diff options
Diffstat (limited to 'backends/lean/Base')
-rw-r--r-- | backends/lean/Base/Arith/Int.lean | 10 | ||||
-rw-r--r-- | backends/lean/Base/Arith/Scalar.lean | 17 | ||||
-rw-r--r-- | backends/lean/Base/Diverge/Base.lean | 35 | ||||
-rw-r--r-- | backends/lean/Base/Diverge/Elab.lean | 2 | ||||
-rw-r--r-- | backends/lean/Base/IList/IList.lean | 5 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/Scalar.lean | 226 | ||||
-rw-r--r-- | backends/lean/Base/Progress/Base.lean | 57 | ||||
-rw-r--r-- | backends/lean/Base/Progress/Progress.lean | 35 | ||||
-rw-r--r-- | backends/lean/Base/Utils.lean | 4 |
9 files changed, 322 insertions, 69 deletions
diff --git a/backends/lean/Base/Arith/Int.lean b/backends/lean/Base/Arith/Int.lean index 531ec94f..3359ecdb 100644 --- a/backends/lean/Base/Arith/Int.lean +++ b/backends/lean/Base/Arith/Int.lean @@ -211,9 +211,11 @@ def intTacPreprocess (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM U let _ ← introHasIntPropInstances -- Extra preprocessing, before we split on the disjunctions extraPreprocess - -- Split - let asms ← introInstances ``PropHasImp.concl lookupPropHasImp - splitOnAsms asms.toList + -- Split - note that the extra-preprocessing step might actually have + -- proven the goal (by doing simplifications for instance) + Tactic.allGoals do + let asms ← introInstances ``PropHasImp.concl lookupPropHasImp + splitOnAsms asms.toList elab "int_tac_preprocess" : tactic => intTacPreprocess (do pure ()) @@ -238,7 +240,7 @@ def intTac (splitGoalConjs : Bool) (extraPreprocess : Tactic.TacticM Unit) : Ta -- the goal. I think before leads to a smaller proof term? Tactic.allGoals (intTacPreprocess extraPreprocess) -- More preprocessing - Tactic.allGoals (Utils.simpAt [] [``nat_zero_eq_int_zero] [] .wildcard) + Tactic.allGoals (Utils.tryTac (Utils.simpAt [] [``nat_zero_eq_int_zero] [] .wildcard)) -- Split the conjunctions in the goal if splitGoalConjs then Tactic.allGoals (Utils.repeatTac Utils.splitConjTarget) -- Call linarith diff --git a/backends/lean/Base/Arith/Scalar.lean b/backends/lean/Base/Arith/Scalar.lean index db672489..47751c8a 100644 --- a/backends/lean/Base/Arith/Scalar.lean +++ b/backends/lean/Base/Arith/Scalar.lean @@ -16,14 +16,15 @@ def scalarTacExtraPreprocess : Tactic.TacticM Unit := do add (← mkAppM ``Scalar.cMin_bound #[.const ``ScalarTy.Isize []]) add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Usize []]) add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Isize []]) - -- Reveal the concrete bounds + -- Reveal the concrete bounds, simplify calls to [ofInt] Utils.simpAt [``Scalar.min, ``Scalar.max, ``Scalar.cMin, ``Scalar.cMax, ``I8.min, ``I16.min, ``I32.min, ``I64.min, ``I128.min, ``I8.max, ``I16.max, ``I32.max, ``I64.max, ``I128.max, ``U8.min, ``U16.min, ``U32.min, ``U64.min, ``U128.min, ``U8.max, ``U16.max, ``U32.max, ``U64.max, ``U128.max, ``Usize.min - ] [] [] .wildcard + ] [``Scalar.ofInt_val_eq, ``Scalar.neq_to_neq_val] [] .wildcard + elab "scalar_tac_preprocess" : tactic => intTacPreprocess scalarTacExtraPreprocess @@ -50,4 +51,16 @@ example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by example (x : U32 × U32) : 0 ≤ x.fst.val := by scalar_tac +-- Checking that we properly handle [ofInt] +example : U32.ofInt 1 ≤ U32.max := by + scalar_tac + +example (x : Int) (h0 : 0 ≤ x) (h1 : x ≤ U32.max) : + U32.ofInt x (by constructor <;> scalar_tac) ≤ U32.max := by + scalar_tac + +-- Not equal +example (x : U32) (h0 : ¬ x = U32.ofInt 0) : 0 < x.val := by + scalar_tac + end Arith diff --git a/backends/lean/Base/Diverge/Base.lean b/backends/lean/Base/Diverge/Base.lean index 1d548389..6a52387d 100644 --- a/backends/lean/Base/Diverge/Base.lean +++ b/backends/lean/Base/Diverge/Base.lean @@ -270,7 +270,7 @@ namespace Fix simp [karrow_rel, result_rel] have hg := hg Hrgh; simp [result_rel] at hg cases heq0: g fg <;> simp_all - rename_i y _ + rename_i _ y have hh := hh y Hrgh; simp [result_rel] at hh simp_all @@ -546,7 +546,7 @@ namespace FixI termination_by for_all_fin_aux n _ m h => n - m decreasing_by simp_wf - apply Nat.sub_add_lt_sub <;> simp + apply Nat.sub_add_lt_sub <;> try simp simp_all [Arith.add_one_le_iff_le_ne] def for_all_fin {n : Nat} (f : Fin n → Prop) := for_all_fin_aux f 0 (by simp) @@ -569,7 +569,6 @@ namespace FixI intro i h3; cases i; simp_all linarith case succ k hi => - simp_all intro m hk hmn intro hf i hmi have hne: m ≠ n := by @@ -580,7 +579,6 @@ namespace FixI -- Yes: simply use the `for_all_fin_aux` hyp unfold for_all_fin_aux at hf simp_all - tauto else -- No: use the induction hypothesis have hlt: m < i := by simp_all [Nat.lt_iff_le_and_ne] @@ -726,8 +724,8 @@ namespace Ex1 theorem list_nth_body_is_valid: ∀ k x, is_valid_p k (λ k => @list_nth_body a k x) := by intro k x simp [list_nth_body] - split <;> simp - split <;> simp + split <;> try simp + split <;> try simp def list_nth (ls : List a) (i : Int) : Result a := fix list_nth_body (ls, i) @@ -767,8 +765,8 @@ namespace Ex2 theorem list_nth_body_is_valid: ∀ k x, is_valid_p k (λ k => @list_nth_body a k x) := by intro k x simp [list_nth_body] - split <;> simp - split <;> simp + split <;> try simp + split <;> try simp apply is_valid_p_bind <;> intros <;> simp_all def list_nth (ls : List a) (i : Int) : Result a := fix list_nth_body (ls, i) @@ -845,7 +843,7 @@ namespace Ex3 ∀ k x, is_valid_p k (λ k => is_even_is_odd_body k x) := by intro k x simp [is_even_is_odd_body] - split <;> simp <;> split <;> simp + split <;> (try simp) <;> split <;> try simp apply is_valid_p_bind; simp intros; split <;> simp apply is_valid_p_bind; simp @@ -878,7 +876,7 @@ namespace Ex3 -- inductives on the fly). -- The simplest is to repeatedly split then simplify (we identify -- the outer match or monadic let-binding, and split on its scrutinee) - split <;> simp + split <;> try simp cases H0 : fix is_even_is_odd_body (Sum.inr (i - 1)) <;> simp rename_i v split <;> simp @@ -891,7 +889,7 @@ namespace Ex3 simp [is_even, is_odd] conv => lhs; rw [Heq]; simp; rw [is_even_is_odd_body]; simp -- Same remark as for `even` - split <;> simp + split <;> try simp cases H0 : fix is_even_is_odd_body (Sum.inl (i - 1)) <;> simp rename_i v split <;> simp @@ -938,7 +936,7 @@ namespace Ex4 intro k apply (Funs.is_valid_p_is_valid_p tys) simp [Funs.is_valid_p] - (repeat (apply And.intro)) <;> intro x <;> simp at x <;> + (repeat (apply And.intro)) <;> intro x <;> (try simp at x) <;> simp only [is_even_body, is_odd_body] -- Prove the validity of the individual bodies . split <;> simp @@ -995,9 +993,9 @@ namespace Ex5 (ls : List a) : is_valid_p k (λ k => map (f k) ls) := by induction ls <;> simp [map] - apply is_valid_p_bind <;> simp_all + apply is_valid_p_bind <;> try simp_all intros - apply is_valid_p_bind <;> simp_all + apply is_valid_p_bind <;> try simp_all /- An example which uses map -/ inductive Tree (a : Type) := @@ -1016,8 +1014,8 @@ namespace Ex5 ∀ k x, is_valid_p k (λ k => @id_body a k