summaryrefslogtreecommitdiff
path: root/backends/lean/Base
diff options
context:
space:
mode:
Diffstat (limited to 'backends/lean/Base')
-rw-r--r--backends/lean/Base/Diverge.lean119
1 files changed, 102 insertions, 17 deletions
diff --git a/backends/lean/Base/Diverge.lean b/backends/lean/Base/Diverge.lean
index 76f0543a..c97674dd 100644
--- a/backends/lean/Base/Diverge.lean
+++ b/backends/lean/Base/Diverge.lean
@@ -544,28 +544,40 @@ namespace FixI
/- Some utilities to define the mutually recursive functions -/
- inductive Funs : List (Type u) → List (Type u) → Type (u + 1) :=
- | Nil : Funs [] []
+ -- TODO: use more
+ @[simp] def kk_ty (id : Type) (a b : id → Type) := (i:id) → a i → Result (b i)
+ @[simp] def k_ty (id : Type) (a b : id → Type) := kk_ty id a b → kk_ty id a b
+
+ -- Initially, we had left out the parameters id, a and b.
+ -- However, by parameterizing Funs with those parameters, we can state
+ -- and prove lemmas like Funs.is_valid_p_is_valid_p
+ inductive Funs (id : Type) (a b : id → Type) :
+ List (Type u) → List (Type u) → Type (u + 1) :=
+ | Nil : Funs id a b [] []
| Cons {ity oty : Type u} {itys otys : List (Type u)}
- (f : ity → Result oty) (tl : Funs itys otys) : Funs (ity :: itys) (oty :: otys)
+ (f : kk_ty id a b → ity → Result oty) (tl : Funs id a b itys otys) :
+ Funs id a b (ity :: itys) (oty :: otys)
- theorem Funs.length_eq {itys otys : List (Type)} (fl : Funs itys otys) :
- itys.length = otys.length :=
+ theorem Funs.length_eq {itys otys : List (Type)} (fl : Funs id a b itys otys) :
+ otys.length = itys.length :=
match fl with
| .Nil => by simp
| .Cons f tl =>
have h:= Funs.length_eq tl
by simp [h]
+ def fin_cast {n m : Nat} (h : m = n) (i : Fin n) : Fin m :=
+ ⟨ i.val, by have h1:= i.isLt; simp_all ⟩
+
@[simp] def Funs.cast_fin {itys otys : List (Type)}
- (fl : Funs itys otys) (i : Fin itys.length) : Fin otys.length :=
- ⟨ i.val, by have h:= fl.length_eq; have h1:= i.isLt; simp_all ⟩
+ (fl : Funs id a b itys otys) (i : Fin itys.length) : Fin otys.length :=
+ fin_cast (fl.length_eq) i
- def get_fun {itys otys : List (Type)} (fl : Funs itys otys) :
- (i : Fin itys.length) → itys.get i → Result (otys.get (fl.cast_fin i)) :=
+ def get_fun {itys otys : List (Type)} (fl : Funs id a b itys otys) :
+ (i : Fin itys.length) → kk_ty id a b → itys.get i → Result (otys.get (fl.cast_fin i)) :=
match fl with
| .Nil => λ i => by have h:= i.isLt; simp at h
- | @Funs.Cons ity oty itys1 otys1 f tl =>
+ | @Funs.Cons id a b ity oty itys1 otys1 f tl =>
λ i =>
if h: i.val = 0 then
Eq.mp (by cases i; simp_all [List.get]) f
@@ -582,10 +594,9 @@ namespace FixI
(by
cases Heq: i; rename_i val isLt;
cases Heq': j; rename_i val' isLt;
- cases val <;> simp_all [List.get])
+ cases val <;> simp_all [List.get, fin_cast])
(get_fun tl j)
-
-- TODO: move
theorem add_one_le_iff_le_ne (n m : Nat) (h1 : m ≤ n) (h2 : m ≠ n) : m + 1 ≤ n := by
-- Damn, those proofs on natural numbers are hard - I wish Omega was in mathlib4...
