diff options
Diffstat (limited to '')
-rw-r--r-- | backends/lean/Base.lean | 6 | ||||
-rw-r--r-- | backends/lean/Base/Arith.lean | 2 | ||||
-rw-r--r-- | backends/lean/Base/Arith/Arith.lean | 0 | ||||
-rw-r--r-- | backends/lean/Base/Arith/Base.lean | 60 | ||||
-rw-r--r-- | backends/lean/Base/Arith/Int.lean | 280 | ||||
-rw-r--r-- | backends/lean/Base/Arith/Scalar.lean | 49 | ||||
-rw-r--r-- | backends/lean/Base/Diverge.lean | 7 | ||||
-rw-r--r-- | backends/lean/Base/Diverge/Base.lean | 1138 | ||||
-rw-r--r-- | backends/lean/Base/Diverge/Elab.lean | 1162 | ||||
-rw-r--r-- | backends/lean/Base/Diverge/ElabBase.lean | 15 | ||||
-rw-r--r-- | backends/lean/Base/IList.lean | 1 | ||||
-rw-r--r-- | backends/lean/Base/IList/IList.lean | 284 | ||||
-rw-r--r-- | backends/lean/Base/Primitives.lean | 3 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/Base.lean | 130 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/Scalar.lean | 831 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/Vec.lean | 145 | ||||
-rw-r--r-- | backends/lean/Base/Progress.lean | 1 | ||||
-rw-r--r-- | backends/lean/Base/Progress/Base.lean | 316 | ||||
-rw-r--r-- | backends/lean/Base/Progress/Progress.lean | 377 | ||||
-rw-r--r-- | backends/lean/Base/Utils.lean | 640 |
20 files changed, 5447 insertions, 0 deletions
diff --git a/backends/lean/Base.lean b/backends/lean/Base.lean new file mode 100644 index 00000000..2077d410 --- /dev/null +++ b/backends/lean/Base.lean @@ -0,0 +1,6 @@ +import Base.Utils +import Base.Primitives +import Base.Diverge +import Base.Arith +import Base.Progress +import Base.IList diff --git a/backends/lean/Base/Arith.lean b/backends/lean/Base/Arith.lean new file mode 100644 index 00000000..c0d09fd2 --- /dev/null +++ b/backends/lean/Base/Arith.lean @@ -0,0 +1,2 @@ +import Base.Arith.Int +import Base.Arith.Scalar diff --git a/backends/lean/Base/Arith/Arith.lean b/backends/lean/Base/Arith/Arith.lean new file mode 100644 index 00000000..e69de29b --- /dev/null +++ b/backends/lean/Base/Arith/Arith.lean diff --git a/backends/lean/Base/Arith/Base.lean b/backends/lean/Base/Arith/Base.lean new file mode 100644 index 00000000..9c11ed45 --- /dev/null +++ b/backends/lean/Base/Arith/Base.lean @@ -0,0 +1,60 @@ +import Lean +import Std.Data.Int.Lemmas +import Mathlib.Tactic.Linarith + +namespace Arith + +open Lean Elab Term Meta + +-- We can't define and use trace classes in the same file +initialize registerTraceClass `Arith + +-- TODO: move? +theorem ne_zero_is_lt_or_gt {x : Int} (hne : x ≠ 0) : x < 0 ∨ x > 0 := by + cases h: x <;> simp_all + . rename_i n; + cases n <;> simp_all + . apply Int.negSucc_lt_zero + +-- TODO: move? +theorem ne_is_lt_or_gt {x y : Int} (hne : x ≠ y) : x < y ∨ x > y := by + have hne : x - y ≠ 0 := by + simp + intro h + have: x = y := by linarith + simp_all + have h := ne_zero_is_lt_or_gt hne + match h with + | .inl _ => left; linarith + | .inr _ => right; linarith + +-- TODO: move? +theorem add_one_le_iff_le_ne (n m : Nat) (h1 : m ≤ n) (h2 : m ≠ n) : m + 1 ≤ n := by + -- Damn, those proofs on natural numbers are hard - I wish Omega was in mathlib4... + simp [Nat.add_one_le_iff] + simp [Nat.lt_iff_le_and_ne] + simp_all + +/- Induction over positive integers -/ +-- TODO: move +theorem int_pos_ind (p : Int → Prop) : + (zero:p 0) → (pos:∀ i, 0 ≤ i → p i → p (i + 1)) → ∀ i, 0 ≤ i → p i := by + intro h0 hr i hpos +-- have heq : Int.toNat i = i := by +-- cases i <;> simp_all + have ⟨ n, heq ⟩ : {n:Nat // n = i } := ⟨ Int.toNat i, by cases i <;> simp_all ⟩ + revert i + induction n + . intro i hpos heq + cases i <;> simp_all + . rename_i n hi + intro i hpos heq + cases i <;> simp_all + rename_i m + cases m <;> simp_all + +-- We sometimes need this to make sure no natural numbers appear in the goals +-- TODO: there is probably something more general to do +theorem nat_zero_eq_int_zero : (0 : Nat) = (0 : Int) := by simp + +end Arith diff --git a/backends/lean/Base/Arith/Int.lean b/backends/lean/Base/Arith/Int.lean new file mode 100644 index 00000000..7a5bbe98 --- /dev/null +++ b/backends/lean/Base/Arith/Int.lean @@ -0,0 +1,280 @@ +/- This file contains tactics to solve arithmetic goals -/ + +import Lean +import Lean.Meta.Tactic.Simp +import Init.Data.List.Basic +import Mathlib.Tactic.RunCmd +import Mathlib.Tactic.Linarith +-- TODO: there is no Omega tactic for now - it seems it hasn't been ported yet +--import Mathlib.Tactic.Omega +import Base.Utils +import Base.Arith.Base + +namespace Arith + +open Utils + +-- Remark: I tried a version of the shape `HasScalarProp {a : Type} (x : a)` +-- but the lookup didn't work +class HasIntProp (a : Sort u) where + prop_ty : a → Prop + prop : ∀ x:a, prop_ty x + +class PropHasImp (x : Prop) where + concl : Prop + prop : x → concl + +instance (p : Int → Prop) : HasIntProp (Subtype p) where + prop_ty := λ x => p x + prop := λ x => x.property + +-- This also works for `x ≠ y` because this expression reduces to `¬ x = y` +-- and `Ne` is marked as `reducible` +instance (x y : Int) : PropHasImp (¬ x = y) where + concl := x < y ∨ x > y + prop := λ (h:x ≠ y) => ne_is_lt_or_gt h + +-- Check if a proposition is a linear integer proposition. +-- We notably use this to check the goals. +class IsLinearIntProp (x : Prop) where + +instance (x y : Int) : IsLinearIntProp (x < y) where +instance (x y : Int) : IsLinearIntProp (x > y) where +instance (x y : Int) : IsLinearIntProp (x ≤ y) where +instance (x y : Int) : IsLinearIntProp (x ≥ y) where +instance (x y : Int) : IsLinearIntProp (x ≥ y) where +instance (x y : Int) : IsLinearIntProp (x = y) where +/- It seems we don't need to do any special preprocessing when the *goal* + has the following shape - I guess `linarith` automatically calls `intro` -/ +instance (x y : Int) : IsLinearIntProp (¬ x = y) where + +open Lean Lean.Elab Lean.Meta + +-- Explore a term by decomposing the applications (we explore the applied +-- functions and their arguments, but ignore lambdas, forall, etc. - +-- should we go inside?). +partial def foldTermApps (k : α → Expr → MetaM α) (s : α) (e : Expr) : MetaM α := do + -- We do it in a very simpler manner: we deconstruct applications, + -- and recursively explore the sub-expressions. Note that we do + -- not go inside foralls and abstractions (should we?). + e.withApp fun f args => do + let s ← k s f + args.foldlM (foldTermApps k) s + +-- Provided a function `k` which lookups type class instances on an expression, +-- collect all the instances lookuped by applying `k` on the sub-expressions of `e`. +def collectInstances + (k : Expr → MetaM (Option Expr)) (s : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do + let k s e := do + match ← k e with + | none => pure s + | some i => pure (s.insert i) + foldTermApps k s e + +-- Similar to `collectInstances`, but explores all the local declarations in the +-- main context. +def collectInstancesFromMainCtx (k : Expr → MetaM (Option Expr)) : Tactic.TacticM (HashSet Expr) := do + Tactic.withMainContext do + -- Get the local context + let ctx ← Lean.MonadLCtx.getLCtx + -- Just a matter of precaution + let ctx ← instantiateLCtxMVars ctx + -- Initialize the hashset + let hs := HashSet.empty + -- Explore the declarations + let decls ← ctx.getDecls + decls.foldlM (fun hs d => collectInstances k hs d.toExpr) hs + +-- Helper +def lookupProp (fName : String) (className : Name) (e : Expr) : MetaM (Option Expr) := do + trace[Arith] fName + -- TODO: do we need Lean.observing? + -- This actually eliminates the error messages + Lean.observing? do + trace[Arith] m!"