diff options
Diffstat (limited to 'backends/lean/Base')
-rw-r--r-- | backends/lean/Base/Primitives/ArraySlice.lean | 164 |
1 files changed, 50 insertions, 114 deletions
diff --git a/backends/lean/Base/Primitives/ArraySlice.lean b/backends/lean/Base/Primitives/ArraySlice.lean index 615e0783..2a080ca6 100644 --- a/backends/lean/Base/Primitives/ArraySlice.lean +++ b/backends/lean/Base/Primitives/ArraySlice.lean @@ -40,14 +40,14 @@ def Array.make (α : Type u) (n : Usize) (init : List α) (hl : init.len = n.val example : Array Int (Usize.ofInt 2) := Array.make Int (Usize.ofInt 2) [0, 1] @[simp] -abbrev Array.index {α : Type u} {n : Usize} [Inhabited α] (v : Array α n) (i : Int) : α := +abbrev Array.index_s {α : Type u} {n : Usize} [Inhabited α] (v : Array α n) (i : Int) : α := v.val.index i @[simp] abbrev Array.slice {α : Type u} {n : Usize} [Inhabited α] (v : Array α n) (i j : Int) : List α := v.val.slice i j -def Array.index_shared (α : Type u) (n : Usize) (v: Array α n) (i: Usize) : Result α := +def Array.index_usize (α : Type u) (n : Usize) (v: Array α n) (i: Usize) : Result α := match v.val.indexOpt i.val with | none => fail .arrayOutOfBounds | some x => ret x @@ -67,48 +67,27 @@ theorem Array.repeat_spec {α : Type u} (n : Usize) (x : α) : -/ @[pspec] -theorem Array.index_shared_spec {α : Type u} {n : Usize} [Inhabited α] (v: Array α n) (i: Usize) +theorem Array.index_usize_spec {α : Type u} {n : Usize} [Inhabited α] (v: Array α n) (i: Usize) (hbound : i.val < v.length) : - ∃ x, v.index_shared α n i = ret x ∧ x = v.val.index i.val := by - simp only [index_shared] + ∃ x, v.index_usize α n i = ret x ∧ x = v.val.index i.val := by + simp only [index_usize] -- TODO: dependent rewrite have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*]) simp [*] --- This shouldn't be used -def Array.index_shared_back (α : Type u) (n : Usize) (v: Array α n) (i: Usize) (_: α) : Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def Array.index_mut (α : Type u) (n : Usize) (v: Array α n) (i: Usize) : Result α := - match v.val.indexOpt i.val with - | none => fail .arrayOutOfBounds - | some x => ret x - -@[pspec] -theorem Array.index_mut_spec {α : Type u} {n : Usize} [Inhabited α] (v: Array α n) (i: Usize) - (hbound : i.val < v.length) : - ∃ x, v.index_mut α n i = ret x ∧ x = v.val.index i.val := by - simp only [index_mut] - -- TODO: dependent rewrite - have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*]) - simp [*] - -def Array.index_mut_back (α : Type u) (n : Usize) (v: Array α n) (i: Usize) (x: α) : Result (Array α n) := +def Array.update_usize (α : Type u) (n : Usize) (v: Array α n) (i: Usize) (x: α) : Result (Array α n) := match v.val.indexOpt i.val with | none => fail .arrayOutOfBounds | some _ => .ret ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩ @[pspec] -theorem Array.index_mut_back_spec {α : Type u} {n : Usize} (v: Array α n) (i: Usize) (x : α) +theorem Array.update_usize_spec {α : Type u} {n : Usize} (v: Array α n) (i: Usize) (x : α) (hbound : i.val < v.length) : - ∃ nv, v.index_mut_back α n i x = ret nv ∧ + ∃ nv, v.update_usize α n i x = ret nv ∧ nv.val = v.val.update i.val x := by - simp only [index_mut_back] + simp only [update_usize] have h := List.indexOpt_bounds v.val i.val split . simp_all [length]; cases h <;> scalar_tac @@ -144,14 +123,14 @@ theorem Slice.len_val {α : Type u} (v : Slice α) : (Slice.len α v).val = v.le by rfl @[simp] -abbrev Slice.index {α : Type u} [Inhabited α] (v: Slice α) (i: Int) : α := +abbrev Slice.index_s {α : Type u} [Inhabited α] (v: Slice α) (i: Int) : α := v.val.index i @[simp] abbrev Slice.slice {α : Type u} [Inhabited α] (s : Slice α) (i j : Int) : List α := s.val.slice i j -def Slice.index_shared (α : Type u) (v: Slice α) (i: Usize) : Result