x) := by intro k x simp only [id_body] - split <;> simp - apply is_valid_p_bind <;> simp [*] + split <;> try simp + apply is_valid_p_bind <;> try simp [*] -- We have to show that `map k tl` is valid apply map_is_valid; -- Remark: if we don't do the intro, then the last step is expensive: @@ -1077,12 +1075,11 @@ namespace Ex6 intro k apply (Funs.is_valid_p_is_valid_p tys) simp [Funs.is_valid_p] - (repeat (apply And.intro)); intro x; simp at x + (repeat (apply And.intro)); intro x; try simp at x simp only [list_nth_body] -- Prove the validity of the individual bodies intro k x - simp [list_nth_body] - split <;> simp + split <;> try simp split <;> simp -- Writing the proof terms explicitly diff --git a/backends/lean/Base/Diverge/Elab.lean b/backends/lean/Base/Diverge/Elab.lean index f109e847..c6628486 100644 --- a/backends/lean/Base/Diverge/Elab.lean +++ b/backends/lean/Base/Diverge/Elab.lean @@ -1089,7 +1089,7 @@ namespace Tests intro i hpos h -- We can directly use `rw [list_nth]`! rw [list_nth]; simp - split <;> simp [*] + split <;> try simp [*] . tauto . -- TODO: we shouldn't have to do that have hneq : 0 < i := by cases i <;> rename_i a _ <;> simp_all; cases a <;> simp_all diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean index f10ec4e7..79de93d5 100644 --- a/backends/lean/Base/IList/IList.lean +++ b/backends/lean/Base/IList/IList.lean @@ -294,7 +294,6 @@ open Arith in have := tl.len_pos linarith else - simp at hineq have : 0 < i := by int_tac simp [*] apply hi @@ -419,8 +418,8 @@ theorem index_itake_append_end [Inhabited α] (i j : Int) (l0 l1 : List α) match l0 with | [] => by simp at * - have := index_itake i j l1 (by simp_all) (by simp_all) (by simp_all; int_tac) - simp [*] + have := index_itake i j l1 (by simp_all) (by simp_all) (by int_tac) + try simp [*] | hd :: tl => have : ¬ i = 0 := by simp at *; int_tac if hj : j = 0 then by simp_all; int_tac -- Contradiction diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean index 9e65d3c0..ec9665a5 100644 --- a/backends/lean/Base/Primitives/Scalar.lean +++ b/backends/lean/Base/Primitives/Scalar.lean @@ -533,6 +533,36 @@ theorem Scalar.add_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] +@[cepspec] theorem Isize.add_spec {x y : Isize} + (hmin : Isize.min ≤ x.val + y.val) (hmax : x.val + y.val ≤ Isize.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := + Scalar.add_spec hmin hmax + +@[cepspec] theorem I8.add_spec {x y : I8} + (hmin : I8.min ≤ x.val + y.val) (hmax : x.val + y.val ≤ I8.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := + Scalar.add_spec hmin hmax + +@[cepspec] theorem I16.add_spec {x y : I16} + (hmin : I16.min ≤ x.val + y.val) (hmax : x.val + y.val ≤ I16.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := + Scalar.add_spec hmin hmax + +@[cepspec] theorem I32.add_spec {x y : I32} + (hmin : I32.min ≤ x.val + y.val) (hmax : x.val + y.val ≤ I32.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := + Scalar.add_spec hmin hmax + +@[cepspec] theorem I64.add_spec {x y : I64} + (hmin : I64.min ≤ x.val + y.val) (hmax : x.val + y.val ≤ I64.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := + Scalar.add_spec hmin hmax + +@[cepspec] theorem I128.add_spec {x y : I128} + (hmin : I128.min ≤ x.val + y.val) (hmax : x.val + y.val ≤ I128.