{fName}: observing" + let ty ← Lean.Meta.inferType e + let hasProp ← mkAppM className #[ty] + let hasPropInst ← trySynthInstance hasProp + match hasPropInst with + | LOption.some i => + trace[Arith] "Found {fName} instance" + let i_prop ← mkProjection i (Name.mkSimple "prop") + some (← mkAppM' i_prop #[e]) + | _ => none + +-- Return an instance of `HasIntProp` for `e` if it has some +def lookupHasIntProp (e : Expr) : MetaM (Option Expr) := + lookupProp "lookupHasIntProp" ``HasIntProp e + +-- Collect the instances of `HasIntProp` for the subexpressions in the context +def collectHasIntPropInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do + collectInstancesFromMainCtx lookupHasIntProp + +-- Return an instance of `PropHasImp` for `e` if it has some +def lookupPropHasImp (e : Expr) : MetaM (Option Expr) := do + trace[Arith] "lookupPropHasImp" + -- TODO: do we need Lean.observing? + -- This actually eliminates the error messages + Lean.observing? do + trace[Arith] "lookupPropHasImp: observing" + let ty ← Lean.Meta.inferType e + trace[Arith] "lookupPropHasImp: ty: {ty}" + let cl ← mkAppM ``PropHasImp #[ty] + let inst ← trySynthInstance cl + match inst with + | LOption.some i => + trace[Arith] "Found PropHasImp instance" + let i_prop ← mkProjection i (Name.mkSimple "prop") + some (← mkAppM' i_prop #[e]) + | _ => none + +-- Collect the instances of `PropHasImp` for the subexpressions in the context +def collectPropHasImpInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do + collectInstancesFromMainCtx lookupPropHasImp + +elab "display_prop_has_imp_instances" : tactic => do + trace[Arith] "Displaying the PropHasImp instances" + let hs ← collectPropHasImpInstancesFromMainCtx + hs.forM fun e => do + trace[Arith] "+ PropHasImp instance: {e}" + +example (x y : Int) (_ : x ≠ y) (_ : ¬ x = y) : True := by + display_prop_has_imp_instances + simp + +-- Lookup instances in a context and introduce them with additional declarations. +def introInstances (declToUnfold : Name) (lookup : Expr → MetaM (Option Expr)) : Tactic.TacticM (Array Expr) := do + let hs ← collectInstancesFromMainCtx lookup + hs.toArray.mapM fun e => do + let type ← inferType e + let name ← mkFreshAnonPropUserName + -- Add a declaration + let nval ← Utils.addDeclTac name e type (asLet := false) + -- Simplify to unfold the declaration to unfold (i.e., the projector) + Utils.simpAt [declToUnfold] [] [] (Tactic.Location.targets #[mkIdent name] false) + -- Return the new value + pure nval + +def introHasIntPropInstances : Tactic.TacticM (Array Expr) := do + trace[Arith] "Introducing the HasIntProp instances" + introInstances ``HasIntProp.prop_ty lookupHasIntProp + +-- Lookup the instances of `HasIntProp for all the sub-expressions in the context, +-- and introduce the corresponding assumptions +elab "intro_has_int_prop_instances" : tactic => do + let _ ← introHasIntPropInstances + +-- Lookup the instances of `PropHasImp for all the sub-expressions in the context, +-- and introduce the corresponding assumptions +elab "intro_prop_has_imp_instances" : tactic => do + trace[Arith] "Introducing the PropHasImp instances" + let _ ← introInstances ``PropHasImp.concl lookupPropHasImp + +example (x y : Int) (h0 : x ≤ y) (h1 : x ≠ y) : x < y := by + intro_prop_has_imp_instances + rename_i h + split_disj h + . linarith + . linarith + +/- Boosting a bit the linarith tac. + + We do the following: + - for all the assumptions of the shape `(x : Int) ≠ y` or `¬ (x = y), we + introduce two goals with the assumptions `x < y` and `x > y` + TODO: we could create a PR for mathlib. + -/ +def intTacPreprocess (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM Unit := do + Tactic.withMainContext do + -- Lookup the instances of PropHasImp (this is how we detect assumptions + -- of the proper shape), introduce assumptions in the context and split + -- on those + -- TODO: get rid of the assumptions that we split + let rec splitOnAsms (asms : List Expr) : Tactic.TacticM Unit := + match asms with + | [] => pure () + | asm :: asms => + let k := splitOnAsms asms + Utils.splitDisjTac asm k k + -- Introduce the scalar bounds + let _ ← introHasIntPropInstances + -- Extra preprocessing, before we split on the disjunctions + extraPreprocess + -- Split + let asms ← introInstances ``PropHasImp.concl lookupPropHasImp + splitOnAsms asms.toList + +elab "int_tac_preprocess" : tactic => + intTacPreprocess (do pure ()) + +-- Check if the goal is a linear arithmetic goal +def goalIsLinearInt : Tactic.TacticM Bool := do + Tactic.withMainContext do + let gty ← Tactic.getMainTarget + match ← trySynthInstance (← mkAppM ``IsLinearIntProp #[gty]) with + | .some _ => pure true + | _ => pure false + +def intTac (splitGoalConjs : Bool) (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM Unit := do + Tactic.withMainContext do + Tactic.focus do + let g ← Tactic.getMainGoal + trace[Arith] "Original goal: {g}" + -- Introduce all the universally quantified variables (includes the assumptions) + let (_, g) ← g.intros + Tactic.setGoals [g] + -- Preprocess - wondering if we should do this before or after splitting + -- the goal. I think before leads to a smaller proof term? + Tactic.allGoals (intTacPreprocess extraPreprocess) + -- More preprocessing + Tactic.allGoals (Utils.simpAt [] [``nat_zero_eq_int_zero] [] .wildcard) + -- Split the conjunctions in the goal + if splitGoalConjs then Tactic.allGoals (Utils.repeatTac Utils.splitConjTarget) + -- Call linarith + let linarith := do + let cfg : Linarith.LinarithConfig := { + -- We do this with our custom preprocessing + splitNe := false + } + Tactic.liftMetaFinishingTactic <| Linarith.linarith false [] cfg + Tactic.allGoals do + -- We check if the goal is a linear arithmetic goal: if yes, we directly + -- call linarith, otherwise we first apply exfalso (we do this because + -- linarith is too general and sometimes fails to do this correctly). + if ← goalIsLinearInt then do + trace[Arith] "linarith goal: {← Tactic.getMainGoal}" + linarith + else do + let g ← Tactic.getMainGoal + let gs ← g.apply (Expr.const ``False.elim [.zero]) + let goals ← Tactic.getGoals + Tactic.setGoals (gs ++ goals) + Tactic.allGoals do + trace[Arith] "linarith goal: {← Tactic.getMainGoal}" + linarith + +elab "int_tac" args:(" split_goal"?): tactic => + let split := args.raw.getArgs.size > 0 + intTac split (do pure ()) + +example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by + int_tac_preprocess + linarith + linarith + +example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by + int_tac + +-- Checking that things append correctly when there are several disjunctions +example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y := by + int_tac split_goal + +-- Checking that things append correctly when there are several disjunctions +example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y ∧ x + y ≥ 2 := by + int_tac split_goal + +-- Checking that we can prove exfalso +example (a : Prop) (x : Int) (h0: 0 < x) (h1: x < 0) : a := by + int_tac + +end Arith diff --git a/backends/lean/Base/Arith/Scalar.lean b/backends/lean/Base/Arith/Scalar.lean new file mode 100644 index 00000000..b792ff21 --- /dev/null +++ b/backends/lean/Base/Arith/Scalar.lean @@ -0,0 +1,49 @@ +import Base.Arith.Int +import Base.Primitives.Scalar + +/- Automation for scalars - TODO: not sure it is worth having two files (Int.lean and Scalar.lean) -/ +namespace Arith + +open Lean Lean.Elab Lean.Meta +open Primitives + +def scalarTacExtraPreprocess : Tactic.TacticM Unit := do + Tactic.withMainContext do + -- Inroduce the bounds for the isize/usize types + let add (e : Expr) : Tactic.TacticM Unit := do + let ty ← inferType e + let _ ← Utils.addDeclTac (← Utils.mkFreshAnonPropUserName) e ty (asLet := false) + add (← mkAppM ``Scalar.cMin_bound #[.const ``ScalarTy.Isize []]) + add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Usize []]) + add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Isize []]) + -- Reveal the concrete bounds + Utils.simpAt [``Scalar.min, ``Scalar.max, ``Scalar.cMin, ``Scalar.cMax, + ``I8.min, ``I16.min, ``I32.min, ``I64.min, ``I128.min, + ``I8.max, ``I16.max, ``I32.max, ``I64.max, ``I128.max, + ``U8.min, ``U16.min, ``U32.min, ``U64.min, ``U128.min, + ``U8.max, ``U16.max, ``U32.max, ``U64.max, ``U128.max, + ``Usize.min + ] [] [] .wildcard + +elab "scalar_tac_preprocess" : tactic => + intTacPreprocess scalarTacExtraPreprocess + +-- A tactic to solve linear arithmetic goals in the presence of scalars +def scalarTac (splitGoalConjs : Bool) : Tactic.TacticM Unit := do + intTac splitGoalConjs scalarTacExtraPreprocess + +elab "scalar_tac" : tactic => + scalarTac false + +instance (ty : ScalarTy) : HasIntProp (Scalar ty) where + -- prop_ty is inferred + prop := λ x => And.intro x.hmin x.hmax + +example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by + intro_has_int_prop_instances + simp [*] + +example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by + scalar_tac + +end Arith diff --git a/backends/lean/Base/Diverge.lean b/backends/lean/Base/Diverge.lean new file mode 100644 index 00000000..c9a2eec2 --- /dev/null +++ b/backends/lean/Base/Diverge.lean @@ -0,0 +1,7 @@ +import Lean +import Lean.Meta.Tactic.Simp +import Init.Data.List.Basic +import Mathlib.Tactic.RunCmd +import Mathlib.Tactic.Linarith +import Base.Diverge.Base +import Base.Diverge.Elab diff --git a/backends/lean/Base/Diverge/Base.lean b/backends/lean/Base/Diverge/Base.lean new file mode 100644 index 00000000..1d548389 --- /dev/null +++ b/backends/lean/Base/Diverge/Base.lean @@ -0,0 +1,1138 @@ +import Lean +import Lean.Meta.Tactic.Simp +import Init.Data.List.Basic +import Mathlib.Tactic.RunCmd +import Mathlib.Tactic.Linarith +import Base.Primitives.Base +import Base.Arith.Base + +/- TODO: this is very useful, but is there more? -/ +set_option profiler true +set_option profiler.threshold 100 + +namespace Diverge + +namespace Fix + + open Primitives + open Result + + variable {a : Type u} {b : a → Type v} + variable {c d : Type w} -- TODO: why do we have to make them both : Type w? + + /-! # The least fixed point definition and its properties -/ + + def least_p (p : Nat → Prop) (n : Nat) : Prop := p n ∧ (∀ m, m < n → ¬ p m) + noncomputable def least (p : Nat → Prop) : Nat := + Classical.epsilon (least_p p) + + -- Auxiliary theorem for [least_spec]: if there exists an `n` satisfying `p`, + -- there there exists a least `m` satisfying `p`. + theorem least_spec_aux (p : Nat → Prop) : ∀ (n : Nat), (hn : p n) → ∃ m, least_p p m := by + apply Nat.strongRec' + intros n hi hn + -- Case disjunction on: is n the smallest n satisfying p? + match Classical.em (∀ m, m < n → ¬ p m) with + | .inl hlt => + -- Yes: trivial + exists n + | .inr hlt => + simp at * + let ⟨ m, ⟨ hmlt, hm ⟩ ⟩ := hlt + have hi := hi m hmlt hm + apply hi + + -- The specification of [least]: either `p` is never satisfied, or it is satisfied + -- by `least p` and no `n < least p` satisfies `p`. + theorem least_spec (p : Nat → Prop) : (∀ n, ¬ p n) ∨ (p (least p) ∧ ∀ n, n < least p → ¬ p n) := by + -- Case disjunction on the existence of an `n` which satisfies `p` + match Classical.em (∀ n, ¬ p n) with + | .inl h => + -- There doesn't exist: trivial + apply (Or.inl h) + | .inr h => + -- There exists: we simply use `least_spec_aux` in combination with the property + -- of the epsilon operator + simp at * + let ⟨ n, hn ⟩ := h + apply Or.inr + have hl := least_spec_aux p n hn + have he := Classical.epsilon_spec hl + apply he + + /-! # The fixed point definitions -/ + + def fix_fuel (n : Nat) (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (x : a) : + Result (b x) := + match n with + | 0 => .div + | n + 1 => + f (fix_fuel n f) x + + @[simp] def fix_fuel_pred (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) + (x : a) (n : Nat) := + not (div? (fix_fuel n f x)) + + def fix_fuel_P (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) + (x : a) (n : Nat) : Prop := + fix_fuel_pred f x n + + partial + def fixImpl (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (x : a) : Result (b x) := + f (fixImpl f) x + + -- The fact that `fix` is implemented by `fixImpl` allows us to not mark the + -- functions defined with the fixed-point as noncomputable. One big advantage + -- is that it allows us to evaluate those functions, for instance with #eval. + @[implemented_by fixImpl] + def fix (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (x : a) : Result (b x) := + fix_fuel (least (fix_fuel_P f x)) f x + + /-! # The validity property -/ + + -- Monotonicity relation over results + -- TODO: generalize (we should parameterize the definition by a relation over `a`) + def result_rel {a : Type u} (x1 x2 : Result a) : Prop := + match x1 with + | div => True + | fail _ => x2 = x1 + | ret _ => x2 = x1 -- TODO: generalize + + -- Monotonicity relation over monadic arrows (i.e., Kleisli arrows) + def karrow_rel (k1 k2 : (x:a) → Result (b x)) : Prop := + ∀ x, result_rel (k1 x) (k2 x) + + -- Monotonicity property for function bodies + def is_mono (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) : Prop := + ∀ {{k1 k2}}, karrow_rel k1 k2 → karrow_rel (f k1) (f k2) + + -- "Continuity" property. + -- We need this, and this looks a lot like continuity. Also see this paper: + -- https://inria.hal.science/file/index/docid/216187/filename/tarski.pdf + -- We define our "continuity" criteria so that it gives us what we need to + -- prove the fixed-point equation, and we can also easily manipulate it. + def is_cont (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) : Prop := + ∀ x, (Hdiv : ∀ n, fix_fuel (.succ n) f x = div) → f (fix f) x = div + + /-! # The proof of the fixed-point equation -/ + theorem fix_fuel_mono {f : ((x:a) → Result (b x)) → (x:a) → Result (b x)} + (Hmono : is_mono f) : + ∀ {{n m}}, n ≤ m → karrow_rel (fix_fuel n f) (fix_fuel m f) := by + intros n + induction n + case zero => simp [karrow_rel, fix_fuel, result_rel] + case succ n1 Hi => + intros m Hle x + simp [result_rel] + match m with + | 0 => + exfalso + zify at * + linarith + | Nat.succ m1 => + simp_arith at Hle + simp [fix_fuel] + have Hi := Hi Hle + have Hmono := Hmono Hi x + simp [result_rel] at Hmono + apply Hmono + + @[simp] theorem neg_fix_fuel_P + {f : ((x:a) → Result (b x)) → (x:a) → Result (b x)} {x : a} {n : Nat} : + ¬ fix_fuel_P f x n ↔ (fix_fuel n f x = div) := by + simp [fix_fuel_P, div?] + cases fix_fuel n f x <;> simp + + theorem fix_fuel_fix_mono {f : ((x:a) → Result (b x)) → (x:a) → Result (b x)} (Hmono : is_mono f) : + ∀ n, karrow_rel (fix_fuel n f) (fix f) := by + intros n x + simp [result_rel] + have Hl := least_spec (fix_fuel_P f x) + simp at Hl + match Hl with + | .inl Hl => simp [*] + | .inr ⟨ Hl, Hn ⟩ => + match Classical.em (fix_fuel n f x = div) with + | .inl Hd => + simp [*] + | .inr Hd => + have Hineq : least (fix_fuel_P f x) ≤ n := by + -- Proof by contradiction + cases Classical.em (least (fix_fuel_P f x) ≤ n) <;> simp [*] + simp at * + rename_i Hineq + have Hn := Hn n Hineq + contradiction + have Hfix : ¬ (fix f x = div) := by + simp [fix] + -- By property of the least upper bound + revert Hd Hl + -- TODO: there is no conversion to select the head of a function! + conv => lhs; apply congr_fun; apply congr_fun; apply congr_fun; simp [fix_fuel_P, div?] + cases fix_fuel (least (fix_fuel_P f x)) f x <;> simp + have Hmono := fix_fuel_mono Hmono Hineq x + simp [result_rel] at Hmono + simp [fix] at * + cases Heq: fix_fuel (least (fix_fuel_P f x)) f x <;> + cases Heq':fix_fuel n f x <;> + simp_all + + theorem fix_fuel_P_least {f : ((x:a) → Result (b x)) → (x:a) → Result (b x)} (Hmono : is_mono f) : + ∀ {{x n}}, fix_fuel_P f x n → fix_fuel_P f x (least (fix_fuel_P f x)) := by + intros x n Hf + have Hfmono := fix_fuel_fix_mono Hmono n x + -- TODO: there is no conversion to select the head of a function! + conv => apply congr_fun; simp [fix_fuel_P] + simp [fix_fuel_P] at Hf + revert Hf Hfmono + simp [div?, result_rel, fix] + cases fix_fuel n f x <;> simp_all + + -- Prove the fixed point equation in the case there exists some fuel for which + -- the execution terminates + theorem fix_fixed_eq_terminates (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (Hmono : is_mono f) + (x : a) (n : Nat) (He : fix_fuel_P f x n) : + fix f x = f (fix f) x := by + have Hl := fix_fuel_P_least Hmono He + -- TODO: better control of simplification + conv at Hl => + apply congr_fun + simp [fix_fuel_P] + -- The least upper bound is > 0 + have ⟨ n, Hsucc ⟩ : ∃ n, least (fix_fuel_P f x) = Nat.succ n := by + revert Hl + simp [div?] + cases least (fix_fuel_P f x) <;> simp [fix_fuel] + simp [Hsucc] at Hl + revert Hl + simp [*, div?, fix, fix_fuel] + -- Use the monotonicity + have Hfixmono := fix_fuel_fix_mono Hmono n + have Hvm := Hmono Hfixmono x + -- Use functional extensionality + simp [result_rel, fix] at Hvm + revert Hvm + split <;> simp [*] <;> intros <;> simp [*] + + theorem fix_fixed_eq_forall {{f : ((x:a) → Result (b x)) → (x:a) → Result (b x)}} + (Hmono : is_mono f) (Hcont : is_cont f) : + ∀ x, fix f x = f (fix f) x := by + intros x + -- Case disjunction: is there a fuel such that the execution successfully execute? + match Classical.em (∃ n, fix_fuel_P f x n) with + | .inr He => + -- No fuel: the fixed point evaluates to `div` + --simp [fix] at * + simp at * + conv => lhs; simp [fix] + have Hel := He (Nat.succ (least (fix_fuel_P f x))); simp [*, fix_fuel] at *; clear Hel + -- Use the "continuity" of `f` + have He : ∀ n, fix_fuel (.succ n) f x = div := by intros; simp [*] + have Hcont := Hcont x He + simp [Hcont] + | .inl ⟨ n, He ⟩ => apply fix_fixed_eq_terminates f Hmono x n He + + -- The final fixed point equation + theorem fix_fixed_eq {{f : ((x:a) → Result (b x)) → (x:a) → Result (b x)}} + (Hmono : is_mono f) (Hcont : is_cont f) : + fix f = f (fix f) := by + have Heq := fix_fixed_eq_forall Hmono Hcont + have Heq1 : fix f = (λ x => fix f x) := by simp + rw [Heq1] + conv => lhs; ext; simp [Heq] + + /-! # Making the proofs of validity manageable (and automatable) -/ + + -- Monotonicity property for expressions + def is_mono_p (e : ((x:a) → Result (b x)) → Result c) : Prop := + ∀ {{k1 k2}}, karrow_rel k1 k2 → result_rel (e k1) (e k2) + + theorem is_mono_p_same (x : Result c) : + @is_mono_p a b c (λ _ => x) := by + simp [is_mono_p, karrow_rel, result_rel] + split <;> simp + + theorem is_mono_p_rec (x : a) : + @is_mono_p a b (b x) (λ f => f x) := by + simp_all [is_mono_p, karrow_rel, result_rel] + + -- The important lemma about `is_mono_p` + theorem is_mono_p_bind + (g : ((x:a) → Result (b x)) → Result c) + (h : c → ((x:a) → Result (b x)) → Result d) : + is_mono_p g → + (∀ y, is_mono_p (h y)) → + @is_mono_p a b d (λ k => @Bind.bind Result _ c d (g k) (fun y => h y k)) := by +-- @is_mono_p a b d (λ k => do let (y : c) ← g k; h y k) := by + intro hg hh + simp [is_mono_p] + intro fg fh Hrgh + simp [karrow_rel, result_rel] + have hg := hg Hrgh; simp [result_rel] at hg + cases heq0: g fg <;> simp_all + rename_i y _ + have hh := hh y Hrgh; simp [result_rel] at hh + simp_all + + -- Continuity property for expressions - note that we take the continuation + -- as parameter + def is_cont_p (k : ((x:a) → Result (b x)) → (x:a) → Result (b x)) + (e : ((x:a) → Result (b x)) → Result c) : Prop := + (Hc : ∀ n, e (fix_fuel n k) = .div) → + e (fix k) = .div + + theorem is_cont_p_same (k : ((x:a) → Result (b x)) → (x:a) → Result (b x)) + (x : Result c) : + is_cont_p k (λ _ => x) := by + simp [is_cont_p] + + theorem is_cont_p_rec (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (x : a) : + is_cont_p f (λ f => f x) := by + simp_all [is_cont_p, fix] + + -- The important lemma about `is_cont_p` + theorem is_cont_p_bind + (k : ((x:a) → Result (b x)) → (x:a) → Result (b x)) + (Hkmono : is_mono k) + (g : ((x:a) → Result (b x)) → Result c) + (h : c → ((x:a) → Result (b x)) → Result d) : + is_mono_p g → + is_cont_p k g → + (∀ y, is_mono_p (h y)) → + (∀ y, is_cont_p k (h y)) → + is_cont_p k (λ k => do let y ← g k; h y k) := by + intro Hgmono Hgcont Hhmono Hhcont + simp [is_cont_p] + intro Hdiv + -- Case on `g (fix... k)`: is there an n s.t. it terminates? + cases Classical.em (∀ n, g (fix_fuel n k) = .div) <;> rename_i Hn + . -- Case 1: g diverges + have Hgcont := Hgcont Hn + simp_all + . -- Case 2: g doesn't diverge + simp at Hn + let ⟨ n, Hn ⟩ := Hn + have Hdivn := Hdiv n + have Hffmono := fix_fuel_fix_mono Hkmono n + have Hgeq := Hgmono Hffmono + simp [result_rel] at Hgeq + cases Heq: g (fix_fuel n k) <;> rename_i y <;> simp_all + -- Remains the .ret case + -- Use Hdiv to prove that: ∀ n, h y (fix_fuel n f) = div + -- We do this in two steps: first we prove it for m ≥ n + have Hhdiv: ∀ m, h y (fix_fuel m k) = .div := by + have Hhdiv : ∀ m, n ≤ m → h y (fix_fuel m k) = .div := by + -- We use the fact that `g (fix_fuel n f) = .div`, combined with Hdiv + intro m Hle + have Hdivm := Hdiv m + -- Monotonicity of g + have Hffmono := fix_fuel_mono Hkmono Hle + have Hgmono := Hgmono Hffmono + -- We need to clear Hdiv because otherwise simp_all rewrites Hdivm with Hdiv + clear Hdiv + simp_all [result_rel] + intro m + -- TODO: we shouldn't need the excluded middle here because it is decidable + cases Classical.em (n ≤ m) <;> rename_i Hl + . apply Hhdiv; assumption + . simp at Hl + -- Make a case disjunction on `h y (fix_fuel m k)`: if it is not equal + -- to div, use the monotonicity of `h y` + have Hle : m ≤ n := by linarith + have Hffmono := fix_fuel_mono Hkmono Hle + have Hmono := Hhmono y Hffmono + simp [result_rel] at Hmono + cases Heq: h y (fix_fuel m k) <;> simp_all + -- We can now use the continuity hypothesis for h + apply Hhcont; assumption + + -- The validity property for an expression + def is_valid_p (k : ((x:a) → Result (b x)) → (x:a) → Result (b x)) + (e : ((x:a) → Result (b x)) → Result c) : Prop := + is_mono_p e ∧ + (is_mono k → is_cont_p k e) + + @[simp] theorem is_valid_p_same + (k : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (x : Result c) : + is_valid_p k (λ _ => x) := by + simp [is_valid_p, is_mono_p_same, is_cont_p_same] + + @[simp] theorem is_valid_p_rec + (k : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (x : a) : + is_valid_p k (λ k => k x) := by + simp_all [is_valid_p, is_mono_p_rec, is_cont_p_rec] + + theorem is_valid_p_ite + (k : ((x:a) → Result (b x)) → (x:a) → Result (b x)) + (cond : Prop) [h : Decidable cond] + {e1 e2 : ((x:a) → Result (b x)) → Result c} + (he1: is_valid_p k e1) (he2 : is_valid_p k e2) : + is_valid_p k (ite cond e1 e2) := by + split <;> assumption + + theorem is_valid_p_dite + (k : ((x:a) → Result (b x)) → (x:a) → Result (b x)) + (cond : Prop) [h : Decidable cond] + {e1 : cond → ((x:a) → Result (b x)) → Result c} + {e2 : Not cond → ((x:a) → Result (b x)) → Result c} + (he1: ∀ x, is_valid_p k (e1 x)) (he2 : ∀ x, is_valid_p k (e2 x)) : + is_valid_p k (dite cond e1 e2) := by + split <;> simp [*] + + -- Lean is good at unification: we can write a very general version + -- (in particular, it will manage to figure out `g` and `h` when we + -- apply the lemma) + theorem is_valid_p_bind + {{k : ((x:a) → Result (b x)) → (x:a) → Result (b x)}} + {{g : ((x:a) → Result (b x)) → Result c}} + {{h : c → ((x:a) → Result (b x)) → Result d}} + (Hgvalid : is_valid_p k g) + (Hhvalid : ∀ y, is_valid_p k (h y)) : + is_valid_p k (λ k => do let y ← g k; h y k) := by + let ⟨ Hgmono, Hgcont ⟩ := Hgvalid + simp [is_valid_p, forall_and] at Hhvalid + have ⟨ Hhmono, Hhcont ⟩ := Hhvalid + simp [← imp_forall_iff] at Hhcont + simp [is_valid_p]; constructor + . -- Monotonicity + apply is_mono_p_bind <;> assumption + . -- Continuity + intro Hkmono + have Hgcont := Hgcont Hkmono + have Hhcont := Hhcont Hkmono + apply is_cont_p_bind <;> assumption + + def is_valid (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) : Prop := + ∀ k x, is_valid_p k (λ k => f k x) + + theorem is_valid_p_imp_is_valid {{f : ((x:a) → Result (b x)) → (x:a) → Result (b x)}} + (Hvalid : is_valid f) : + is_mono f ∧ is_cont f := by + have Hmono : is_mono f := by + intro f h Hr x + have Hmono := Hvalid (λ _ _ => .div) x + have Hmono := Hmono.left + apply Hmono; assumption + have Hcont : is_cont f := by + intro x Hdiv + have Hcont := (Hvalid f x).right Hmono + simp [is_cont_p] at Hcont + apply Hcont + intro n + have Hdiv := Hdiv n + simp [fix_fuel] at Hdiv + simp [*] + simp [*] + + theorem is_valid_fix_fixed_eq {{f : ((x:a) → Result (b x)) → (x:a) → Result (b x)}} + (Hvalid : is_valid f) : + fix f = f (fix f) := by + have ⟨ Hmono, Hcont ⟩ := is_valid_p_imp_is_valid Hvalid + exact fix_fixed_eq Hmono Hcont + +end Fix + +namespace FixI + /- Indexed fixed-point: definitions with indexed types, convenient to use for mutually + recursive definitions. We simply port the definitions and proofs from Fix to a more + specific case. + -/ + open Primitives Fix + + -- The index type + variable {id : Type u} + + -- The input/output types + variable {a : id → Type v} {b : (i:id) → a i → Type w} + + -- Monotonicity relation over monadic arrows (i.e., Kleisli arrows) + def karrow_rel (k1 k2 : (i:id) → (x:a i) → Result (b i x)) : Prop := + ∀ i x, result_rel (k1 i x) (k2 i x) + + def kk_to_gen (k : (i:id) → (x:a i) → Result (b i x)) : + (x: (i:id) × a i) → Result (b x.fst x.snd) := + λ ⟨ i, x ⟩ => k i x + + def kk_of_gen (k : (x: (i:id) × a i) → Result (b x.fst x.snd)) : + (i:id) → (x:a i) → Result (b i x) := + λ i x => k ⟨ i, x ⟩ + + def k_to_gen (k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)) : + ((x: (i:id) × a i) → Result (b x.fst x.snd)) → (x: (i:id) × a i) → Result (b x.fst x.snd) := + λ kk => kk_to_gen (k (kk_of_gen kk)) + + def k_of_gen (k : ((x: (i:id) × a i) → Result (b x.fst x.snd)) → (x: (i:id) × a i) → Result (b x.fst x.snd)) : + ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x) := + λ kk => kk_of_gen (k (kk_to_gen kk)) + + def e_to_gen (e : ((i:id) → (x:a i) → Result (b i x)) → Result c) : + ((x: (i:id) × a i) → Result (b x.fst x.snd)) → Result c := + λ k => e (kk_of_gen k) + + def is_valid_p (k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)) + (e : ((i:id) → (x:a i) → Result (b i x)) → Result c) : Prop := + Fix.is_valid_p (k_to_gen k) (e_to_gen e) + + def is_valid (f : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)) : Prop := + ∀ k i x, is_valid_p k (λ k => f k i x) + + def fix + (f : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)) : + (i:id) → (x:a i) → Result (b i x) := + kk_of_gen (Fix.fix (k_to_gen f)) + + theorem is_valid_fix_fixed_eq + {{f : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)}} + (Hvalid : is_valid f) : + fix f = f (fix f) := by + have Hvalid' : Fix.is_valid (k_to_gen f) := by + intro k x + simp only [is_valid, is_valid_p] at Hvalid + let ⟨ i, x ⟩ := x + have Hvalid := Hvalid (k_of_gen k) i x + simp only [k_to_gen, k_of_gen, kk_to_gen, kk_of_gen] at Hvalid + refine Hvalid + have Heq := Fix.is_valid_fix_fixed_eq Hvalid' + simp [fix] + conv => lhs; rw [Heq] + + /- Some utilities to define the mutually recursive functions -/ + + -- TODO: use more + abbrev kk_ty (id : Type u) (a : id → Type v) (b : (i:id) → (x:a i) → Type w) := + (i:id) → (x:a i) → Result (b i x) + abbrev k_ty (id : Type u) (a : id → Type v) (b : (i:id) → (x:a i) → Type w) := + kk_ty id a b → kk_ty id a b + + abbrev in_out_ty : Type (imax (u + 1) (v + 1)) := (in_ty : Type u) × ((x:in_ty) → Type v) + -- TODO: remove? + abbrev mk_in_out_ty (in_ty : Type u) (out_ty : in_ty → Type v) : + in_out_ty := + Sigma.mk in_ty out_ty + + -- Initially, we had left out the parameters id, a and b. + -- However, by parameterizing Funs with those parameters, we can state + -- and prove lemmas like Funs.is_valid_p_is_valid_p + inductive Funs (id : Type u) (a : id → Type v) (b : (i:id) → (x:a i) → Type w) : + List in_out_ty.