diff options
Diffstat (limited to 'backends/lean/Base')
-rw-r--r-- | backends/lean/Base/Diverge.lean | 119 |
1 files changed, 102 insertions, 17 deletions
diff --git a/backends/lean/Base/Diverge.lean b/backends/lean/Base/Diverge.lean index 76f0543a..c97674dd 100644 --- a/backends/lean/Base/Diverge.lean +++ b/backends/lean/Base/Diverge.lean @@ -544,28 +544,40 @@ namespace FixI /- Some utilities to define the mutually recursive functions -/ - inductive Funs : List (Type u) → List (Type u) → Type (u + 1) := - | Nil : Funs [] [] + -- TODO: use more + @[simp] def kk_ty (id : Type) (a b : id → Type) := (i:id) → a i → Result (b i) + @[simp] def k_ty (id : Type) (a b : id → Type) := kk_ty id a b → kk_ty id a b + + -- Initially, we had left out the parameters id, a and b. + -- However, by parameterizing Funs with those parameters, we can state + -- and prove lemmas like Funs.is_valid_p_is_valid_p + inductive Funs (id : Type) (a b : id → Type) : + List (Type u) → List (Type u) → Type (u + 1) := + | Nil : Funs id a b [] [] | Cons {ity oty : Type u} {itys otys : List (Type u)} - (f : ity → Result oty) (tl : Funs itys otys) : Funs (ity :: itys) (oty :: otys) + (f : kk_ty id a b → ity → Result oty) (tl : Funs id a b itys otys) : + Funs id a b (ity :: itys) (oty :: otys) - theorem Funs.length_eq {itys otys : List (Type)} (fl : Funs itys otys) : - itys.length = otys.length := + theorem Funs.length_eq {itys otys : List (Type)} (fl : Funs id a b itys otys) : + otys.length = itys.length := match fl with | .Nil => by simp | .Cons f tl => have h:= Funs.length_eq tl by simp [h] + def fin_cast {n m : Nat} (h : m = n) (i : Fin n) : Fin m := + ⟨ i.val, by have h1:= i.isLt; simp_all ⟩ + @[simp] def Funs.cast_fin {itys otys : List (Type)} - (fl : Funs itys otys) (i : Fin itys.length) : Fin otys.length := - ⟨ i.val, by have h:= fl.length_eq; have h1:= i.isLt; simp_all ⟩ + (fl : Funs id a b itys otys) (i : Fin itys.length) : Fin otys.length := + fin_cast (fl.length_eq) i - def get_fun {itys otys : List (Type)} (fl : Funs itys otys) : - (i : Fin itys.length) → itys.get i → Result (otys.get (fl.cast_fin i)) := + def get_fun {itys otys : List (Type)} (fl : Funs id a b itys otys) : + (i : Fin itys.length) → kk_ty id a b → itys.get i → Result (otys.get (fl.cast_fin i)) := match fl with | .Nil => λ i => by have h:= i.isLt; simp at h - | @Funs.Cons ity oty itys1 otys1 f tl => + | @Funs.Cons id a b ity oty itys1 otys1 f tl => λ i => if h: i.val = 0 then Eq.mp (by cases i; simp_all [List.get]) f @@ -582,10 +594,9 @@ namespace FixI (by cases Heq: i; rename_i val isLt; cases Heq': j; rename_i val' isLt; - cases val <;> simp_all [List.get]) + cases val <;> simp_all [List.get, fin_cast]) (get_fun tl j) - -- TODO: move theorem add_one_le_iff_le_ne (n m : Nat) (h1 : m ≤ n) (h2 : m ≠ n) : m + 1 ≤ n := by -- Damn, those proofs on natural numbers are hard - I wish Omega was in mathlib4... @@ -612,7 +623,7 @@ namespace FixI := by generalize h: (n - m) = k revert m - induction k + induction k -- TODO: induction h rather? case zero => simp_all intro m h1 h2 @@ -683,6 +694,65 @@ namespace FixI . apply Hgvalid . apply Hhvalid + def Funs.is_valid_p + (k : k_ty id a b) + (fl : Funs id a