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := + Scalar.add_spec hmin hmax + -- Generic theorem - shouldn't be used much @[cpspec] theorem Scalar.sub_spec {ty} {x y : Scalar ty} @@ -582,6 +612,36 @@ theorem Scalar.sub_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] +@[cepspec] theorem Isize.sub_spec {x y : Isize} (hmin : Isize.min ≤ x.val - y.val) + (hmax : x.val - y.val ≤ Isize.max) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := + Scalar.sub_spec hmin hmax + +@[cepspec] theorem I8.sub_spec {x y : I8} (hmin : I8.min ≤ x.val - y.val) + (hmax : x.val - y.val ≤ I8.max) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := + Scalar.sub_spec hmin hmax + +@[cepspec] theorem I16.sub_spec {x y : I16} (hmin : I16.min ≤ x.val - y.val) + (hmax : x.val - y.val ≤ I16.max) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := + Scalar.sub_spec hmin hmax + +@[cepspec] theorem I32.sub_spec {x y : I32} (hmin : I32.min ≤ x.val - y.val) + (hmax : x.val - y.val ≤ I32.max) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := + Scalar.sub_spec hmin hmax + +@[cepspec] theorem I64.sub_spec {x y : I64} (hmin : I64.min ≤ x.val - y.val) + (hmax : x.val - y.val ≤ I64.max) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := + Scalar.sub_spec hmin hmax + +@[cepspec] theorem I128.sub_spec {x y : I128} (hmin : I128.min ≤ x.val - y.val) + (hmax : x.val - y.val ≤ I128.max) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := + Scalar.sub_spec hmin hmax + -- Generic theorem - shouldn't be used much theorem Scalar.mul_spec {ty} {x y : Scalar ty} (hmin : Scalar.min ty ≤ x.val * y.val) @@ -628,6 +688,36 @@ theorem Scalar.mul_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] +@[cepspec] theorem Isize.mul_spec {x y : Isize} (hmin : Isize.min ≤ x.val * y.val) + (hmax : x.val * y.val ≤ Isize.max) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := + Scalar.mul_spec hmin hmax + +@[cepspec] theorem I8.mul_spec {x y : I8} (hmin : I8.min ≤ x.val * y.val) + (hmax : x.val * y.val ≤ I8.max) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := + Scalar.mul_spec hmin hmax + +@[cepspec] theorem I16.mul_spec {x y : I16} (hmin : I16.min ≤ x.val * y.val) + (hmax : x.val * y.val ≤ I16.max) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := + Scalar.mul_spec hmin hmax + +@[cepspec] theorem I32.mul_spec {x y : I32} (hmin : I32.min ≤ x.val * y.val) + (hmax : x.val * y.val ≤ I32.max) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := + Scalar.mul_spec hmin hmax + +@[cepspec] theorem I64.mul_spec {x y : I64} (hmin : I64.min ≤ x.val * y.val) + (hmax : x.val * y.val ≤ I64.max) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := + Scalar.mul_spec hmin hmax + +@[cepspec] theorem I128.mul_spec {x y : I128} (hmin : I128.min ≤ x.val * y.val) + (hmax : x.val * y.val ≤ I128.max) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := + Scalar.mul_spec hmin hmax + -- Generic theorem - shouldn't be used much @[cpspec] theorem Scalar.div_spec {ty} {x y : Scalar ty} @@ -681,6 +771,48 @@ theorem Scalar.div_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : S ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] +@[cepspec] theorem Isize.div_spec (x : Isize) {y : Isize} + (hnz : y.val ≠ 0) + (hmin : Isize.min ≤ scalar_div x.val y.val) + (hmax : scalar_div x.val y.val ≤ Isize.max): + ∃ z, x / y = ret z ∧ z.val = scalar_div x.val y.val := + Scalar.div_spec hnz hmin hmax + +@[cepspec] theorem I8.div_spec (x : I8) {y : I8} + (hnz : y.val ≠ 0) + (hmin : I8.min ≤ scalar_div x.val y.val) + (hmax : scalar_div x.val y.val ≤ I8.max): + ∃ z, x / y = ret z ∧ z.val = scalar_div x.val y.val := + Scalar.div_spec