{v, w} → Type (max (u + 1) (max (v + 1) (w + 1))) := + | Nil : Funs id a b [] + | Cons {ity : Type v} {oty : ity → Type w} {tys : List in_out_ty} + (f : kk_ty id a b → (x:ity) → Result (oty x)) (tl : Funs id a b tys) : + Funs id a b (⟨ ity, oty ⟩ :: tys) + + def get_fun {tys : List in_out_ty} (fl : Funs id a b tys) : + (i : Fin tys.length) → kk_ty id a b → (x : (tys.get i).fst) → + Result ((tys.get i).snd x) := + match fl with + | .Nil => λ i => by have h:= i.isLt; simp at h + | @Funs.Cons id a b ity oty tys1 f tl => + λ ⟨ i, iLt ⟩ => + match i with + | 0 => + Eq.mp (by simp [List.get]) f + | .succ j => + have jLt: j < tys1.length := by + simp at iLt + revert iLt + simp_arith + let j: Fin tys1.length := ⟨ j, jLt ⟩ + Eq.mp (by simp) (get_fun tl j) + + def for_all_fin_aux {n : Nat} (f : Fin n → Prop) (m : Nat) (h : m ≤ n) : Prop := + if heq: m = n then True + else + f ⟨ m, by simp_all [Nat.lt_iff_le_and_ne] ⟩ ∧ + for_all_fin_aux f (m + 1) (by simp_all [Arith.add_one_le_iff_le_ne]) + termination_by for_all_fin_aux n _ m h => n - m + decreasing_by + simp_wf + apply Nat.sub_add_lt_sub <;> simp + simp_all [Arith.add_one_le_iff_le_ne] + + def for_all_fin {n : Nat} (f : Fin n → Prop) := for_all_fin_aux f 0 (by simp) + + theorem for_all_fin_aux_imp_forall {n : Nat} (f : Fin n → Prop) (m : Nat) : + (h : m ≤ n) → + for_all_fin_aux f m h → ∀ i, m ≤ i.val → f i + := by + generalize h: (n - m) = k + revert m + induction k -- TODO: induction h rather? + case zero => + simp_all + intro m h1 h2 + have h: n = m := by + linarith + unfold for_all_fin_aux; simp_all + simp_all + -- There is no i s.t. m ≤ i + intro i h3; cases i; simp_all + linarith + case succ k hi => + simp_all + intro m hk hmn + intro hf i hmi + have hne: m ≠ n := by + have hineq := Nat.lt_of_sub_eq_succ hk + linarith + -- m = i? + if heq: m = i then + -- Yes: simply use the `for_all_fin_aux` hyp + unfold for_all_fin_aux at hf + simp_all + tauto + else + -- No: use the induction hypothesis + have hlt: m < i := by simp_all [Nat.lt_iff_le_and_ne] + have hineq: m + 1 ≤ n := by + have hineq := Nat.lt_of_sub_eq_succ hk + simp [*, Nat.add_one_le_iff] + have heq1: n - (m + 1) = k := by + -- TODO: very annoying arithmetic proof + simp [Nat.sub_eq_iff_eq_add hineq] + have hineq1: m ≤ n := by linarith + simp [Nat.sub_eq_iff_eq_add hineq1] at hk + simp_arith [hk] + have hi := hi (m + 1) heq1 hineq + apply hi <;> simp_all + . unfold for_all_fin_aux at hf + simp_all + . simp_all [Arith.add_one_le_iff_le_ne] + + -- TODO: this is not necessary anymore + theorem for_all_fin_imp_forall (n : Nat) (f : Fin n → Prop) : + for_all_fin f → ∀ i, f i + := by + intro Hf i + apply for_all_fin_aux_imp_forall <;> try assumption + simp + + /- Automating the proofs -/ + @[simp] theorem is_valid_p_same + (k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)) (x : Result c) : + is_valid_p k (λ _ => x) := by + simp [is_valid_p, k_to_gen, e_to_gen] + + @[simp] theorem is_valid_p_rec + (k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)) (i : id) (x : a i) : + is_valid_p k (λ k => k i x) := by + simp [is_valid_p, k_to_gen, e_to_gen, kk_to_gen, kk_of_gen] + + theorem is_valid_p_ite + (k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)) + (cond : Prop) [h : Decidable cond] + {e1 e2 : ((i:id) → (x:a i) → Result (b i x)) → Result c} + (he1: is_valid_p k e1) (he2 : is_valid_p k e2) : + is_valid_p k (λ k => ite cond (e1 k) (e2 k)) := by + split <;> assumption + + theorem is_valid_p_dite + (k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)) + (cond : Prop) [h : Decidable cond] + {e1 : ((i:id) → (x:a i) → Result (b i x)) → cond → Result c} + {e2 : ((i:id) → (x:a i) → Result (b i x)) → Not cond → Result c} + (he1: ∀ x, is_valid_p k (λ k => e1 k x)) + (he2 : ∀ x, is_valid_p k (λ k => e2 k x)) : + is_valid_p k (λ k => dite cond (e1 k) (e2 k)) := by + split <;> simp [*] + + theorem is_valid_p_bind + {{k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)}} + {{g : ((i:id) → (x:a i) → Result (b i x)) → Result c}} + {{h : c → ((i:id) → (x:a i) → Result (b i x)) → Result d}} + (Hgvalid : is_valid_p k g) + (Hhvalid : ∀ y, is_valid_p k (h y)) : + is_valid_p k (λ k => do let y ← g k; h y k) := by + apply Fix.is_valid_p_bind + . apply Hgvalid + . apply Hhvalid + + def Funs.is_valid_p + (k : k_ty id a b) + (fl : Funs id a b tys) : + Prop := + match fl with + | .Nil => True + | .Cons f fl => (∀ x, FixI.is_valid_p k (λ k => f k x)) ∧ fl.is_valid_p k + + theorem Funs.is_valid_p_Nil (k : k_ty id a b) : + Funs.is_valid_p k Funs.Nil := by simp [Funs.is_valid_p] + + def Funs.is_valid_p_is_valid_p_aux + {k : k_ty id a b} + {tys : List in_out_ty} + (fl : Funs id a b tys) (Hvalid : is_valid_p k fl) : + ∀ (i : Fin tys.length) (x : (tys.get i).fst), FixI.is_valid_p k (fun k => get_fun fl i k x) := by + -- Prepare the induction + have ⟨ n, Hn ⟩ : { n : Nat // tys.length = n } := ⟨ tys.length, by rfl ⟩ + revert tys fl Hvalid + induction n + -- + case zero => + intro tys fl Hvalid Hlen; + have Heq: tys = [] := by cases tys <;> simp_all + intro i x + simp_all + have Hi := i.isLt + simp_all + case succ n Hn => + intro tys fl Hvalid Hlen i x; + cases fl <;> simp at Hlen i x Hvalid + rename_i ity oty tys f fl + have ⟨ Hvf, Hvalid ⟩ := Hvalid + have Hvf1: is_valid_p k fl := by + simp [Hvalid, Funs.is_valid_p] + have Hn := @Hn tys fl Hvf1 (by simp [*]) + -- Case disjunction on i + match i with + | ⟨ 0, _ ⟩ => + simp at x + simp [get_fun] + apply (Hvf x) + | ⟨ .succ j, HiLt ⟩ => + simp_arith at HiLt + simp at x + let j : Fin (List.length tys) := ⟨ j, by simp_arith [HiLt] ⟩ + have Hn := Hn j x + apply Hn + + def Funs.is_valid_p_is_valid_p + (tys : List in_out_ty) + (k : k_ty (Fin (List.length tys)) (λ i => (tys.get i).fst) (fun i x => (List.get tys i).snd x)) + (fl : Funs (Fin tys.length) (λ i => (tys.get i).fst) (λ i x => (tys.get i).snd x) tys) : + fl.is_valid_p k → + ∀ (i : Fin tys.length) (x : (tys.get i).fst), + FixI.is_valid_p k (fun k => get_fun fl i k x) + := by + intro Hvalid + apply is_valid_p_is_valid_p_aux; simp [*] + +end FixI + +namespace Ex1 + /- An example of use of the fixed-point -/ + open Primitives Fix + + variable {a : Type} (k : (List a × Int) → Result a) + + def list_nth_body (x : (List a × Int)) : Result a := + let (ls, i) := x + match ls with + | [] => .fail .panic + | hd :: tl => + if i = 0 then .ret hd + else k (tl, i - 1) + + theorem list_nth_body_is_valid: ∀ k x, is_valid_p k (λ k => @list_nth_body a k x) := by + intro k x + simp [list_nth_body] + split <;> simp + split <;> simp + + def list_nth (ls : List a) (i : Int) : Result a := fix list_nth_body (ls, i) + + -- The unfolding equation - diverges if `i < 0` + theorem list_nth_eq (ls : List a) (i : Int) : + list_nth ls i = + match ls with + | [] => .fail .panic + | hd :: tl => + if i = 0 then .ret hd + else list_nth tl (i - 1) + := by + have Heq := is_valid_fix_fixed_eq (@list_nth_body_is_valid a) + simp [list_nth] + conv => lhs; rw [Heq] + +end Ex1 + +namespace Ex2 + /- Same as Ex1, but we make the body of nth non tail-rec (this is mostly + to see what happens when there are let-bindings) -/ + open Primitives Fix + + variable {a : Type} (k : (List a × Int) → Result a) + + def list_nth_body (x : (List a × Int)) : Result a := + let (ls, i) := x + match ls with + | [] => .fail .panic + | hd :: tl => + if i = 0 then .ret hd + else + do + let y ← k (tl, i - 1) + .ret y + + theorem list_nth_body_is_valid: ∀ k x, is_valid_p k (λ k => @list_nth_body a k x) := by + intro k x + simp [list_nth_body] + split <;> simp + split <;> simp + apply is_valid_p_bind <;> intros <;> simp_all + + def list_nth (ls : List a) (i : Int) : Result a := fix list_nth_body (ls, i) + + -- The unfolding equation - diverges if `i < 0` + theorem list_nth_eq (ls : List a) (i : Int) : + (list_nth ls i = + match ls