diff options
Diffstat (limited to '')
-rw-r--r-- | backends/lean/Base/Diverge/Base.lean | 37 | ||||
-rw-r--r-- | backends/lean/Base/Diverge/Elab.lean | 11 | ||||
-rw-r--r-- | backends/lean/Base/Diverge/ElabBase.lean | 16 | ||||
-rw-r--r-- | backends/lean/Base/Extensions.lean | 10 | ||||
-rw-r--r-- | backends/lean/Base/IList/IList.lean | 25 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/ArraySlice.lean | 2 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/Scalar.lean | 111 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/Vec.lean | 2 | ||||
-rw-r--r-- | backends/lean/Base/Progress/Base.lean | 14 | ||||
-rw-r--r-- | backends/lean/Base/Utils.lean | 6 |
10 files changed, 123 insertions, 111 deletions
diff --git a/backends/lean/Base/Diverge/Base.lean b/backends/lean/Base/Diverge/Base.lean index 9458c926..e40432bd 100644 --- a/backends/lean/Base/Diverge/Base.lean +++ b/backends/lean/Base/Diverge/Base.lean @@ -21,7 +21,7 @@ namespace Lemmas else f ⟨ m, by simp_all [Nat.lt_iff_le_and_ne] ⟩ ∧ for_all_fin_aux f (m + 1) (by simp_all [Arith.add_one_le_iff_le_ne]) - termination_by for_all_fin_aux n _ m h => n - m + termination_by n - m decreasing_by simp_wf apply Nat.sub_add_lt_sub <;> try simp @@ -240,8 +240,8 @@ namespace Fix simp [fix] -- By property of the least upper bound revert Hd Hl - -- TODO: there is no conversion to select the head of a function! - conv => lhs; apply congr_fun; apply congr_fun; apply congr_fun; simp [fix_fuel_P, div?] + conv => lhs; rw [fix_fuel_P] + simp [div?] cases fix_fuel (least (fix_fuel_P f x)) f x <;> simp have Hmono := fix_fuel_mono Hmono Hineq x simp [result_rel] at Hmono @@ -255,7 +255,7 @@ namespace Fix intros x n Hf have Hfmono := fix_fuel_fix_mono Hmono n x -- TODO: there is no conversion to select the head of a function! - conv => apply congr_fun; simp [fix_fuel_P] + rw [fix_fuel_P] simp [fix_fuel_P] at Hf revert Hf Hfmono simp [div?, result_rel, fix] @@ -268,9 +268,7 @@ namespace Fix fix f x = f (fix f) x := by have Hl := fix_fuel_P_least Hmono He -- TODO: better control of simplification - conv at Hl => - apply congr_fun - simp [fix_fuel_P] + rw [fix_fuel_P] at Hl; simp at Hl -- The least upper bound is > 0 have ⟨ n, Hsucc ⟩ : ∃ n, least (fix_fuel_P f x) = Nat.succ n := by revert Hl @@ -618,12 +616,16 @@ namespace FixI @[simp] theorem is_valid_p_same (k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)) (x : Result c) : is_valid_p k (λ _ => x) := by - simp [is_valid_p, k_to_gen, e_to_gen] + simp [is_valid_p] + unfold k_to_gen e_to_gen + simp @[simp] theorem is_valid_p_rec (k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)) (i : id) (x : a i) : is_valid_p k (λ k => k i x) := by - simp [is_valid_p, k_to_gen, e_to_gen, kk_to_gen, kk_of_gen] + simp [is_valid_p] + unfold k_to_gen e_to_gen kk_to_gen kk_of_gen + simp theorem is_valid_p_ite (k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)) @@ -826,12 +828,16 @@ namespace FixII @[simp] theorem is_valid_p_same (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)) (x : Result c) : is_valid_p k (λ _ => x) := by - simp [is_valid_p, k_to_gen, e_to_gen] + simp [is_valid_p] + unfold k_to_gen e_to_gen + simp @[simp] theorem is_valid_p_rec (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)) (i : id) (t : ty i) (x : a i t) : is_valid_p k (λ k => k i t x) := by - simp [is_valid_p, k_to_gen, e_to_gen, kk_to_gen, kk_of_gen] + simp [is_valid_p] + unfold k_to_gen e_to_gen kk_to_gen kk_of_gen + simp theorem is_valid_p_ite (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)) @@ -1531,10 +1537,11 @@ namespace Ex9 intro k a x simp only [id_body] split <;> try simp - apply is_valid_p_bind <;> try simp [*] - -- We have to show that `map k tl` is valid - -- Remark: `map_is_valid` doesn't work here, we need the specialized version - apply map_is_valid_simple + . apply is_valid_p_same + . apply is_valid_p_bind <;> try simp [*] + -- We have to show that `map k tl` is valid + -- Remark: `map_is_valid` doesn't work here, we need the specialized version + apply map_is_valid_simple def body (k : (i : Fin 1) → (t : ty i) → (x : input_ty i t) → Result (output_ty i t)) (i: Fin 1) : (t : ty i) → (x : input_ty i t) → Result (output_ty i t) := get_fun bodies i k diff --git a/backends/lean/Base/Diverge/Elab.lean b/backends/lean/Base/Diverge/Elab.lean index 6115b13b..3c2ea877 100644 --- a/backends/lean/Base/Diverge/Elab.lean +++ b/backends/lean/Base/Diverge/Elab.lean @@ -383,10 +383,7 @@ def mkFin (n : Nat) : Expr := def mkFinVal (n i : Nat) : MetaM Expr := do let n_lit : Expr := .lit (.natVal (n - 1)) let i_lit : Expr := .lit (.natVal i) - -- We could use `trySynthInstance`, but as we know the instance that we are - -- going to use, we can save the lookup - let ofNat ← mkAppOptM ``Fin.instOfNatFinHAddNatInstHAddInstAddNatOfNat #[n_lit, i_lit] - mkAppOptM ``OfNat.ofNat #[none, none, ofNat] + mkAppOptM ``Fin.ofNat #[.some n_lit, .some i_lit] /- Information about the type of a function in a declaration group. @@ -654,8 +651,8 @@ partial def proveExprIsValid (k_var kk_var : Expr) (e : Expr) : MetaM Expr := do -- Normalize to eliminate the lambdas - TODO: this is slightly dangerous. let e ← do if e.isLet ∧ normalize_let_bindings then do - let updt_config config := - { config with transparency := .reducible, zetaNonDep := false } + let updt_config (config : Lean.Meta.Config) := + { config with transparency := .reducible } let e ← withConfig updt_config (whnf e) trace[Diverge.def.valid] "e (after normalization): {e}" pure e @@ -929,7 +926,7 @@ partial def proveAppIsValidApplyThms (k_var kk_var : Expr) (e : Expr) -- We sometimes need to reduce the term - TODO: this is really dangerous let e ← do let updt_config config := - { config with transparency := .reducible, zetaNonDep := false } + { config with transparency := .reducible } withConfig updt_config (whnf e) trace[Diverge.def.valid] "e (after normalization): {e}" let e_valid ← proveExprIsValid k_var kk_var e diff --git a/backends/lean/Base/Diverge/ElabBase.lean b/backends/lean/Base/Diverge/ElabBase.lean index 0d33e9d2..08ef96f7 100644 --- a/backends/lean/Base/Diverge/ElabBase.lean +++ b/backends/lean/Base/Diverge/ElabBase.lean @@ -27,12 +27,12 @@ initialize registerTraceClass `Diverge.attr -- divspec attribute structure DivSpecAttr where attr : AttributeImpl - ext : DiscrTreeExtension Name true + ext : DiscrTreeExtension Name deriving Inhabited /- The persistent map from expressions to divspec theorems. -/ initialize divspecAttr : DivSpecAttr ← do - let ext ← mkDiscrTreeExtention `divspecMap true + let ext ← mkDiscrTreeExtention `divspecMap let attrImpl : AttributeImpl := { name := `divspec descr := "Marks theorems to use with the `divergent` encoding" @@ -44,7 +44,7 @@ initialize divspecAttr : DivSpecAttr ← do -- Lookup the theorem let env ← getEnv let thDecl := env.constants.find! thName - let fKey : Array (DiscrTree.Key true) ← MetaM.run' (do + let fKey : Array (DiscrTree.Key) ← MetaM.run' (do /- The theorem should have the shape: `∀ ..., is_valid_p k (λ k => ...)