hnz hmin hmax + +@[cepspec] theorem I16.div_spec (x : I16) {y : I16} + (hnz : y.val ≠ 0) + (hmin : I16.min ≤ scalar_div x.val y.val) + (hmax : scalar_div x.val y.val ≤ I16.max): + ∃ z, x / y = ret z ∧ z.val = scalar_div x.val y.val := + Scalar.div_spec hnz hmin hmax + +@[cepspec] theorem I32.div_spec (x : I32) {y : I32} + (hnz : y.val ≠ 0) + (hmin : I32.min ≤ scalar_div x.val y.val) + (hmax : scalar_div x.val y.val ≤ I32.max): + ∃ z, x / y = ret z ∧ z.val = scalar_div x.val y.val := + Scalar.div_spec hnz hmin hmax + +@[cepspec] theorem I64.div_spec (x : I64) {y : I64} + (hnz : y.val ≠ 0) + (hmin : I64.min ≤ scalar_div x.val y.val) + (hmax : scalar_div x.val y.val ≤ I64.max): + ∃ z, x / y = ret z ∧ z.val = scalar_div x.val y.val := + Scalar.div_spec hnz hmin hmax + +@[cepspec] theorem I128.div_spec (x : I128) {y : I128} + (hnz : y.val ≠ 0) + (hmin : I128.min ≤ scalar_div x.val y.val) + (hmax : scalar_div x.val y.val ≤ I128.max): + ∃ z, x / y = ret z ∧ z.val = scalar_div x.val y.val := + Scalar.div_spec hnz hmin hmax + -- Generic theorem - shouldn't be used much @[cpspec] theorem Scalar.rem_spec {ty} {x y : Scalar ty} @@ -734,6 +866,41 @@ theorem Scalar.rem_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : S ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] +@[cepspec] theorem I8.rem_spec (x : I8) {y : I8} + (hnz : y.val ≠ 0) + (hmin : I8.min ≤ scalar_rem x.val y.val) + (hmax : scalar_rem x.val y.val ≤ I8.max): + ∃ z, x % y = ret z ∧ z.val = scalar_rem x.val y.val := + Scalar.rem_spec hnz hmin hmax + +@[cepspec] theorem I16.rem_spec (x : I16) {y : I16} + (hnz : y.val ≠ 0) + (hmin : I16.min ≤ scalar_rem x.val y.val) + (hmax : scalar_rem x.val y.val ≤ I16.max): + ∃ z, x % y = ret z ∧ z.val = scalar_rem x.val y.val := + Scalar.rem_spec hnz hmin hmax + +@[cepspec] theorem I32.rem_spec (x : I32) {y : I32} + (hnz : y.val ≠ 0) + (hmin : I32.min ≤ scalar_rem x.val y.val) + (hmax : scalar_rem x.val y.val ≤ I32.max): + ∃ z, x % y = ret z ∧ z.val = scalar_rem x.val y.val := + Scalar.rem_spec hnz hmin hmax + +@[cepspec] theorem I64.rem_spec (x : I64) {y : I64} + (hnz : y.val ≠ 0) + (hmin : I64.min ≤ scalar_rem x.val y.val) + (hmax : scalar_rem x.val y.val ≤ I64.max): + ∃ z, x % y = ret z ∧ z.val = scalar_rem x.val y.val := + Scalar.rem_spec hnz hmin hmax + +@[cepspec] theorem I128.rem_spec (x : I128) {y : I128} + (hnz : y.val ≠ 0) + (hmin : I128.min ≤ scalar_rem x.val y.val) + (hmax : scalar_rem x.val y.val ≤ I128.max): + ∃ z, x % y = ret z ∧ z.val = scalar_rem x.val y.val := + Scalar.rem_spec hnz hmin hmax + -- ofIntCore -- TODO: typeclass? def Isize.ofIntCore := @Scalar.ofIntCore .Isize @@ -751,33 +918,34 @@ def U128.ofIntCore := @Scalar.ofIntCore .U128 -- ofInt -- TODO: typeclass? -def Isize.ofInt := @Scalar.ofInt .Isize -def I8.ofInt := @Scalar.ofInt .I8 -def I16.ofInt := @Scalar.ofInt .I16 -def I32.ofInt := @Scalar.ofInt .I32 -def I64.ofInt := @Scalar.ofInt .I64 -def I128.ofInt := @Scalar.ofInt .I128 -def Usize.ofInt := @Scalar.ofInt .Usize -def U8.ofInt := @Scalar.ofInt .U8 -def U16.ofInt := @Scalar.ofInt .U16 -def U32.ofInt := @Scalar.ofInt .U32 -def U64.ofInt := @Scalar.ofInt .U64 -def U128.ofInt := @Scalar.ofInt .U128 - -postfix:74 "%isize" => Isize.ofInt -postfix:74 "%i8" => I8.ofInt -postfix:74 "%i16" => I16.ofInt -postfix:74 "%i32" => I32.ofInt -postfix:74 "%i64" => I64.ofInt -postfix:74 "%i128" => I128.ofInt -postfix:74 "%usize" => Usize.ofInt -postfix:74 "%u8" => U8.ofInt -postfix:74 "%u16" => U16.ofInt -postfix:74 "%u32" => U32.ofInt -postfix:74 "%u64" => U64.ofInt -postfix:74 "%u128" => U128.ofInt - -example : Result U32 := 1%u32 + 2%u32 +abbrev Isize.ofInt := @Scalar.ofInt .Isize +abbrev I8.ofInt := @Scalar.ofInt .I8 +abbrev I16.ofInt := @Scalar.ofInt .I16 +abbrev I32.ofInt := @Scalar.ofInt .I32 +abbrev I64.ofInt := @Scalar.ofInt .I64 +abbrev I128.ofInt := @Scalar.ofInt .I128 +abbrev Usize.ofInt := @Scalar.ofInt .Usize +abbrev U8.ofInt := @Scalar.ofInt .U8 +abbrev U16.ofInt := @Scalar.ofInt .U16 +abbrev U32.ofInt := @Scalar.ofInt .U32 +abbrev U64.ofInt := @Scalar.ofInt .U64 +abbrev U128.ofInt := @Scalar.ofInt .U128 + +postfix:max "#isize" => Isize.ofInt +postfix:max "#i8" => I8.ofInt +postfix:max "#i16" => I16.ofInt +postfix:max "#i32" => I32.ofInt +postfix:max "#i64" => I64.ofInt +postfix:max "#i128" => I128.ofInt +postfix:max "#usize" => Usize.ofInt +postfix:max "#u8" => U8.ofInt +postfix:max "#u16" => U16.ofInt +postfix:max "#u32" => U32.ofInt +postfix:max "#u64" => U64.ofInt +postfix:max "#u128" => U128.ofInt + +-- Testing the notations +example : Result Usize := 0#usize + 1#usize -- TODO: factor those lemmas out @[simp] theorem Scalar.ofInt_val_eq {ty} (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : (Scalar.ofInt x h).val = x := by @@ -819,7 +987,6 @@ example : Result U32 := 1%u32 + 2%u32 @[simp] theorem U128.ofInt_val_eq (h : Scalar.min ScalarTy.U128 ≤ x ∧ x ≤ Scalar.max ScalarTy.U128) : (U128.ofInt x h).val = x := by apply Scalar.ofInt_val_eq h - -- Comparisons instance {ty} : LT (Scalar ty) where lt a b := LT.lt a.val b.val @@ -847,6 +1014,9 @@ instance (ty : ScalarTy) : DecidableEq (Scalar ty) := instance (ty : ScalarTy) : CoeOut (Scalar ty) Int where coe := λ v => v.val +@[simp] theorem Scalar.neq_to_neq_val {ty} : ∀ {i j : Scalar ty}, (¬ i = j) ↔ ¬ i.val = j.val := by + intro i j; cases i; cases j; simp + -- -- We now define a type class that subsumes the various machine integer types, so -- -- as to write a concise definition for scalar_cast, rather than exhaustively -- -- enumerating all of the possible pairs. We remark that Rust has sane semantics diff --git a/backends/lean/Base/Progress/Base.lean b/backends/lean/Base/Progress/Base.lean index 6f820a84..76a92795 100644 --- a/backends/lean/Base/Progress/Base.lean +++ b/backends/lean/Base/Progress/Base.lean @@ -167,7 +167,8 @@ structure PSpecClassExprAttr where deriving Inhabited -- TODO: the original function doesn't define correctly the `addImportedFn`. Do a PR? -def mkMapDeclarationExtension [Inhabited α] (name : Name := by exact decl_name%) : IO (MapDeclarationExtension α) := +def mkMapDeclarationExtension [Inhabited α] (name : Name := by exact decl_name%) : + IO (MapDeclarationExtension α) := registerSimplePersistentEnvExtension { name := name, addImportedFn := fun a => a.foldl (fun s a => a.foldl (fun s (k, v) => s.insert k v) s) RBMap.empty, @@ -175,6 +176,54 @@ def mkMapDeclarationExtension [Inhabited α] (name : Name := by exact decl_name% toArrayFn := fun es => es.toArray.qsort (fun a b => Name.quickLt a.1 b.1) } +-- Declare an extension of maps of maps (using [RBMap]). +-- The important point is that we need to merge the bound values (which are maps). +def mkMapMapDeclarationExtension [Inhabited β] (ord : α → α → Ordering) + (name : Name := by exact decl_name%) : + IO (MapDeclarationExtension (RBMap α β ord)) := + registerSimplePersistentEnvExtension { + name := name, + addImportedFn := fun