with + | [] => .fail .panic + | hd :: tl => + if i = 0 then .ret hd + else + do + let y ← list_nth tl (i - 1) + .ret y) + := by + have Heq := is_valid_fix_fixed_eq (@list_nth_body_is_valid a) + simp [list_nth] + conv => lhs; rw [Heq] + +end Ex2 + +namespace Ex3 + /- Mutually recursive functions - first encoding (see Ex4 for a better encoding) -/ + open Primitives Fix + + /- Because we have mutually recursive functions, we use a sum for the inputs + and the output types: + - inputs: the sum allows to select the function to call in the recursive + calls (and the functions may not have the same input types) + - outputs: this case is degenerate because `even` and `odd` have the same + return type `Bool`, but generally speaking we need a sum type because + the functions in the mutually recursive group may have different + return types. + -/ + variable (k : (Int ⊕ Int) → Result (Bool ⊕ Bool)) + + def is_even_is_odd_body (x : (Int ⊕ Int)) : Result (Bool ⊕ Bool) := + match x with + | .inl i => + -- Body of `is_even` + if i = 0 + then .ret (.inl true) -- We use .inl because this is `is_even` + else + do + let b ← + do + -- Call `odd`: we need to wrap the input value in `.inr`, then + -- extract the output value + let r ← k (.inr (i- 1)) + match r with + | .inl _ => .fail .panic -- Invalid output + | .inr b => .ret b + -- Wrap the return value + .ret (.inl b) + | .inr i => + -- Body of `is_odd` + if i = 0 + then .ret (.inr false) -- We use .inr because this is `is_odd` + else + do + let b ← + do + -- Call `is_even`: we need to wrap the input value in .inr, then + -- extract the output value + let r ← k (.inl (i- 1)) + match r with + | .inl b => .ret b + | .inr _ => .fail .panic -- Invalid output + -- Wrap the return value + .ret (.inr b) + + theorem is_even_is_odd_body_is_valid: + ∀ k x, is_valid_p k (λ k => is_even_is_odd_body k x) := by + intro k x + simp [is_even_is_odd_body] + split <;> simp <;> split <;> simp + apply is_valid_p_bind; simp + intros; split <;> simp + apply is_valid_p_bind; simp + intros; split <;> simp + + def is_even (i : Int): Result Bool := + do + let r ← fix is_even_is_odd_body (.inl i) + match r with + | .inl b => .ret b + | .inr _ => .fail .panic + + def is_odd (i : Int): Result Bool := + do + let r ← fix is_even_is_odd_body (.inr i) + match r with + | .inl _ => .fail .panic + | .inr b => .ret b + + -- The unfolding equation for `is_even` - diverges if `i < 0` + theorem is_even_eq (i : Int) : + is_even i = (if i = 0 then .ret true else is_odd (i - 1)) + := by + have Heq := is_valid_fix_fixed_eq is_even_is_odd_body_is_valid + simp [is_even, is_odd] + conv => lhs; rw [Heq]; simp; rw [is_even_is_odd_body]; simp + -- Very annoying: we need to swap the matches + -- Doing this with rewriting lemmas is hard generally speaking + -- (especially as we may have to generate lemmas for user-defined + -- inductives on the fly). + -- The simplest is to repeatedly split then simplify (we identify + -- the outer match or monadic let-binding, and split on its scrutinee) + split <;> simp + cases H0 : fix is_even_is_odd_body (Sum.inr (i - 1)) <;> simp + rename_i v + split <;> simp + + -- The unfolding equation for `is_odd` - diverges if `i < 0` + theorem is_odd_eq (i : Int) : + is_odd i = (if i = 0 then .ret false else is_even (i - 1)) + := by + have Heq := is_valid_fix_fixed_eq is_even_is_odd_body_is_valid + simp [is_even, is_odd] + conv => lhs; rw [Heq]; simp; rw [is_even_is_odd_body]; simp + -- Same remark as for `even` + split <;> simp + cases H0 : fix is_even_is_odd_body (Sum.inl (i - 1)) <;> simp + rename_i v + split <;> simp + +end Ex3 + +namespace Ex4 + /- Mutually recursive functions - 2nd encoding -/ + open Primitives FixI + + /- We make the input type and output types dependent on a parameter -/ + @[simp] def tys : List in_out_ty := [mk_in_out_ty Int (λ _ => Bool), mk_in_out_ty Int (λ _ => Bool)] + @[simp] def input_ty (i : Fin 2) : Type := (tys.get i).fst + @[simp] def output_ty (i : Fin 2) (x : input_ty i) : Type := + (tys.get i).snd x + + /- The bodies are more natural -/ + def is_even_body (k : (i : Fin 2) → (x : input_ty i) → Result (output_ty i x)) (i : Int) : Result Bool := + if i = 0 + then .ret true + else do + let b ← k 1 (i - 1) + .ret b + + def is_odd_body (k : (i : Fin 2) → (x : input_ty i) → Result (output_ty i x)) (i : Int) : Result Bool := + if i = 0 + then .ret false + else do + let b ← k 0 (i - 1) + .ret b + + @[simp] def bodies : + Funs (Fin 2) input_ty output_ty + [mk_in_out_ty Int (λ _ => Bool), mk_in_out_ty Int (λ _ => Bool)] := + Funs.Cons (is_even_body) (Funs.Cons (is_odd_body) Funs.Nil) + + def body (k : (i : Fin 2) → (x : input_ty i) → Result (output_ty i x)) (i: Fin 2) : + (x : input_ty i) → Result (output_ty i x) := get_fun bodies i k + + theorem body_is_valid : is_valid body := by + -- Split the proof into proofs of validity of the individual bodies + rw [is_valid] + simp only [body] + intro k + apply (Funs.is_valid_p_is_valid_p tys) + simp [Funs.is_valid_p] + (repeat (apply And.intro)) <;> intro x <;> simp at x <;> + simp only [is_even_body, is_odd_body] + -- Prove the validity of the individual bodies + . split <;> simp + apply is_valid_p_bind <;> simp + . split <;> simp + apply is_valid_p_bind <;> simp + + theorem body_fix_eq : fix body = body (fix body) := + is_valid_fix_fixed_eq body_is_valid + + def is_even (i : Int) : Result Bool := fix body 0 i + def is_odd (i : Int) : Result Bool := fix body 1 i + + theorem is_even_eq (i : Int) : is_even i = + (if i = 0 + then .ret true + else do + let b ← is_odd (i - 1) + .ret b) := by + simp [is_even, is_odd]; + conv => lhs; rw [body_fix_eq] + + theorem is_odd_eq (i : Int) : is_odd i = + (if i = 0 + then .ret false + else do + let b ← is_even (i - 1) + .ret b) := by + simp [is_even, is_odd]; + conv => lhs; rw [body_fix_eq] +end Ex4 + +namespace Ex5 + /- Higher-order example -/ + open Primitives Fix + + variable {a b : Type} + + /- An auxiliary function, which doesn't require the fixed-point -/ + def map (f : a → Result b) (ls : List a) : Result (List b) := + match ls with + | [] => .ret [] + | hd :: tl => + do + let hd ← f hd + let tl ← map f tl + .ret (hd :: tl) + + /- The validity theorem for `map`, generic in `f` -/ + theorem map_is_valid + {{f : (a → Result b) → a → Result c}} + (Hfvalid : ∀ k x, is_valid_p k (λ k => f k x)) + (k : (a → Result b) → a → Result b) + (ls : List a) : + is_valid_p k (λ k => map (f k) ls) := by + induction ls <;> simp [map] + apply is_valid_p_bind <;> simp_all + intros + apply is_valid_p_bind <;> simp_all + + /- An example which uses map -/ + inductive Tree (a : Type) := + | leaf (x : a) + | node (tl : List (Tree a)) + + def id_body (k : Tree a → Result (Tree a)) (t : Tree a) : Result (Tree a) := + match t with + | .leaf x => .ret (.leaf x) + | .node tl => + do + let tl ← map k tl + .ret (.node tl) + + theorem id_body_is_valid : + ∀ k x, is_valid_p k (λ k => @id_body a k x) := by + intro k x + simp only [id_body] + split <;> simp + apply is_valid_p_bind <;> simp [*] + -- We have to show that `map k tl` is valid + apply map_is_valid; + -- Remark: if we don't do the intro, then the last step is expensive: + -- "typeclass inference of Nonempty took 119ms" + intro k x + simp only [is_valid_p_same, is_valid_p_rec] + + def id (t : Tree a) := fix id_body t + + -- The unfolding equation + theorem id_eq (t : Tree a) : + (id t = + match t with + | .leaf x => .ret (.leaf x) + | .node tl => + do + let tl ← map id tl + .ret (.node tl)) + := by + have Heq := is_valid_fix_fixed_eq (@id_body_is_valid a) + simp [id] + conv => lhs; rw [Heq]; simp; rw [id_body] + +end Ex5 + +namespace Ex6 + /- `list_nth` again, but this time we use FixI -/ + open Primitives FixI + + @[simp] def tys.{u} : List in_out_ty := + [mk_in_out_ty ((a:Type u) × (List a × Int)) (λ ⟨ a, _ ⟩ => a)] + + @[simp] def input_ty (i : Fin 1) := (tys.get i).fst + @[simp] def output_ty (i : Fin 1) (x : input_ty i) := + (tys.get i).snd x + + def list_nth_body.