -- Get the local context
+ let ctx ← Lean.MonadLCtx.getLCtx
+ -- Just a matter of precaution
+ let ctx ← instantiateLCtxMVars ctx
+ -- Explore the declarations - Remark: we don't explore the subexpressions
+ -- (we could, but it is rarely necessary, because terms of the shape `x ≠ y`
+ -- are often introduced because of branchings in the code, and using `split`
+ -- introduces exactly the assumptions `x = y` and `x ≠ y`).
+ let decls ← ctx.getDecls
+ for decl in decls do
+ let ty ← Lean.Meta.inferType decl.toExpr
+ ty.withApp fun f args => do
+ trace[Arith] "decl: {f} {args}"
+ -- Check if this is an inequality between integers
+ pure ()
+
+-- TODO: int_tac
+
+elab "int_tac_preprocess" : tactic =>
+ intTacPreprocess
+
+example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by
+ int_tac_preprocess
+ simp_all
+ int_tac_preprocess
+
+-- A tactic to solve linear arithmetic goals in the presence of scalars
+syntax "scalar_tac" : tactic
macro_rules
- | `(tactic| int_tac) =>
+ | `(tactic| scalar_tac) =>
`(tactic|
intro_has_prop_instances;
have := Scalar.cMin_bound ScalarTy.Usize;
have := Scalar.cMin_bound ScalarTy.Isize;
have := Scalar.cMax_bound ScalarTy.Usize;
have := Scalar.cMax_bound ScalarTy.Isize;
+ -- TODO: not too sure about that
simp only [*, Scalar.max, Scalar.min, Scalar.cMin, Scalar.cMax] at *;
+ -- TODO: use int_tac
linarith)
example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by
- int_tac
+ scalar_tac
example {a: Type} (v : Vec a) : v.val.length ≤ Scalar.max ScalarTy.Usize := by
- int_tac
+ scalar_tac
end Arith
diff --git a/backends/lean/Base/ArithBase.lean b/backends/lean/Base/ArithBase.lean
new file mode 100644
index 00000000..ddd2dc24
--- /dev/null
+++ b/backends/lean/Base/ArithBase.lean
@@ -0,0 +1,10 @@
+import Lean
+
+namespace Arith
+
+open Lean Elab Term Meta
+
+-- We can't define and use trace classes in the same file
+initialize registerTraceClass `Arith
+
+end Arith
diff --git a/backends/lean/Base/Diverge/ElabBase.lean b/backends/lean/Base/Diverge/ElabBase.lean
index aaaea6f7..fedb1c74 100644
--- a/backends/lean/Base/Diverge/ElabBase.lean
+++ b/backends/lean/Base/Diverge/ElabBase.lean
@@ -12,116 +12,4 @@ initialize registerTraceClass `Diverge.def.genBody
initialize registerTraceClass `Diverge.def.valid
initialize registerTraceClass `Diverge.def.unfold
--- Useful helper to explore definitions and figure out the variant
--- of their sub-expressions.