a => + a.foldl (fun s a => a.foldl ( + -- We need to merge the maps + fun s (k0, k1_to_v) => + match s.find? k0 with + | none => + -- No binding: insert one + s.insert k0 k1_to_v + | some m => + -- There is already a binding: merge + let m := RBMap.fold (fun m k v => m.insert k v) m k1_to_v + s.insert k0 m) + s) RBMap.empty, + addEntryFn := fun s n => s.insert n.1 n.2 , + toArrayFn := fun es => es.toArray.qsort (fun a b => Name.quickLt a.1 b.1) + } + +-- Declare an extension of maps of maps (using [HashMap]). +-- The important point is that we need to merge the bound values (which are maps). +def mkMapHashMapDeclarationExtension [BEq α] [Hashable α] [Inhabited β] + (name : Name := by exact decl_name%) : + IO (MapDeclarationExtension (HashMap α β)) := + registerSimplePersistentEnvExtension { + name := name, + addImportedFn := fun a => + a.foldl (fun s a => a.foldl ( + -- We need to merge the maps + fun s (k0, k1_to_v) => + match s.find? k0 with + | none => + -- No binding: insert one + s.insert k0 k1_to_v + | some m => + -- There is already a binding: merge + let m := HashMap.fold (fun m k v => m.insert k v) m k1_to_v + s.insert k0 m) + s) RBMap.empty, + addEntryFn := fun s n => s.insert n.1 n.2 , + toArrayFn := fun es => es.toArray.qsort (fun a b => Name.quickLt a.1 b.1) + } + /- The persistent map from function to pspec theorems. -/ initialize pspecAttr : PSpecAttr ← do let ext ← mkMapDeclarationExtension `pspecMap @@ -200,7 +249,8 @@ initialize pspecAttr : PSpecAttr ← do /- The persistent map from type classes to pspec theorems -/ initialize pspecClassAttr : PSpecClassAttr ← do - let ext : MapDeclarationExtension (NameMap Name) ← mkMapDeclarationExtension `pspecClassMap + let ext : MapDeclarationExtension (NameMap Name) ← + mkMapMapDeclarationExtension Name.quickCmp `pspecClassMap let attrImpl : AttributeImpl := { name := `cpspec descr := "Marks theorems to use for type classes with the `progress` tactic" @@ -231,7 +281,8 @@ initialize pspecClassAttr : PSpecClassAttr ← do /- The 2nd persistent map from type classes to pspec theorems -/ initialize pspecClassExprAttr : PSpecClassExprAttr ← do - let ext : MapDeclarationExtension (HashMap Expr Name) ← mkMapDeclarationExtension `pspecClassExprMap + let ext : MapDeclarationExtension (HashMap Expr Name) ← + mkMapHashMapDeclarationExtension `pspecClassExprMap let attrImpl : AttributeImpl := { name := `cepspec descr := "Marks theorems to use for type classes with the `progress` tactic" diff --git a/backends/lean/Base/Progress/Progress.lean b/backends/lean/Base/Progress/Progress.lean index 6a4729dc..8b0759c5 100644 --- a/backends/lean/Base/Progress/Progress.lean +++ b/backends/lean/Base/Progress/Progress.lean @@ -110,8 +110,9 @@ def progressWith (fExpr : Expr) (th : TheoremOrLocal) -- then continue splitting the post-condition splitEqAndPost fun hEq hPost ids => do trace[Progress] "eq and post:\n{hEq} : {← inferType hEq}\n{hPost}" - simpAt [] [``Primitives.bind_tc_ret, ``Primitives.bind_tc_fail, ``Primitives.bind_tc_div] - [hEq.fvarId!] (.targets #[] true) + tryTac ( + simpAt [] [``Primitives.bind_tc_ret, ``Primitives.bind_tc_fail, ``Primitives.bind_tc_div] + [hEq.fvarId!] (.targets #[] true)) -- Clear the equality, unless the user requests not to do so let mgoal ← do if keep.isSome then getMainGoal @@ -242,21 +243,26 @@ def progressAsmsOrLookupTheorem (keep : Option Name) (withTh : Option TheoremOrL tryLookupApply keep ids splitPost asmTac fExpr "pspec