summaryrefslogtreecommitdiff
path: root/backends/lean/Primitives.lean
diff options
context:
space:
mode:
Diffstat (limited to 'backends/lean/Primitives.lean')
-rw-r--r--backends/lean/Primitives.lean92
1 files changed, 46 insertions, 46 deletions
diff --git a/backends/lean/Primitives.lean b/backends/lean/Primitives.lean
index 79958d94..a0892ca7 100644
--- a/backends/lean/Primitives.lean
+++ b/backends/lean/Primitives.lean
@@ -9,69 +9,69 @@ import Mathlib.Tactic.RunCmd
-- Results & monadic combinators
--- TODO: use syntactic conventions and capitalize error, result, etc.
-
-inductive error where
- | assertionFailure: error
- | integerOverflow: error
- | arrayOutOfBounds: error
- | maximumSizeExceeded: error
- | panic: error
+-- TODO: use syntactic conventions and capitalize Error, Result, etc.
+
+inductive Error where
+ | assertionFailure: Error
+ | integerOverflow: Error
+ | arrayOutOfBounds: Error
+ | maximumSizeExceeded: Error
+ | panic: Error
deriving Repr, BEq
-open error
+open Error
-inductive result (α : Type u) where
- | ret (v: α): result α
- | fail (e: error): result α
+inductive Result (α : Type u) where
+ | ret (v: α): Result α
+ | fail (e: Error): Result α
deriving Repr, BEq
-open result
+open Result
/- HELPERS -/
-- TODO: is there automated syntax for these discriminators?
-def is_ret {α: Type} (r: result α): Bool :=
+def is_ret {α: Type} (r: Result α): Bool :=
match r with
- | result.ret _ => true
- | result.fail _ => false
+ | Result.ret _ => true
+ | Result.fail _ => false
-def massert (b:Bool) : result Unit :=
+def massert (b:Bool) : Result Unit :=
if b then .ret () else fail assertionFailure
-def eval_global {α: Type} (x: result α) (_: is_ret x): α :=
+def eval_global {α: Type} (x: Result α) (_: is_ret x): α :=
match x with
- | result.fail _ => by contradiction
- | result.ret x => x
+ | Result.fail _ => by contradiction
+ | Result.ret x => x
/- DO-DSL SUPPORT -/
-def bind (x: result α) (f: α -> result β) : result β :=
+def bind (x: Result α) (f: α -> Result β) : Result β :=
match x with
| ret v => f v
| fail v => fail v
--- Allows using result in do-blocks
-instance : Bind result where
+-- Allows using Result in do-blocks
+instance : Bind Result where
bind := bind
-- Allows using return x in do-blocks
-instance : Pure result where
+instance : Pure Result where
pure := fun x => ret x
/- CUSTOM-DSL SUPPORT -/
--- Let-binding the result of a monadic operation is oftentimes not sufficient,
+-- Let-binding the Result of a monadic operation is oftentimes not sufficient,
-- because we may need a hypothesis for equational reasoning in the scope. We
-- rely on subtype, and a custom let-binding operator, in effect recreating our
-- own variant of the do-dsl
-def result.attach : (o : result α) → result { x : α // o = ret x }
+def Result.attach : (o : Result α) → Result { x : α // o = ret x }
| .ret x => .ret ⟨x, rfl⟩
| .fail e => .fail e
macro "let" h:ident " : " e:term " <-- " f:term : doElem =>
- `(doElem| let ⟨$e, $h⟩ ← result.attach $f)
+ `(doElem| let ⟨$e, $h⟩ ← Result.attach $f)
-- Silly example of the kind of reasoning that this notation enables
#eval do
@@ -99,8 +99,8 @@ macro "let" h:ident " : " e:term " <-- " f:term : doElem =>
-- total function over nats...? the hypothesis in the if condition is not used
-- in the then-branch which confuses me quite a bit
--- TODO: add a refinement for the result (just like vec_push_back below) that
--- explains that the toNat of the result (in the case of success) is the sub of
+-- TODO: add a refinement for the Result (just like vec_push_back below) that
+-- explains that the toNat of the Result (in the case of success) is the sub of
-- the toNat of the arguments (i.e. intrinsic specification)
-- ... do we want intrinsic specifications for the builtins? that might require
-- some careful type annotations in the monadic notation for clients, but may
@@ -134,7 +134,7 @@ macro_rules
-- and
-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
-- which both contain a fair amount of reasoning already!
-def USize.checked_sub (n: USize) (m: USize): result USize :=
+def USize.checked_sub (n: USize) (m: USize): Result USize :=
-- NOTE: the test USize.toNat n - m >= 0 seems to always succeed?