-def explore_term (incr : String) (e : Expr) : MetaM Unit :=
- match e with
- | .bvar _ => do logInfo m!"{incr}bvar: {e}"; return ()
- | .fvar _ => do logInfo m!"{incr}fvar: {e}"; return ()
- | .mvar _ => do logInfo m!"{incr}mvar: {e}"; return ()
- | .sort _ => do logInfo m!"{incr}sort: {e}"; return ()
- | .const _ _ => do logInfo m!"{incr}const: {e}"; return ()
- | .app fn arg => do
- logInfo m!"{incr}app: {e}"
- explore_term (incr ++ " ") fn
- explore_term (incr ++ " ") arg
- | .lam _bName bTy body _binfo => do
- logInfo m!"{incr}lam: {e}"
- explore_term (incr ++ " ") bTy
- explore_term (incr ++ " ") body
- | .forallE _bName bTy body _bInfo => do
- logInfo m!"{incr}forallE: {e}"
- explore_term (incr ++ " ") bTy
- explore_term (incr ++ " ") body
- | .letE _dName ty val body _nonDep => do
- logInfo m!"{incr}letE: {e}"
- explore_term (incr ++ " ") ty
- explore_term (incr ++ " ") val
- explore_term (incr ++ " ") body
- | .lit _ => do logInfo m!"{incr}lit: {e}"; return ()
- | .mdata _ e => do
- logInfo m!"{incr}mdata: {e}"
- explore_term (incr ++ " ") e
- | .proj _ _ struct => do
- logInfo m!"{incr}proj: {e}"
- explore_term (incr ++ " ") struct
-
-def explore_decl (n : Name) : TermElabM Unit := do
- logInfo m!"Name: {n}"
- let env ← getEnv
- let decl := env.constants.find! n
- match decl with
- | .defnInfo val =>
- logInfo m!"About to explore defn: {decl.name}"
- logInfo m!"# Type:"
- explore_term "" val.type
- logInfo m!"# Value:"
- explore_term "" val.value
- | .axiomInfo _ => throwError m!"axiom: {n}"
- | .thmInfo _ => throwError m!"thm: {n}"
- | .opaqueInfo _ => throwError m!"opaque: {n}"
- | .quotInfo _ => throwError m!"quot: {n}"
- | .inductInfo _ => throwError m!"induct: {n}"
- | .ctorInfo _ => throwError m!"ctor: {n}"
- | .recInfo _ => throwError m!"rec: {n}"
-
-syntax (name := printDecl) "print_decl " ident : command
-
-open Lean.Elab.Command
-
-@[command_elab printDecl] def elabPrintDecl : CommandElab := fun stx => do
- liftTermElabM do
- let id := stx[1]
- addCompletionInfo <| CompletionInfo.id id id.getId (danglingDot := false) {} none
- let cs ← resolveGlobalConstWithInfos id
- explore_decl cs[0]!
-
-private def test1 : Nat := 0
-private def test2 (x : Nat) : Nat := x
-
-print_decl test1
-print_decl test2
-
--- A map visitor function for expressions (adapted from `AbstractNestedProofs.visit`)
--- The continuation takes as parameters:
--- - the current depth of the expression (useful for printing/debugging)
--- - the expression to explore
-partial def mapVisit (k : Nat → Expr → MetaM Expr) (e : Expr) : MetaM Expr := do
- let mapVisitBinders (xs : Array Expr) (k2 : MetaM Expr) : MetaM Expr := do
- let localInstances ← getLocalInstances
- let mut lctx ← getLCtx
- for x in xs do
- let xFVarId := x.fvarId!
- let localDecl ← xFVarId.getDecl
- let type ← mapVisit k localDecl.type
- let localDecl := localDecl.setType type
- let localDecl ← match localDecl.value? with
- | some value => let value ← mapVisit k value; pure <| localDecl.setValue value
- | none => pure localDecl
- lctx :=lctx.modifyLocalDecl xFVarId fun _ => localDecl
- withLCtx lctx localInstances k2
- -- TODO: use a cache? (Lean.checkCache)
- let rec visit (i : Nat) (e : Expr) : MetaM Expr := do
- -- Explore
- let e ← k i e
- match e with
- | .bvar _
- | .fvar _
- | .mvar _
- | .sort _
- | .lit _
- | .const _ _ => pure e
- | .app .. => do e.withApp fun f args => return mkAppN f (← args.mapM (visit (i + 1)))
- | .lam .. =>
- lambdaLetTelescope e fun xs b =>
- mapVisitBinders xs do mkLambdaFVars xs (← visit (i + 1) b) (usedLetOnly := false)
- | .forallE .. => do
- forallTelescope e fun xs b => mapVisitBinders xs do mkForallFVars xs (← visit (i + 1) b)
- | .letE .. => do
- lambdaLetTelescope e fun xs b => mapVisitBinders xs do
- mkLambdaFVars xs (← visit (i + 1) b) (usedLetOnly := false)
- | .mdata _ b => return e.updateMData! (← visit (i + 1) b)
- | .proj _ _ b => return e.updateProj! (← visit (i + 1) b)
- visit 0 e
-
end Diverge