theorem" pspec do -- It failed: try to lookup a *class* expr spec theorem (those are more -- specific than class spec theorems) + trace[Progress] "Failed using a pspec theorem: trying to lookup a pspec class expr theorem" let pspecClassExpr ← do match getFirstArg args with | none => pure none | some arg => do + trace[Progress] "Using: f:{fName}, arg: {arg}" let thName ← pspecClassExprAttr.find? fName arg pure (thName.map fun th => .Theorem th) tryLookupApply keep ids splitPost asmTac fExpr "pspec class expr theorem" pspecClassExpr do -- It failed: try to lookup a *class* spec theorem + trace[Progress] "Failed using a pspec class expr theorem: trying to lookup a pspec class theorem" let pspecClass ← do match ← getFirstArgAppName args with | none => pure none | some argName => do + trace[Progress] "Using: f: {fName}, arg: {argName}" let thName ← pspecClassAttr.find? fName argName pure (thName.map fun th => .Theorem th) tryLookupApply keep ids splitPost asmTac fExpr "pspec class theorem" pspecClass do + trace[Progress] "Failed using a pspec class theorem: trying to use a recursive assumption" -- Try a recursive call - we try the assumptions of kind "auxDecl" let ctx ← Lean.MonadLCtx.getLCtx let decls ← ctx.getAllDecls @@ -314,12 +320,14 @@ def evalProgress (args : TSyntax `Progress.progressArgs) : TacticM Unit := do else pure none let ids := let args := asArgs.getArgs - let args := (args.get! 2).getSepArgs - args.map (λ s => if s.isIdent then some s.getId else none) + if args.size > 2 then + let args := (args.get! 2).getSepArgs + args.map (λ s => if s.isIdent then some s.getId else none) + else #[] trace[Progress] "User-provided ids: {ids}" let splitPost : Bool := let args := asArgs.getArgs - (args.get! 3).getArgs.size > 0 + args.size > 3 ∧ (args.get! 3).getArgs.size > 0 trace[Progress] "Split post: {splitPost}" /- For scalarTac we have a fast track: if the goal is not a linear arithmetic goal, we skip (note that otherwise, scalarTac would try @@ -343,11 +351,14 @@ elab "progress" args:progressArgs : tactic => namespace Test open Primitives Result - set_option trace.Progress true - set_option pp.rawOnError true + -- Show the traces + -- set_option trace.Progress true + -- set_option pp.rawOnError true - #eval showStoredPSpec - #eval showStoredPSpecClass + -- The following commands display the databases of theorems + -- #eval showStoredPSpec + -- #eval showStoredPSpecClass + -- #eval showStoredPSpecExprClass example {ty} {x y : Scalar ty} (hmin : Scalar.min ty ≤ x.val + y.val) @@ -363,6 +374,12 @@ namespace Test progress keep h with Scalar.add_spec as ⟨ z ⟩ simp [*, h] + example {x y : U32} + (hmax : x.val + y.val ≤ U32.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + progress keep _ as ⟨ z, h1 .. ⟩ + simp [*, h1] + /- Checking that universe instantiation works: the original spec uses `α : Type u` where u is quantified, while here we use `α : Type 0` -/ example {α : Type} (v: Vec α) (i: Usize) (x : α) diff --git a/backends/lean/Base/Utils.lean b/backends/lean/Base/Utils.lean index 1f8f1455..5224e1c3 100644 --- a/backends/lean/Base/Utils.lean +++ b/backends/lean/Base/Utils.lean @@ -301,6 +301,10 @@ example : Nat := by example (x : Bool) : Nat := by cases x <;> custom_let x := 3 <;> apply x +-- Attempt to apply a tactic +def tryTac (tac : TacticM Unit) : TacticM Unit := do + let _ ← tryTactic tac + -- Repeatedly apply a tactic partial def repeatTac (tac : TacticM Unit) : TacticM Unit := do try |