if n >= m then
let n' := USize.toNat n
@@ -150,7 +150,7 @@ def USize.checked_sub (n: USize) (m: USize): result USize :=
else
fail integerOverflow
-def USize.checked_add (n: USize) (m: USize): result USize :=
+def USize.checked_add (n: USize) (m: USize): Result USize :=
if h: n.val.val + m.val.val <= 4294967295 then
.ret ⟨ n.val.val + m.val.val, by
have h': 4294967295 < USize.size := by intlit
@@ -161,7 +161,7 @@ def USize.checked_add (n: USize) (m: USize): result USize :=
else
.fail integerOverflow
-def USize.checked_rem (n: USize) (m: USize): result USize :=
+def USize.checked_rem (n: USize) (m: USize): Result USize :=
if h: m > 0 then
.ret ⟨ n.val % m.val, by
have h1: ↑m.val < USize.size := m.val.isLt
@@ -171,7 +171,7 @@ def USize.checked_rem (n: USize) (m: USize): result USize :=
else
.fail integerOverflow
-def USize.checked_mul (n: USize) (m: USize): result USize :=
+def USize.checked_mul (n: USize) (m: USize): Result USize :=
if h: n.val.val * m.val.val <= 4294967295 then
.ret ⟨ n.val.val * m.val.val, by
have h': 4294967295 < USize.size := by intlit
@@ -182,7 +182,7 @@ def USize.checked_mul (n: USize) (m: USize): result USize :=
else
.fail integerOverflow
-def USize.checked_div (n: USize) (m: USize): result USize :=
+def USize.checked_div (n: USize) (m: USize): Result USize :=
if m > 0 then
.ret ⟨ n.val / m.val, by
have h1: ↑n.val < USize.size := n.val.isLt
@@ -209,7 +209,7 @@ run_cmd
end $typeName
))
-def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): result dst :=
+def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
if h: MachineInteger.val x < MachineInteger.size dst then
.ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
else
@@ -249,11 +249,11 @@ def vec_len (α : Type u) (v : vec α) : USize :=
def vec_push_fwd (α : Type u) (_ : vec α) (_ : α) : Unit := ()
-- NOTE: old version trying to use a subtype notation, but probably better to
--- leave result elimination to auxiliary lemmas with suitable preconditions
+-- leave Result elimination to auxiliary lemmas with suitable preconditions
-- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one
-- make the proof work in that case? Probably need to import tactics from
-- mathlib to deal with inequalities... would love to see an example.
-def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: result (vec α) //
+def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: Result (vec α) //
match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1}
:=
if h : List.length v.val + 1 < USize.size then
@@ -272,12 +272,12 @@ def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: result (vec
-- annotate `x`, which relieves us of having to write `.val` on the right-hand
-- side of the monadic let.
let v := vec_new Nat
- let x: vec Nat ← (vec_push_back_old Nat v 1: result (vec Nat)) -- WHY do we need the type annotation here?
+ let x: vec Nat ← (vec_push_back_old Nat v 1: Result (vec Nat)) -- WHY do we need the type annotation here?
-- TODO: strengthen post-condition above and do a demo to show that we can
-- safely eliminate the `fail` case
return (vec_len Nat x)
-def vec_push_back (α : Type u) (v : vec α) (x : α) : result (vec α)
+def vec_push_back (α : Type u) (v : vec α) (x : α) : Result (vec α)
:=
if h : List.length v.val + 1 <= 4294967295 then
return ⟨ List.concat v.val x,
@@ -295,13 +295,13 @@ def vec_push_back (α : Type u) (v : vec α) (x : α) : result (vec α)
else
fail maximumSizeExceeded
-def vec_insert_fwd (α : Type u) (v: vec α) (i: USize) (_: α): result Unit :=
+def vec_insert_fwd (α : Type u) (v: vec α) (i: USize) (_: α): Result Unit :=
if i.val < List.length v.val then
.ret ()
else
.fail arrayOutOfBounds
-def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) :=
+def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): Result (vec α) :=
if i.val < List.length v.val then
.ret ⟨ List.set v.val i.val x, by
have h: List.length v.val < USize.size := v.property
@@ -311,25 +311,25 @@ def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α
else
.fail arrayOutOfBounds
-def vec_index_fwd (α : Type u) (v: vec α) (i: USize): result α :=
+def vec_index_fwd (α : Type u) (v: vec α) (i: USize): Result α :=
if h: i.val < List.length v.val then
.ret (List.get v.val ⟨i.val, h⟩)
else
.fail arrayOutOfBounds
-def vec_index_back (α : Type u) (v: vec α) (i: USize) (_: α): result Unit :=
+def vec_index_back (α : Type u) (v: vec α) (i: USize) (_: α): Result Unit :=
if i.val < List.length v.val then
.ret ()
else
.fail arrayOutOfBounds
-def vec_index_mut_fwd (α : Type u) (v: vec α) (i: USize): result α :=
+def vec_index_mut_fwd (α : Type u) (v: vec α) (i: USize): Result α :=
if h: i.val < List.length v.val then
.ret (List.get v.val ⟨i.val, h⟩)
else
.fail arrayOutOfBounds
-def vec_index_mut_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) :=
+def vec_index_mut_back (α : Type u) (v: vec α) (i: USize) (x: α): Result (vec α) :=
if i.val < List.length v.val then
.ret ⟨ List.set v.val i.val x, by
have h: List.length v.val < USize.size := v.property
@@ -364,7 +364,7 @@ def assertImpl : CommandElab := fun (_stx: Syntax) => do
runTermElabM (fun _ => do
let e ← Term.elabTerm _stx[1] none
logInfo (Expr.dbgToString e)
- -- How to evaluate the term and compare the result to true?
+ -- How to evaluate the term and compare the Result to true?
pure ())
-- logInfo (Expr.dbgToString (``true))
-- throwError "TODO: assert"