b itys otys) : + Prop := + match fl with + | .Nil => True + | .Cons f fl => (∀ x, FixI.is_valid_p k (λ k => f k x)) ∧ fl.is_valid_p k + + #check Subtype + def Funs.is_valid_p_is_valid_p_aux + {k : k_ty id a b} + {itys otys : List Type} + (Heq : List.length otys = List.length itys) + (fl : Funs id a b itys otys) (Hvalid : is_valid_p k fl) : + ∀ (i : Fin itys.length) (x : itys.get i), FixI.is_valid_p k (fun k => get_fun fl i k x) := by + -- Prepare the induction + have ⟨ n, Hn ⟩ : { n : Nat // itys.length = n } := ⟨ itys.length, by rfl ⟩ + revert itys otys Heq fl Hvalid + induction n + -- + case zero => + intro itys otys Heq fl Hvalid Hlen; + have Heq: itys = [] := by cases itys <;> simp_all + have Heq: otys = [] := by cases otys <;> simp_all + intro i x + simp_all + have Hi := i.isLt + simp_all + case succ n Hn => + intro itys otys Heq fl Hvalid Hlen i x; + cases fl <;> simp at * + rename_i ity oty itys otys f fl + have ⟨ Hvf, Hvalid ⟩ := Hvalid + have Hvf1: is_valid_p k fl := by + simp_all [Funs.is_valid_p] + have Hn := @Hn itys otys (by simp[*]) fl Hvf1 (by simp [*]) + -- Case disjunction on i + match i with + | ⟨ 0, _ ⟩ => + simp at x + simp [get_fun] + apply (Hvf x) + | ⟨ .succ j, HiLt ⟩ => + simp_arith at HiLt + simp at x + let j : Fin (List.length itys) := ⟨ j, by simp_arith [HiLt] ⟩ + have Hn := Hn j x + apply Hn + + def Funs.is_valid_p_is_valid_p + (itys otys : List (Type)) (Heq: otys.length = itys.length := by decide) + (k : k_ty (Fin (List.length itys)) (List.get itys) fun i => List.get otys (fin_cast Heq i)) + (fl : Funs (Fin itys.length) itys.get (λ i => otys.get (fin_cast Heq i)) itys otys) : + fl.is_valid_p k → + ∀ (i : Fin itys.length) (x : itys.get i), FixI.is_valid_p k (fun k => get_fun fl i k x) + := by + intro Hvalid + apply is_valid_p_is_valid_p_aux <;> simp [*] + end FixI namespace Ex1 @@ -909,12 +979,12 @@ namespace Ex4 let b ← k 0 (i - 1) .ret b - @[simp] def bodies (k : (i : Fin 2) → input_ty i → Result (output_ty i)) : - Funs [Int, Int] [Bool, Bool] := - Funs.Cons (is_even_body k) (Funs.Cons (is_odd_body k) Funs.Nil) + @[simp] def bodies : + Funs (Fin 2) input_ty output_ty [Int, Int] [Bool, Bool] := + Funs.Cons (is_even_body) (Funs.Cons (is_odd_body) Funs.Nil) def body (k : (i : Fin 2) → input_ty i → Result (output_ty i)) (i: Fin 2) : - input_ty i → Result (output_ty i) := get_fun (bodies k) i + input_ty i → Result (output_ty i) := get_fun bodies i k theorem body_is_valid : is_valid body := by -- Split the proof into proofs of validity of the individual bodies @@ -933,6 +1003,21 @@ namespace Ex4 . split <;> simp apply is_valid_p_bind <;> simp + theorem body_is_valid' : is_valid body := by + -- Split the proof into proofs of validity of the individual bodies + rw [is_valid] + simp [body] + intro k + apply (Funs.is_valid_p_is_valid_p [Int, Int] [Bool, Bool]) + simp [Funs.is_valid_p] + (repeat (apply And.intro)) <;> intro x <;> simp at x <;> + simp [is_even_body, is_odd_body] + -- Prove the validity of the individual bodies + . split <;> simp + apply is_valid_p_bind <;> simp + . split <;> simp + apply is_valid_p_bind <;> simp + theorem body_fix_eq : fix body = body (fix body) := is_valid_fix_fixed_eq body_is_valid |