` @@ -59,7 +59,9 @@ initialize divspecAttr : DivSpecAttr ← do let (_, _, fExpr) ← lambdaMetaTelescope fExpr.consumeMData trace[Diverge] "Registering divspec theorem for {fExpr}" -- Convert the function expression to a discrimination tree key - DiscrTree.mkPath fExpr) + -- We use the default configuration + let config : WhnfCoreConfig := {} + DiscrTree.mkPath fExpr config) let env := ext.addEntry env (fKey, thName) setEnv env trace[Diverge] "Saved the environment" @@ -69,9 +71,11 @@ initialize divspecAttr : DivSpecAttr ← do pure { attr := attrImpl, ext := ext } def DivSpecAttr.find? (s : DivSpecAttr) (e : Expr) : MetaM (Array Name) := do - (s.ext.getState (← getEnv)).getMatch e + -- We use the default configuration + let config : WhnfCoreConfig := {} + (s.ext.getState (← getEnv)).getMatch e config -def DivSpecAttr.getState (s : DivSpecAttr) : MetaM (DiscrTree Name true) := do +def DivSpecAttr.getState (s : DivSpecAttr) : MetaM (DiscrTree Name) := do pure (s.ext.getState (← getEnv)) def showStoredDivSpec : MetaM Unit := do diff --git a/backends/lean/Base/Extensions.lean b/backends/lean/Base/Extensions.lean index b34f41dc..c0e80861 100644 --- a/backends/lean/Base/Extensions.lean +++ b/backends/lean/Base/Extensions.lean @@ -31,13 +31,13 @@ def mkMapDeclarationExtension [Inhabited α] (name : Name := by exact decl_name% store the keys from *after* the transformation (i.e., the `DiscrTreeKey` below). The transformation itself can be done elsewhere. -/ -abbrev DiscrTreeKey (simpleReduce : Bool) := Array (DiscrTree.Key simpleReduce) +abbrev DiscrTreeKey := Array DiscrTree.Key -abbrev DiscrTreeExtension (α : Type) (simpleReduce : Bool) := - SimplePersistentEnvExtension (DiscrTreeKey simpleReduce × α) (DiscrTree α simpleReduce) +abbrev DiscrTreeExtension (α : Type) := + SimplePersistentEnvExtension (DiscrTreeKey × α) (DiscrTree α) -def mkDiscrTreeExtention [Inhabited α] [BEq α] (name : Name := by exact decl_name%) (simpleReduce : Bool) : - IO (DiscrTreeExtension α simpleReduce) := +def mkDiscrTreeExtention [Inhabited α] [BEq α] (name : Name := by exact decl_name%) : + IO (DiscrTreeExtension α) := registerSimplePersistentEnvExtension { name := name, addImportedFn := fun a => a.foldl (fun s a => a.foldl (fun s (k, v) => s.insertCore k v) s) DiscrTree.empty, diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean index e90d1e0d..51457c20 100644 --- a/backends/lean/Base/IList/IList.lean +++ b/backends/lean/Base/IList/IList.lean @@ -66,13 +66,15 @@ theorem indexOpt_eq_index [Inhabited α] (ls : List α) (i : Int) : i < ls.len → ls.indexOpt i = some (ls.index i) := match ls with - | [] => by simp; intros; linarith + | [] => by simp | hd :: tl => if h: i = 0 then by simp [*] - else + else by have hi := indexOpt_eq_index tl (i - 1) - by simp [*]; intros; apply hi <;> int_tac + simp [*]; intros + -- TODO: there seems to be syntax errors if we don't put the parentheses below?? + apply hi <;> (int_tac) -- Remark: the list is unchanged if the index is not in bounds (in particular -- if it is < 0) @@ -83,7 +85,7 @@ def update (ls : List α) (i : Int) (y : α) : List α := -- Remark: the whole list is dropped if the index is not in bounds (in particular -- if it is < 0) -def idrop (i : Int) (ls : List α) : List α := +def idrop {α : Type u} (i : Int) (ls : List α) : List α := match ls with | [] => [] | x :: tl => if i = 0 then x :: tl else idrop (i - 1) tl @@ -117,7 +119,7 @@ variable {α : Type u} def ireplicate {α : Type u} (i : ℤ) (x : α) : List α := if i ≤ 0 then [] else x :: ireplicate (i - 1) x -termination_by ireplicate i x => i.toNat +termination_by i.toNat decreasing_by int_decr_tac @[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update] @@ -137,7 +139,7 @@ decreasing_by int_decr_tac @[simp] theorem ireplicate_zero : ireplicate 0 x = [] := by rw [ireplicate]; simp @[simp] theorem ireplicate_nzero_cons (hne : 0 < i) : ireplicate i x = x :: ireplicate (i - 1) x := by - rw [ireplicate]; simp [*]; intro; linarith + rw [ireplicate]; simp [*] @[simp] theorem slice_nzero_cons (i j : Int) (x : α) (tl : List α) (hne : i ≠ 0) : slice i j ((x :: tl) : List α) = slice (i - 1) (j - 1) tl := @@ -148,11 +150,12 @@ theorem slice_nzero_cons (i j : Int) (x : α) (tl : List α) (hne : i ≠ 0) : s have : i = 1 := by int_tac simp [*, slice] else - have := slice_nzero_cons (i - 1) (j - 1) hd tl h + have hi := slice_nzero_cons (i - 1) (j - 1) hd tl h by conv => lhs; simp [slice, *] - conv at this => lhs; simp [slice, *] - simp [*, slice] + conv at hi => lhs; simp [slice, *] + simp [slice] + simp [*] @[simp] theorem ireplicate_replicate {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) : @@ -166,7 +169,7 @@ theorem ireplicate_replicate {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) : have hl : l.toNat = .succ (l.toNat - 1) := by cases hl: l.toNat <;> simp_all conv => rhs; rw[hl] -termination_by ireplicate_replicate l x h => l.toNat +termination_by l.toNat decreasing_by int_decr_tac @[simp] @@ -178,7 +181,7 @@ theorem ireplicate_len {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) : have : 0 < l := by int_tac have hr := ireplicate_len (l - 1) x (by int_tac) simp [*] -termination_by ireplicate_len l x h => l.toNat +termination_by l.toNat decreasing_by int_decr_tac theorem len_eq_length (ls : List α) : ls.len = ls.length := by diff --git a/backends/lean/Base/Primitives/ArraySlice.lean b/backends/lean/Base/Primitives/ArraySlice.lean index 5057fb01..c90a85b8 100644 --- a/backends/lean/Base/Primitives/ArraySlice.lean +++ b/backends/lean/Base/Primitives/ArraySlice.lean @@ -127,7 +127,7 @@ abbrev Slice.v {α : Type u} (v : Slice α) : List α := v.val example {a: Type u} (v : Slice a) : v.length ≤ Scalar.max ScalarTy.Usize := by scalar_tac -def Slice.new (α : Type u): Slice α := ⟨ [], by apply Scalar.cMax_suffices .Usize; simp ⟩ +def Slice.new (α : Type u): Slice α := ⟨ [], by apply Scalar.cMax_suffices .Usize; simp; decide ⟩ -- TODO: very annoying that the α is an explicit parameter def Slice.len (α : Type u) (v : Slice α) : Usize := diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean index fe8dc8ec..b11bd2a1 100644 --- a/backends/lean/Base/Primitives/Scalar.lean +++ b/backends/lean/Base/Primitives/Scalar.lean @@ -98,19 +98,19 @@ def Isize.refined_min : { n:Int // n = I32.min ∨ n = I64.min } := ⟨ Isize.smin, by simp [Isize.smin] cases System.Platform.numBits_eq <;> - unfold System.Platform.numBits at * <;> simp [*] ⟩ + unfold System.Platform.numBits at * <;> simp [*] <;> decide ⟩ def Isize.refined_max : { n:Int // n = I32.max ∨ n = I64.max } := ⟨ Isize.smax, by simp [Isize.smax] cases System.Platform.numBits_eq <;> - unfold System.Platform.numBits at * <;> simp [*] ⟩ + unfold System.Platform.numBits at * <;> simp [*] <;> decide ⟩ def Usize.refined_max : { n:Int // n = U32.max ∨ n = U64.max } := ⟨ Usize.smax, by simp [Usize.smax] cases System.Platform.numBits_eq <;> - unfold System.Platform.numBits at * <;> simp [*] ⟩ + unfold System.Platform.numBits at * <;> simp [*] <;> decide ⟩ def Isize.min := Isize.refined_min.val def Isize.max := Isize.refined_max.val @@ -231,30 +231,31 @@ def Scalar.cMax (ty : ScalarTy) : Int := | _ => Scalar.max ty theorem Scalar.min_lt_max (ty : ScalarTy) : Scalar.min ty < Scalar.max ty := by - cases ty <;> simp [Scalar.min, Scalar.max] + cases ty <;> simp [Scalar.min, Scalar.max] <;> try decide . simp [Isize.min, Isize.max] have h1 := Isize.refined_min.property have h2 := Isize.refined_max.property - cases h1 <;> cases h2 <;> simp [*] + cases h1 <;> cases h2 <;> simp [*] <;> decide . simp [Usize.max] have h := Usize.refined_max.property - cases h <;> simp [*] + cases h <;> simp [*] <;> decide theorem Scalar.min_le_max (ty : ScalarTy) : Scalar.min ty ≤ Scalar.max ty := by have := Scalar.min_lt_max ty int_tac theorem Scalar.cMin_bound ty : Scalar.min ty ≤ Scalar.cMin ty := by - cases ty <;> simp [Scalar.min, Scalar.max, Scalar.cMin, Scalar.cMax] at * + cases ty <;> (simp [Scalar.min, Scalar.max, Scalar.cMin, Scalar.cMax] at *; try decide) have h := Isize.refined_min.property cases h <;> simp [*, Isize.min] + decide theorem Scalar.cMax_bound ty : Scalar.cMax ty ≤ Scalar.max ty := by - cases ty <;> simp [Scalar.min, Scalar.max, Scalar.cMin, Scalar.cMax] at * + cases ty <;> (simp [Scalar.min, Scalar.max, Scalar.cMin, Scalar.cMax] at *; try decide) . have h := Isize.refined_max.property - cases h <;> simp [*, Isize.max] + cases h <;> simp [*, Isize.max]; decide . have h := Usize.refined_max.property - cases h <;> simp [*, Usize.max] + cases h <;> simp [*, Usize.max]; decide theorem Scalar.cMin_suffices ty (h : Scalar.cMin ty ≤ x) : Scalar.min ty ≤ x := by have := Scalar.cMin_bound ty @@ -536,12 +537,11 @@ instance {ty} : HAnd (Scalar ty) (Scalar ty) (Scalar ty) where theorem Scalar.add_spec {ty} {x y : Scalar ty} (hmin : Scalar.min ty ≤ x.val + y.val) (hmax : x.val + y.val ≤ Scalar.max ty) : - ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by - simp [HAdd.hAdd, add, Add.add] - simp [tryMk] + (∃ z, x + y = ret z ∧ z.val = x.val + y.val) := by + -- Applying the unfoldings only on the left + conv => congr; ext; lhs; unfold HAdd.hAdd instHAddScalarResult; simp [add, tryMk] split - . simp [pure] - rfl + . simp [pure]; rfl . tauto theorem Scalar.add_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} @@ -550,33 +550,33 @@ theorem Scalar.add_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} have hmin : Scalar.min ty ≤ x.val + y.val := by have hx := x.hmin have hy := y.hmin - cases ty <;> simp [min] at * <;> linarith + cases ty <;> simp [min, ScalarTy.isSigned] at * <;> linarith apply add_spec <;> assumption /- Fine-grained theorems -/ @[pspec] theorem Usize.add_spec {x y : Usize} (hmax : x.val + y.val ≤ Usize.max) : ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by - apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *] @[pspec] theorem U8.add_spec {x y : U8} (hmax : x.val + y.val ≤ U8.max) : ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by - apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *] @[pspec] theorem U16.add_spec {x y : U16} (hmax : x.val + y.val ≤ U16.max) : ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by - apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *] @[pspec] theorem U32.add_spec {x y : U32} (hmax : x.val + y.val ≤ U32.max) : ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by - apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *] @[pspec] theorem U64.add_spec {x y : U64} (hmax : x.val + y.val ≤ U64.max) : ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by - apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *] @[pspec] theorem U128.add_spec {x y : U128} (hmax : x.val + y.val ≤ U128.max) : ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by - apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *] @[pspec] theorem Isize.add_spec {x y : Isize} (hmin : Isize.min ≤ x.val + y.val) (hmax : x.val + y.val ≤ Isize.max) : @@ -614,48 +614,47 @@ theorem Scalar.sub_spec {ty} {x y : Scalar ty} (hmin : Scalar.min ty ≤ x.val - y.val) (hmax : x.val - y.val ≤ Scalar.max ty) : ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by - simp [HSub.hSub, sub, Sub.sub] - simp [tryMk] + conv => congr; ext; lhs; simp [HSub.hSub, sub, tryMk, Sub.sub] split . simp [pure] rfl . tauto -theorem Scalar.sub_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} - (hmin : Scalar.min ty ≤ x.val - y.val) : +theorem Scalar.sub_unsigned_spec {ty : ScalarTy} (s : ¬ ty.isSigned) + {x y : Scalar ty} (hmin : Scalar.min ty ≤ x.val - y.val) : ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by have : x.val - y.val ≤ Scalar.max ty := by have hx := x.hmin have hxm := x.hmax have hy := y.hmin - cases ty <;> simp [min, max] at * <;> linarith + cases ty <;> simp [min, max, ScalarTy.isSigned] at * <;> linarith intros apply sub_spec <;> assumption /- Fine-grained theorems -/ @[pspec] theorem Usize.sub_spec {x y : Usize} (hmin : Usize.min ≤ x.val - y.val) : ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by - apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned] @[pspec] theorem U8.sub_spec {x y : U8} (hmin : U8.min ≤ x.val - y.val) : ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by - apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned] @[pspec] theorem U16.sub_spec {x y : U16} (hmin : U16.min ≤ x.val - y.val) : ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by - apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned] @[pspec] theorem U32.sub_spec {x y : U32} (hmin : U32.min ≤ x.val - y.val) : ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by - apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned] @[pspec] theorem U64.sub_spec {x y : U64} (hmin : U64.min ≤ x.val - y.val) : ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by - apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned] @[pspec] theorem U128.sub_spec {x y : U128} (hmin : U128.min ≤ x.val - y.val) : ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by - apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned] @[pspec] theorem Isize.sub_spec {x y : Isize} (hmin : Isize.min ≤ x.val - y.val) (hmax : x.val - y.val ≤ Isize.max) : @@ -692,8 +691,8 @@ theorem Scalar.mul_spec {ty} {x y : Scalar ty} (hmin : Scalar.min ty ≤ x.val * y.val) (hmax : x.val * y.val ≤ Scalar.max ty) : ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by - simp [HMul.hMul, mul, Mul.mul] - simp [tryMk] + conv => congr; ext; lhs; simp [HMul.hMul] + simp [mul, tryMk] split . simp [pure] rfl @@ -705,33 +704,33 @@ theorem Scalar.mul_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} have : Scalar.min ty ≤ x.val * y.val := by have hx := x.hmin have hy := y.hmin - cases ty <;> simp at * <;> apply mul_nonneg hx hy + cases ty <;> simp [ScalarTy.isSigned] at * <;> apply mul_nonneg hx hy apply mul_spec <;> assumption /- Fine-grained theorems -/ @[pspec] theorem Usize.mul_spec {x y : Usize} (hmax : x.val * y.val ≤ Usize.max) : ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by - apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned] @[pspec] theorem U8.mul_spec {x y : U8} (hmax : x.val * y.val ≤ U8.max) : ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by - apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned] @[pspec] theorem U16.mul_spec {x y : U16} (hmax : x.val * y.val ≤ U16.max) : ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by - apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned] @[pspec] theorem U32.mul_spec {x y : U32} (hmax : x.val * y.val ≤ U32.max) : ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by - apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned] @[pspec] theorem U64.mul_spec {x y : U64} (hmax : x.val * y.val ≤ U64.max) : ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by - apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned] @[pspec] theorem U128.mul_spec {x y : U128} (hmax : x.val * y.val ≤ U128.max) : ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by - apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned] @[pspec] theorem Isize.mul_spec {x y : Isize} (hmin : Isize.min ≤ x.val * y.val) (hmax : x.val * y.val ≤ Isize.max) : @@ -778,7 +777,7 @@ theorem Scalar.div_spec {ty} {x y : Scalar ty} theorem Scalar.div_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : Scalar ty} (hnz : y.val ≠ 0) : ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by - have h : Scalar.min ty = 0 := by cases ty <;> simp at * + have h : Scalar.min ty = 0 := by cases ty <;> simp [ScalarTy.isSigned, min] at * have hx := x.hmin have hy := y.hmin simp [h] at hx hy @@ -794,27 +793,27 @@ theorem Scalar.div_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : S /- Fine-grained theorems -/ @[pspec] theorem Usize.div_spec (x : Usize) {y : Usize} (hnz : y.val ≠ 0) : ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by - apply Scalar.div_unsigned_spec <;> simp [*] + apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U8.div_spec (x : U8) {y : U8} (hnz : y.val ≠ 0) : ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by - apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U16.div_spec (x : U16) {y : U16} (hnz : y.val ≠ 0) : ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by - apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U32.div_spec (x : U32) {y : U32} (hnz : y.val ≠ 0) : ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by - apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U64.div_spec (x : U64) {y : U64} (hnz : y.val ≠ 0) : ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by - apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U128.div_spec (x : U128) {y : U128} (hnz : y.val ≠ 0) : ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by - apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem Isize.div_spec (x : Isize) {y : Isize} (hnz : y.val ≠ 0) @@ -873,7 +872,7 @@ theorem Scalar.rem_spec {ty} {x y : Scalar ty} theorem Scalar.rem_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : Scalar ty} (hnz : y.val ≠ 0) : ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by - have h : Scalar.min ty = 0 := by cases ty <;> simp at * + have h : Scalar.min ty = 0 := by cases ty <;> simp [ScalarTy.isSigned, min] at * have hx := x.hmin have hy := y.hmin simp [h] at hx hy @@ -889,27 +888,27 @@ theorem Scalar.rem_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : S @[pspec] theorem Usize.rem_spec (x : Usize) {y : Usize} (hnz : y.val ≠ 0) : ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by - apply Scalar.rem_unsigned_spec <;> simp [*] + apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U8.rem_spec (x : U8) {y : U8} (hnz : y.val ≠ 0) : ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by - apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U16.rem_spec (x : U16) {y : U16} (hnz : y.val ≠ 0) : ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by - apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U32.rem_spec (x : U32) {y : U32} (hnz : y.val ≠ 0) : ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by - apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U64.rem_spec (x : U64) {y : U64} (hnz : y.val ≠ 0) : ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by - apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U128.rem_spec (x : U128) {y : U128} (hnz : y.val ≠ 0) : ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by - apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem I8.rem_spec (x : I8) {y : I8} (hnz : y.val ≠ 0) diff --git a/backends/lean/Base/Primitives/Vec.lean b/backends/lean/Base/Primitives/Vec.lean index 12733a34..b03de15b 100644 --- a/backends/lean/Base/Primitives/Vec.lean +++ b/backends/lean/Base/Primitives/Vec.lean @@ -35,7 +35,7 @@ abbrev Vec.v {α : Type u} (v : Vec α) : List α := v.val example {a: Type u} (v : Vec a) : v.length ≤ Scalar.max ScalarTy.Usize := by scalar_tac -def Vec.new (α : Type u): Vec α := ⟨ [], by apply Scalar.cMax_suffices .Usize; simp ⟩ +def Vec.new (α : Type u): Vec α := ⟨ [], by apply Scalar.cMax_suffices .Usize; simp; decide ⟩ instance (α : Type u) : Inhabited (Vec α) := by constructor diff --git a/backends/lean/Base/Progress/Base.lean b/backends/lean/Base/Progress/Base.lean index a64212a5..03c80a42 100644 --- a/backends/lean/Base/Progress/Base.lean +++ b/backends/lean/Base/Progress/Base.lean @@ -139,12 +139,12 @@ def getPSpecFunArgsExpr (isGoal : Bool) (th : Expr) : MetaM Expr := -- pspec attribute structure PSpecAttr where attr : AttributeImpl - ext : DiscrTreeExtension Name true + ext : DiscrTreeExtension Name deriving Inhabited /- The persistent map from expressions to pspec theorems. -/ initialize pspecAttr : PSpecAttr ← do - let ext ← mkDiscrTreeExtention `pspecMap true + let ext ← mkDiscrTreeExtention `pspecMap let attrImpl : AttributeImpl := { name := `pspec descr := "Marks theorems to use with the `progress` tactic" @@ -160,7 +160,9 @@ initialize pspecAttr : PSpecAttr ← do let fExpr ← getPSpecFunArgsExpr false thDecl.type trace[Progress] "Registering spec theorem for {fExpr}" -- Convert the function expression to a discrimination tree key - DiscrTree.mkPath fExpr) + -- We use the default configuration + let config : WhnfCoreConfig := {} + DiscrTree.mkPath fExpr config) let env := ext.addEntry env (fKey, thName) setEnv env trace[Progress] "Saved the environment" @@ -170,9 +172,11 @@ initialize pspecAttr : PSpecAttr ← do pure { attr := attrImpl, ext := ext } def PSpecAttr.find? (s : PSpecAttr) (e : Expr) : MetaM (Array Name) := do - (s.ext.getState (← getEnv)).getMatch e + -- We use the default configuration + let config : WhnfCoreConfig := {} + (s.ext.getState (← getEnv)).getMatch e config -def PSpecAttr.getState (s : PSpecAttr) : MetaM (DiscrTree Name true) := do +def PSpecAttr.getState (s : PSpecAttr) : MetaM (DiscrTree Name) := do pure (s.ext.getState (← getEnv)) def showStoredPSpec : MetaM Unit := do diff --git a/backends/lean/Base/Utils.lean b/backends/lean/Base/Utils.lean index b0032281..eacfe72b 100644 --- a/backends/lean/Base/Utils.lean +++ b/backends/lean/Base/Utils.lean @@ -1,6 +1,5 @@ import Lean import Mathlib.Tactic.Core -import Mathlib.Tactic.LeftRight import Base.UtilsBase /- @@ -503,9 +502,8 @@ elab "split_disj " n:ident : tactic => do example (x y : Int) (h0 : x ≤ y ∨ x ≥ y) : x ≤ y ∨ x ≥ y := by split_disj h0 - . left; assumption - . right; assumption - + . apply Or.inl; assumption + . apply Or.inr; assumption -- Tactic to split on an exists. -- `h` must be an FVar |