α := +def Slice.index_usize (α : Type u) (v: Slice α) (i: Usize) : Result α := match v.val.indexOpt i.val with | none => fail .arrayOutOfBounds | some x => ret x @@ -162,10 +141,10 @@ def Slice.index_shared (α : Type u) (v: Slice α) (i: Usize) : Result α := -/ @[pspec] -theorem Slice.index_shared_spec {α : Type u} [Inhabited α] (v: Slice α) (i: Usize) +theorem Slice.index_usize_spec {α : Type u} [Inhabited α] (v: Slice α) (i: Usize) (hbound : i.val < v.length) : - ∃ x, v.index_shared α i = ret x ∧ x = v.val.index i.val := by - simp only [index_shared] + ∃ x, v.index_usize α i = ret x ∧ x = v.val.index i.val := by + simp only [index_usize] -- TODO: dependent rewrite have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*]) simp [*] @@ -177,33 +156,19 @@ def Slice.index_shared_back (α : Type u) (v: Slice α) (i: Usize) (_: α) : Res else .fail arrayOutOfBounds -def Slice.index_mut (α : Type u) (v: Slice α) (i: Usize) : Result α := - match v.val.indexOpt i.val with - | none => fail .arrayOutOfBounds - | some x => ret x - -@[pspec] -theorem Slice.index_mut_spec {α : Type u} [Inhabited α] (v: Slice α) (i: Usize) - (hbound : i.val < v.length) : - ∃ x, v.index_mut α i = ret x ∧ x = v.val.index i.val := by - simp only [index_mut] - -- TODO: dependent rewrite - have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*]) - simp [*] - -def Slice.index_mut_back (α : Type u) (v: Slice α) (i: Usize) (x: α) : Result (Slice α) := +def Slice.update_usize (α : Type u) (v: Slice α) (i: Usize) (x: α) : Result (Slice α) := match v.val.indexOpt i.val with | none => fail .arrayOutOfBounds | some _ => .ret ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩ @[pspec] -theorem Slice.index_mut_back_spec {α : Type u} (v: Slice α) (i: Usize) (x : α) +theorem Slice.update_usize_spec {α : Type u} (v: Slice α) (i: Usize) (x : α) (hbound : i.val < v.length) : - ∃ nv, v.index_mut_back α i x = ret nv ∧ + ∃ nv, v.update_usize α i x = ret nv ∧ nv.val = v.val.update i.val x := by - simp only [index_mut_back] + simp only [update_usize] have h := List.indexOpt_bounds v.val i.val split . simp_all [length]; cases h <;> scalar_tac @@ -212,34 +177,27 @@ theorem Slice.index_mut_back_spec {α : Type u} (v: Slice α) (i: Usize) (x : α /- Array to slice/subslices -/ /- We could make this function not use the `Result` type. By making it monadic, we - push the user to use the `Array.to_slice_shared_spec` spec theorem below (through the - `progress` tactic), meaning `Array.to_slice_shared` should be considered as opaque. + push the user to use the `Array.to_slice_spec` spec theorem below (through the + `progress` tactic), meaning `Array.to_slice` should be considered as opaque. All what the spec theorem reveals is that the "representative" lists are the same. -/ -def Array.to_slice_shared (α : Type u) (n : Usize) (v : Array α n) : Result (Slice α) := +def Array.to_slice (α : Type u) (n : Usize) (v : Array α n) : Result (Slice α) := ret ⟨ v.val, by simp [← List.len_eq_length]; scalar_tac ⟩ @[pspec] -theorem Array.to_slice_shared_spec {α : Type u} {n : Usize} (v : Array α n) : - ∃ s, to_slice_shared α n v = ret s ∧ v.val = s.val := by simp [to_slice_shared] - -def Array.to_slice_mut (α : Type u) (n : Usize) (v : Array α n) : Result (Slice α) := - to_slice_shared α n v +theorem Array.to_slice_spec {α : Type u} {n : Usize} (v : Array α n) : + ∃ s, to_slice α n v = ret s ∧ v.val = s.val := by simp [to_slice] -@[pspec] -theorem Array.to_slice_mut_spec {α : Type u} {n : Usize} (v : Array α n) : - ∃ s, Array.to_slice_shared α n v = ret s ∧ v.val = s.val := to_slice_shared_spec v - -def Array.to_slice_mut_back (α : Type u) (n : Usize) (_ : Array α n) (s : Slice α) : Result (Array α n) := +def Array.from_slice (α : Type u) (n : Usize) (_ : Array α n) (s : Slice α) : Result (Array α n) := if h: s.val.len = n.val then ret ⟨ s.val, by simp [← List.len_eq_length, *] ⟩ else fail panic @[pspec] -theorem Array.to_slice_mut_back_spec {α : Type u} {n : Usize} (a : Array α n) (ns : Slice α) (h : ns.val.len = n.val) : - ∃ na, to_slice_mut_back α n a ns = ret na ∧ na.val = ns.val - := by simp [to_slice_mut_back, *] +theorem Array.from_slice_spec {α : Type u} {n : Usize} (a : Array α n) (ns : Slice α) (h : ns.val.len = n.val) : + ∃ na, from_slice α n a ns = ret na ∧ na.val = ns.val + := by simp [from_slice, *] -def Array.subslice_shared (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) : Result (Slice α) := +def Array.subslice (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) : Result (Slice α) := -- TODO: not completely sure here if r.start.val < r.end_.val ∧ r.end_.val ≤ a.val.len then ret ⟨ a.val.slice r.start.val r.end_.val, @@ -251,29 +209,18 @@ def Array.subslice_shared (α : Type u) (n : Usize) (a : Array α n) (r : Range fail panic @[pspec] -theorem Array.subslice_shared_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize) +theorem Array.subslice_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize) (h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ a.val.len) : - ∃ s, subslice_shared α n a r = ret s ∧ + ∃ s, subslice α n a r = ret s ∧ s.val = a.val.slice r.start.val r.end_.val ∧ (∀ i, 0 ≤ i → i + r.start.val < r.end_.val → s.val.index i = a.val.index (r.start.val + i)) := by - simp [subslice_shared, *] + simp [subslice, *] intro i _ _ have := List.index_slice r.start.val r.end_.val i a.val (by scalar_tac) (by scalar_tac) (by trivial) (by scalar_tac) simp [*] -def Array.subslice_mut (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) : Result (Slice α) := - Array.subslice_shared α n a r - -@[pspec] -theorem Array.subslice_mut_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize) - (h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ a.val.len) : - ∃ s, subslice_mut α n a r = ret s ∧ - s.val = a.slice r.start.val r.end_.val ∧ - (∀ i, 0 ≤ i → i + r.start.val < r.end_.val → s.val.index i = a.val.index (r.start.val + i)) - := subslice_shared_spec a r h0 h1 - -def Array.subslice_mut_back (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) (s : Slice α) : Result (Array α n) := +def Array.update_subslice (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) (s : Slice α) : Result (Array α n) := -- TODO: not completely sure here if h: r.start.val < r.end_.val ∧ r.end_.val ≤ a.length ∧ s.val.len = r.end_.val - r.start.val then let s_beg := a.val.itake r.start.val @@ -298,13 +245,13 @@ def Array.subslice_mut_back (α : Type u) (n : Usize) (a : Array α n) (r : Rang -- We should introduce special symbols for the monadic arithmetic operations -- (the use will never write those symbols directly). @[pspec] -theorem Array.subslice_mut_back_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize) (s : Slice α) +theorem Array.update_subslice_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize) (s : Slice α) (_ : r.start.val < r.end_.val) (_ : r.end_.val ≤ a.length) (_ : s.length = r.end_.val - r.start.val) : - ∃ na, subslice_mut_back α n a r s = ret na ∧ - (∀ i, 0 ≤ i → i < r.start.val → na.index i = a.index i) ∧ - (∀ i, r.start.val ≤ i → i < r.end_.val → na.index i = s.index (i - r.start.val)) ∧ - (∀ i, r.end_.val ≤ i → i < n.val → na.index i = a.index i) := by - simp [subslice_mut_back, *] + ∃ na, update_subslice α n a r s = ret na ∧ + (∀ i, 0 ≤ i → i < r.start.val → na.index_s i = a.index_s i) ∧ + (∀ i, r.start.val ≤ i → i < r.end_.val → na.index_s i = s.index_s (i - r.start.val)) ∧ + (∀ i, r.end_.val ≤ i → i < n.val → na.index_s i = a.index_s i) := by + simp [update_subslice, *] have h := List.replace_slice_index r.start.val r.end_.val a.val s.val (by scalar_tac) (by scalar_tac) (by scalar_tac) (by scalar_tac) simp [List.replace_slice] at h @@ -321,7 +268,7 @@ theorem Array.subslice_mut_back_spec {α : Type u} {n : Usize} [Inhabited α] (a have := h2 i (by int_tac) (by int_tac) simp [*] -def Slice.subslice_shared (α : Type u) (s : Slice α) (r : Range Usize) : Result (Slice α) := +def Slice.subslice (α : Type u) (s : Slice α) (r : Range Usize) : Result (Slice α) := -- TODO: not completely sure here if r.start.val < r.end_.val ∧ r.end_.val ≤ s.length then ret ⟨ s.val.slice r.start.val r.end_.val, @@ -333,32 +280,21 @@ def Slice.subslice_shared (α : Type u) (s : Slice α) (r : Range Usize) : Resul fail panic @[pspec] -theorem Slice.subslice_shared_spec {α : Type u} [Inhabited α] (s : Slice α) (r : Range Usize) +theorem Slice.subslice_spec {α : Type u} [Inhabited α] (s : Slice α) (r : Range Usize) (h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ s.val.len) : - ∃ ns, subslice_shared α s r = ret ns ∧ + ∃ ns, subslice α s r = ret ns ∧ ns.val = s.slice r.start.val r.end_.val ∧ - (∀ i, 0 ≤ i → i + r.start.val < r.end_.val → ns.index i = s.index (r.start.val + i)) + (∀ i, 0 ≤ i → i + r.start.val < r.end_.val → ns.index_s i = s.index_s (r.start.val + i)) := by - simp [subslice_shared, *] + simp [subslice, *] intro i _ _ have := List.index_slice r.start.val r.end_.val i s.val (by scalar_tac) (by scalar_tac) (by trivial) (by scalar_tac) simp [*] -def Slice.subslice_mut (α : Type u) (s : Slice α) (r : Range Usize) : Result (Slice α) := - Slice.subslice_shared α s r - -@[pspec] -theorem Slice.subslice_mut_spec {α : Type u} [Inhabited α] (s : Slice α) (r : Range Usize) - (h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ s.val.len) : - ∃ ns, subslice_mut α s r = ret ns ∧ - ns.val = s.slice r.start.val r.end_.val ∧ - (∀ i, 0 ≤ i → i + r.start.val < r.end_.val → ns.index i = s.index (r.start.val + i)) - := subslice_shared_spec s r h0 h1 - attribute [pp_dot] List.len List.length List.index -- use the dot notation when printing set_option pp.coercions false -- do not print coercions with ↑ (this doesn't parse) -def Slice.subslice_mut_back (α : Type u) (s : Slice α) (r : Range Usize) (ss : Slice α) : Result (Slice α) := +def Slice.update_subslice (α : Type u) (s : Slice α) (r : Range Usize) (ss : Slice α) : Result (Slice α) := -- TODO: not completely sure here if h: r.start.val < r.end_.val ∧ r.end_.val ≤ s.length ∧ ss.val.len = r.end_.val - r.start.val then let s_beg := s.val.itake r.start.val @@ -378,13 +314,13 @@ def Slice.subslice_mut_back (α : Type u) (s : Slice α) (r : Range Usize) (ss : fail panic @[pspec] -theorem Slice.subslice_mut_back_spec {α : Type u} [Inhabited α] (a : Slice α) (r : Range Usize) (ss : Slice α) +theorem Slice.update_subslice_spec {α : Type u} [Inhabited α] (a : Slice α) (r : Range Usize) (ss : Slice α) (_ : r.start.val < r.end_.val) (_ : r.end_.val ≤ a.length) (_ : ss.length = r.end_.val - r.start.val) : - ∃ na, subslice_mut_back α a r ss = ret na ∧ - (∀ i, 0 ≤ i → i < r.start.val → na.index i = a.index i) ∧ - (∀ i, r.start.val ≤ i → i < r.end_.val → na.index i = ss.index (i - r.start.val)) ∧ - (∀ i, r.end_.val ≤ i → i < a.length → na.index i = a.index i) := by - simp [subslice_mut_back, *] + ∃ na, update_subslice α a r ss = ret na ∧ + (∀ i, 0 ≤ i → i < r.start.val → na.index_s i = a.index_s i) ∧ + (∀ i, r.start.val ≤ i → i < r.end_.val → na.index_s i = ss.index_s (i - r.start.val)) ∧ + (∀ i, r.end_.val ≤ i → i < a.length → na.index_s i = a.index_s i) := by + simp [update_subslice, *] have h := List.replace_slice_index r.start.val r.end_.val a.val ss.val (by scalar_tac) (by scalar_tac) (by scalar_tac) (by scalar_tac) simp [List.replace_slice, *] at h |