@@ -612,7 +623,7 @@ namespace FixI
:= by
generalize h: (n - m) = k
revert m
- induction k
+ induction k -- TODO: induction h rather?
case zero =>
simp_all
intro m h1 h2
@@ -683,6 +694,65 @@ namespace FixI
. apply Hgvalid
. apply Hhvalid
+ def Funs.is_valid_p
+ (k : k_ty id a b)
+ (fl : Funs id a b itys otys) :
+ Prop :=
+ match fl with
+ | .Nil => True
+ | .Cons f fl => (∀ x, FixI.is_valid_p k (λ k => f k x)) ∧ fl.is_valid_p k
+
+ #check Subtype
+ def Funs.is_valid_p_is_valid_p_aux
+ {k : k_ty id a b}
+ {itys otys : List Type}
+ (Heq : List.length otys = List.length itys)
+ (fl : Funs id a b itys otys) (Hvalid : is_valid_p k fl) :
+ ∀ (i : Fin itys.length) (x : itys.get i), FixI.is_valid_p k (fun k => get_fun fl i k x) := by
+ -- Prepare the induction
+ have ⟨ n, Hn ⟩ : { n : Nat // itys.length = n } := ⟨ itys.length, by rfl ⟩
+ revert itys otys Heq fl Hvalid
+ induction n
+ --
+ case zero =>
+ intro itys otys Heq fl Hvalid Hlen;
+ have Heq: itys = [] := by cases itys <;> simp_all
+ have Heq: otys = [] := by cases otys <;> simp_all
+ intro i x
+ simp_all
+ have Hi := i.isLt
+ simp_all
+ case succ n Hn =>
+ intro itys otys Heq fl Hvalid Hlen i x;
+ cases fl <;> simp at *
+ rename_i ity oty itys otys f fl
+ have ⟨ Hvf, Hvalid ⟩ := Hvalid
+ have Hvf1: is_valid_p k fl := by
+ simp_all [Funs.is_valid_p]
+ have Hn := @Hn itys otys (by simp[*]) fl Hvf1 (by simp [*])
+ -- Case disjunction on i
+ match i with
+ | ⟨ 0, _ ⟩ =>
+ simp at x
+ simp [get_fun]
+ apply (Hvf x)
+ | ⟨ .succ j, HiLt ⟩ =>
+ simp_arith at HiLt
+ simp at x
+ let j : Fin (List.length itys) := ⟨ j, by simp_arith [HiLt] ⟩
+ have Hn := Hn j x
+ apply Hn
+
+ def Funs.is_valid_p_is_valid_p
+ (itys otys : List (Type)) (Heq: otys.length = itys.length := by decide)
+ (k : k_ty (Fin (List.length itys)) (List.get itys) fun i => List.get otys (fin_cast Heq i))
+ (fl : Funs (Fin itys.length) itys.get (λ i => otys.get (fin_cast Heq i)) itys otys) :
+ fl.is_valid_p k →
+ ∀ (i : Fin itys.length) (x : itys.get i), FixI.is_valid_p k (fun k => get_fun fl i k x)
+ := by
+ intro Hvalid
+ apply is_valid_p_is_valid_p_aux <;> simp [*]
+
end FixI
namespace Ex1
@@ -909,12 +979,12 @@ namespace Ex4
let b ← k 0 (i - 1)
.ret b
- @[simp] def bodies (k : (i : Fin 2) → input_ty i → Result (output_ty i)) :
- Funs [Int, Int] [Bool, Bool] :=
- Funs.Cons (is_even_body k) (Funs.Cons (is_odd_body k) Funs.Nil)
+ @[simp] def bodies :
+ Funs (Fin 2) input_ty output_ty [Int, Int] [Bool, Bool] :=
+ Funs.Cons (is_even_body) (Funs.Cons (is_odd_body) Funs.Nil)
def body (k : (i : Fin 2) → input_ty i → Result (output_ty i)) (i: Fin 2) :
- input_ty i → Result (output_ty i) := get_fun (bodies k) i
+ input_ty i → Result (output_ty i) := get_fun bodies i k
theorem body_is_valid : is_valid body := by
-- Split the proof into proofs of validity of the individual bodies
@@ -933,6 +1003,21 @@ namespace Ex4
. split <;> simp
apply is_valid_p_bind <;> simp
+ theorem body_is_valid' : is_valid body := by
+ -- Split the proof into proofs of validity of the individual bodies
+ rw [is_valid]
+ simp [body]
+ intro k
+ apply (Funs.is_valid_p_is_valid_p [Int, Int] [Bool, Bool])
+ simp [Funs.is_valid_p]
+ (repeat (apply And.intro)) <;> intro x <;> simp at x <;>
+ simp [is_even_body, is_odd_body]
+ -- Prove the validity of the individual bodies
+ . split <;> simp
+ apply is_valid_p_bind <;> simp
+ . split <;> simp
+ apply is_valid_p_bind <;> simp
+
theorem body_fix_eq : fix body = body (fix body) :=
is_valid_fix_fixed_eq body_is_valid