{u} (k : (i:Fin 1) → (x:input_ty i) → Result (output_ty i x)) + (x : (a : Type u) × List a × Int) : Result x.fst := + let ⟨ a, ls, i ⟩ := x + match ls with + | [] => .fail .panic + | hd :: tl => + if i = 0 then .ret hd + else k 0 ⟨ a, tl, i - 1 ⟩ + + @[simp] def bodies : + Funs (Fin 1) input_ty output_ty tys := + Funs.Cons list_nth_body Funs.Nil + + def body (k : (i : Fin 1) → (x : input_ty i) → Result (output_ty i x)) (i: Fin 1) : + (x : input_ty i) → Result (output_ty i x) := get_fun bodies i k + + theorem body_is_valid: is_valid body := by + -- Split the proof into proofs of validity of the individual bodies + rw [is_valid] + simp only [body] + intro k + apply (Funs.is_valid_p_is_valid_p tys) + simp [Funs.is_valid_p] + (repeat (apply And.intro)); intro x; simp at x + simp only [list_nth_body] + -- Prove the validity of the individual bodies + intro k x + simp [list_nth_body] + split <;> simp + split <;> simp + + -- Writing the proof terms explicitly + theorem list_nth_body_is_valid' (k : k_ty (Fin 1) input_ty output_ty) + (x : (a : Type u) × List a × Int) : is_valid_p k (fun k => list_nth_body k x) := + let ⟨ a, ls, i ⟩ := x + match ls with + | [] => is_valid_p_same k (.fail .panic) + | hd :: tl => + is_valid_p_ite k (Eq i 0) (is_valid_p_same k (.ret hd)) (is_valid_p_rec k 0 ⟨a, tl, i-1⟩) + + theorem body_is_valid' : is_valid body := + fun k => + Funs.is_valid_p_is_valid_p tys k bodies + (And.intro (list_nth_body_is_valid' k) (Funs.is_valid_p_Nil k)) + + def list_nth {a: Type u} (ls : List a) (i : Int) : Result a := + fix body 0 ⟨ a, ls , i ⟩ + + -- The unfolding equation - diverges if `i < 0` + theorem list_nth_eq (ls : List a) (i : Int) : + list_nth ls i = + match ls with + | [] => .fail .panic + | hd :: tl => + if i = 0 then .ret hd + else list_nth tl (i - 1) + := by + have Heq := is_valid_fix_fixed_eq body_is_valid + simp [list_nth] + conv => lhs; rw [Heq] + + -- Write the proof term explicitly: the generation of the proof term (without tactics) + -- is automatable, and the proof term is actually a lot simpler and smaller when we + -- don't use tactics. + theorem list_nth_eq'.{u} {a : Type u} (ls : List a) (i : Int) : + list_nth ls i = + match ls with + | [] => .fail .panic + | hd :: tl => + if i = 0 then .ret hd + else list_nth tl (i - 1) + := + -- Use the fixed-point equation + have Heq := is_valid_fix_fixed_eq body_is_valid.{u} + -- Add the index + have Heqi := congr_fun Heq 0 + -- Add the input + have Heqix := congr_fun Heqi { fst := a, snd := (ls, i) } + -- Done + Heqix + +end Ex6 diff --git a/backends/lean/Base/Diverge/Elab.lean b/backends/lean/Base/Diverge/Elab.lean new file mode 100644 index 00000000..f109e847 --- /dev/null +++ b/backends/lean/Base/Diverge/Elab.lean @@ -0,0 +1,1162 @@ +import Lean +import Lean.Meta.Tactic.Simp +import Init.Data.List.Basic +import Mathlib.Tactic.RunCmd +import Base.Utils +import Base.Diverge.Base +import Base.Diverge.ElabBase + +namespace Diverge + +/- Automating the generation of the encoding and the proofs so as to use nice + syntactic sugar. -/ + +syntax (name := divergentDef) + declModifiers "divergent" "def" declId ppIndent(optDeclSig) declVal : command + +open Lean Elab Term Meta Primitives Lean.Meta +open Utils + +/- The following was copied from the `wfRecursion` function. -/ + +open WF in + +def mkProd (x y : Expr) : MetaM Expr := + mkAppM ``Prod.mk #[x, y] + +def mkInOutTy (x y : Expr) : MetaM Expr := + mkAppM ``FixI.mk_in_out_ty #[x, y] + +-- Return the `a` in `Return a` +def getResultTy (ty : Expr) : MetaM Expr := + ty.withApp fun f args => do + if ¬ f.isConstOf ``Result ∨ args.size ≠ 1 then + throwError "Invalid argument to getResultTy: {ty}" + else + pure (args.get! 0) + +/- Deconstruct a sigma type. + + For instance, deconstructs `(a : Type) × List a` into + `Type` and `λ a => List a`. + -/ +def getSigmaTypes (ty : Expr) : MetaM (Expr × Expr) := do + ty.withApp fun f args => do + if ¬ f.isConstOf ``Sigma ∨ args.size ≠ 2 then + throwError "Invalid argument to getSigmaTypes: {ty}" + else + pure (args.get! 0, args.get! 1) + +/- Generate a Sigma type from a list of *variables* (all the expressions + must be variables). + + Example: + - xl = [(a:Type), (ls:List a), (i:Int)] + + Generates: + `(a:Type) × (ls:List a) × (i:Int)` + + -/ +def mkSigmasType (xl : List Expr) : MetaM Expr := + match xl with + | [] => do + trace[Diverge.def.sigmas] "mkSigmasOfTypes: []" + pure (Expr.const ``PUnit.unit []) + | [x] => do + trace[Diverge.def.sigmas] "mkSigmasOfTypes: [{x}]" + let ty ← Lean.Meta.inferType x + pure ty + | x :: xl => do + trace[Diverge.def.sigmas] "mkSigmasOfTypes: [{x}::{xl}]" + let alpha ← Lean.Meta.inferType x + let sty ← mkSigmasType xl + trace[Diverge.def.sigmas] "mkSigmasOfTypes: [{x}::{xl}]: alpha={alpha}, sty={sty}" + let beta ← mkLambdaFVars #[x] sty + trace[Diverge.def.sigmas] "mkSigmasOfTypes: ({alpha}) ({beta})" + mkAppOptM ``Sigma #[some alpha, some beta] + +/- Apply a lambda expression to some arguments, simplifying the lambdas -/ +def applyLambdaToArgs (e : Expr) (xs : Array Expr) : MetaM Expr := do + lambdaTelescopeN e xs.size fun vars body => + -- Create the substitution + let s : HashMap FVarId Expr := HashMap.ofList (List.zip (vars.toList.map Expr.fvarId!) xs.toList) + -- Substitute in the body + pure (body.replace fun e => + match e with + | Expr.fvar fvarId => match s.find? fvarId with + | none => e + | some v => v + | _ => none) + +/- Group a list of expressions into a dependent tuple. + + Example: + xl = [`a : Type`, `ls : List a`] + returns: + `⟨ (a:Type), (ls: List a) ⟩` + + We need the type argument because as the elements in the tuple are + "concrete", we can't in all generality figure out the type of the tuple. + + Example: + `⟨ True, 3 ⟩ : (x : Bool) × (if x then Int else Unit)` + -/ +def mkSigmasVal (ty : Expr) (xl : List Expr) : MetaM Expr := + match xl with + | [] => do + trace[Diverge.def.sigmas] "mkSigmasVal: []" + pure (Expr.const ``PUnit.unit []) + | [x] => do + trace[Diverge.def.sigmas] "mkSigmasVal: [{x}]" + pure x + | fst :: xl => do + trace[Diverge.def.sigmas] "mkSigmasVal: [{fst}::{xl}]" + -- Deconstruct the type + let (alpha, beta) ← getSigmaTypes ty + -- Compute the "second" field + -- Specialize beta for fst + let nty ← applyLambdaToArgs beta #[fst] + -- Recursive call + let snd ← mkSigmasVal nty xl + -- Put everything together + trace[Diverge.def.sigmas] "mkSigmasVal:\n{alpha}\n{beta}\n{fst}\n{snd}" + mkAppOptM ``Sigma.mk #[some alpha, some beta, some fst, some snd] + +def mkAnonymous (s : String) (i : Nat) : Name := + .num (.str .anonymous s) i + +/- Given a list of values `[x0:ty0, ..., xn:ty1]`, where every `xi` might use the previous + `xj` (j < i) and a value `out` which uses `x0`, ..., `xn`, generate the following + expression: + ``` + fun x:((x0:ty0) × ... × (xn:tyn) => -- **Dependent** tuple + match x with + | (x0, ..., xn) => out + ``` + + The `index` parameter is used for naming purposes: we use it to numerotate the + bound variables that we introduce. + + We use this function to currify functions (the function bodies given to the + fixed-point operator must be unary functions). + + Example: + ======== + - xl = `[a:Type, ls:List a, i:Int]` + - out = `a` + - index = 0 + + generates (getting rid of most of the syntactic sugar): + ``` + λ scrut0 => match scrut0 with + | Sigma.mk x scrut1 => + match scrut1 with + | Sigma.mk ls i => + a + ``` +-/ +partial def mkSigmasMatch (xl : List Expr) (out : Expr) (index : Nat := 0) : MetaM Expr := + match xl with + | [] => do + -- This would be unexpected + throwError "mkSigmasMatch: empyt list of input parameters" + | [x] => do + -- In the example given for the explanations: this is the inner match case + trace[Diverge.def.sigmas] "mkSigmasMatch: [{x}]" + mkLambdaFVars #[x] out + | fst :: xl => do + -- In the example given for the explanations: this is the outer match case + -- Remark: for the naming purposes, we use the same convention as for the + -- fields and parameters in `Sigma.casesOn` and `Sigma.mk` (looking at + -- those definitions might help) + -- + -- We want to build the match expression: + -- ``` + -- λ scrut => + -- match scrut with + -- | Sigma.mk x ... -- the hole is given by a recursive call on the tail + -- ``` + trace[Diverge.def.sigmas] "mkSigmasMatch: [{fst}::{xl}]" + let alpha ← Lean.Meta.inferType fst + let snd_ty ← mkSigmasType xl + let beta ← mkLambdaFVars #[fst] snd_ty + let snd ← mkSigmasMatch xl out (index + 1) + let mk ← mkLambdaFVars #[fst] snd + -- Introduce the "scrut" variable + let scrut_ty ← mkSigmasType (fst :: xl) + withLocalDeclD (mkAnonymous "scrut" index) scrut_ty fun scrut => do + trace[Diverge.def.sigmas] "mkSigmasMatch: scrut: ({scrut}) : ({← inferType scrut})" + -- TODO: make the computation of the motive more efficient + let motive ← do + let out_ty ← inferType out + match out_ty with + | .sort _ | .lit _ | .const .. => + -- The type of the motive doesn't depend on the scrutinee + mkLambdaFVars #[scrut] out_ty + | _ => + -- The type of the motive *may* depend on the scrutinee + -- TODO: make this more efficient (we could change the output type of + -- mkSigmasMatch + mkSigmasMatch (fst :: xl) out_ty + -- The final expression: putting everything together + trace[Diverge.def.sigmas] "mkSigmasMatch:\n ({alpha})\n ({beta})\n ({motive})\n ({scrut})\n ({mk})" + let sm ← mkAppOptM ``Sigma.casesOn #[some alpha, some beta, some motive, some scrut, some mk] + -- Abstracting the "scrut" variable + let sm ← mkLambdaFVars #[scrut] sm + trace[Diverge.def.sigmas] "mkSigmasMatch: sm: {sm}" + pure sm + +/- Small tests for list_nth: give a model of what `mkSigmasMatch` should generate -/ +private def list_nth_out_ty_inner (a :Type) (scrut1: @Sigma (List a) (fun (_ls : List a) => Int)) := + @Sigma.casesOn (List a) + (fun (_ls : List a) => Int) + (fun (_scrut1:@Sigma (List a) (fun (_ls : List a) => Int)) => Type) + scrut1 + (fun (_ls : List a) (_i : Int) => Primitives.Result a) + +private def list_nth_out_ty_outer (scrut0 : @Sigma (Type) (fun (a:Type) => + @Sigma (List a) (fun (_ls : List a) => Int))) := + @Sigma.casesOn (Type) + (fun (a:Type) => @Sigma (List a) (fun (_ls : List a) => Int)) + (fun (_scrut0:@Sigma (Type) (fun (a:Type) => @Sigma (List a) (fun (_ls : List a) => Int))) => Type) + scrut0 + (fun (a : Type) (scrut1: @Sigma (List a) (fun (_ls : List a) => Int)) => + list_nth_out_ty_inner a scrut1) +/- -/ + +-- Return the expression: `Fin n` +-- TODO: use more +def mkFin (n : Nat) : Expr := + mkAppN (.const ``Fin []) #[.lit (.natVal n)] + +-- Return the expression: `i : Fin n` +def mkFinVal (n i : Nat) : MetaM Expr := do + let n_lit : Expr := .lit (.natVal (n - 1)) + let i_lit : Expr := .lit (.natVal i) + -- We could use `trySynthInstance`, but as we know the instance that we are + -- going to use, we can save the lookup + let ofNat ← mkAppOptM ``Fin.instOfNatFinHAddNatInstHAddInstAddNatOfNat #[n_lit, i_lit] + mkAppOptM ``OfNat.ofNat #[none, none, ofNat] + +/- Generate and declare as individual definitions the bodies for the individual funcions: + - replace the recursive calls with calls to the continutation `k` + - make those bodies take one single dependent tuple as input + + We name the declarations: "[original_name].body". + We return the new declarations. + -/ +def mkDeclareUnaryBodies (grLvlParams : List Name) (kk_var : Expr) + (inOutTys : Array (Expr × Expr)) (preDefs : Array PreDefinition) : + MetaM (Array Expr) := do + let grSize := preDefs.size + + -- Compute the map from name to (index × input type). + -- Remark: the continuation has an indexed type; we use the index (a finite number of + -- type `Fin`) to control which function we call at the recursive call site. + let nameToInfo : HashMap Name (Nat × Expr) := + let bl := preDefs.mapIdx fun i d => (d.declName, (i.val, (inOutTys.get! i.val).fst)) + HashMap.ofList bl.toList + + trace[Diverge.def.genBody] "nameToId: {nameToInfo.toList}" + + -- Auxiliary function to explore the function bodies and replace the + -- recursive calls + let visit_e (i : Nat) (e : Expr) : MetaM Expr := do + trace[Diverge.def.genBody] "visiting expression (dept: {i}): {e}" + let ne ← do + match e with + | .app .. => do + e.withApp fun f args => do + trace[Diverge.def.genBody] "this is an app: {f} {args}" + -- Check if this is a recursive call + if f.isConst then + let name := f.constName! + match nameToInfo.find? name with + | none => pure e + | some (id, in_ty) => + trace[Diverge.def.genBody] "this is a recursive call" + -- This is a recursive call: replace it + -- Compute the index + let i ← mkFinVal grSize id + -- Put the arguments in one big dependent tuple + let args ← mkSigmasVal in_ty args.toList + mkAppM' kk_var #[i, args] + else + -- Not a recursive call: do nothing + pure e + | .const name _ => + -- Sanity check: we eliminated all the recursive calls + if (nameToInfo.find? name).isSome then + throwError "mkUnaryBodies: a recursive call was not eliminated" + else pure e + | _ => pure e + trace[Diverge.def.genBody] "done with expression (depth: {i}): {e}" + pure ne + + -- Explore the bodies + preDefs.mapM fun preDef => do + -- Replace the recursive calls + trace[Diverge.def.genBody] "About to replace recursive calls in {preDef.declName}" + let body ← mapVisit visit_e preDef.value + trace[Diverge.def.genBody] "Body after replacement of the recursive calls: {body}" + + -- Currify the function by grouping the arguments into a dependent tuple + -- (over which we match to retrieve the individual arguments). + lambdaTelescope body fun args body => do + let body ← mkSigmasMatch args.toList body 0 + + -- Add the declaration + let value ← mkLambdaFVars #[kk_var] body + let name := preDef.declName.append "body" + let levelParams := grLvlParams + let decl := Declaration.defnDecl { + name := name + levelParams := levelParams + type := ← inferType value -- TODO: change the type + value := value + hints := ReducibilityHints.regular (getMaxHeight (← getEnv) value + 1) + safety := .safe + all := [name] + } + addDecl decl + trace[Diverge.def] "individual body of {preDef.declName}: {body}" + -- Return the constant + let body := Lean.mkConst name (levelParams.map .param) + -- let body ← mkAppM' body #[kk_var] + trace[Diverge.def] "individual body (after decl): {body}" + pure body + +-- Generate a unique function body from the bodies of the mutually recursive group, +-- and add it as a declaration in the context. +-- We return the list of bodies (of type `FixI.Funs ...`) and the mutually recursive body. +def mkDeclareMutRecBody (grName : Name) (grLvlParams : List Name) + (kk_var i_var : Expr) + (in_ty out_ty : Expr) (inOutTys : List (Expr × Expr)) + (bodies : Array Expr) : MetaM (Expr × Expr) := do + -- Generate the body + let grSize := bodies.size + let finTypeExpr := mkFin grSize + -- TODO: not very clean + let inOutTyType ← do + let (x, y) := inOutTys.get! 0 + inferType (← mkInOutTy x y) + let rec mkFuns (inOutTys : List (Expr × Expr)) (bl : List Expr) : MetaM Expr := + match inOutTys, bl with + | [], [] => + mkAppOptM ``FixI.Funs.Nil #[finTypeExpr, in_ty, out_ty] + | (ity, oty) :: inOutTys, b :: bl => do + -- Retrieving ity and oty - this is not very clean + let inOutTysExpr ← mkListLit inOutTyType (← inOutTys.mapM (λ (x, y) => mkInOutTy x y)) + let fl ← mkFuns inOutTys bl + mkAppOptM ``FixI.Funs.Cons #[finTypeExpr, in_ty, out_ty, ity, oty, inOutTysExpr, b, fl] + | _, _ => throwError "mkDeclareMutRecBody: `tys` and `bodies` don't have the same length" + let bodyFuns ← mkFuns inOutTys bodies.toList + -- Wrap in `get_fun` + let body ← mkAppM ``FixI.get_fun #[bodyFuns, i_var, kk_var] + -- Add the index `i` and the continuation `k` as a variables + let body ← mkLambdaFVars #[kk_var, i_var] body + trace[Diverge.def] "mkDeclareMutRecBody: body: {body}" + -- Add the declaration + let name := grName.append "mut_rec_body" + let levelParams := grLvlParams + let decl := Declaration.defnDecl { + name := name + levelParams := levelParams + type := ← inferType body + value := body + hints := ReducibilityHints.regular (getMaxHeight (← getEnv) body + 1) + safety := .safe + all := [name] + } + addDecl decl + -- Return the bodies and the constant + pure (bodyFuns, Lean.mkConst name (levelParams.map .param)) + +def isCasesExpr (e : Expr) : MetaM Bool := do + let e := e.getAppFn + if e.isConst then + return isCasesOnRecursor (← getEnv) e.constName + else return false + +structure MatchInfo where + matcherName : Name + matcherLevels : Array Level + params : Array Expr + motive : Expr + scruts : Array Expr + branchesNumParams : Array Nat + branches : Array Expr + +instance : ToMessageData MatchInfo where + -- This is not a very clean formatting, but we don't need more + toMessageData := fun me => m!"\n- matcherName: {me.matcherName}\n- params: {me.params}\n- motive: {me.motive}\n- scruts: {me.scruts}\n- branchesNumParams: {me.branchesNumParams}\n- branches: {me.branches}" + +-- Small helper: prove that an expression which doesn't use the continuation `kk` +-- is valid, and return the proof. +def proveNoKExprIsValid (k_var : Expr) (e : Expr) : MetaM Expr := do + trace[Diverge.def.valid] "proveNoKExprIsValid: {e}" + let eIsValid ← mkAppM ``FixI.is_valid_p_same #[k_var, e] + trace[Diverge.def.valid] "proveNoKExprIsValid: result:\n{eIsValid}:\n{← inferType eIsValid}" + pure eIsValid + +mutual + +/- Prove that an expression is valid, and return the proof. + + More precisely, if `e` is an expression which potentially uses the continution + `kk`, return an expression of type: + ``` + is_valid_p k (λ kk => e) + ``` + -/ +partial def proveExprIsValid (k_var kk_var : Expr) (e : Expr) : MetaM Expr := do + trace[Diverge.def.valid] "proveValid: {e}" + match e with + | .const _ _ => throwError "Unimplemented" -- Shouldn't get there? + | .bvar _ + | .fvar _ + | .lit _ + | .mvar _ + | .sort _ => throwError "Unreachable" + | .lam .. => throwError "Unimplemented" + | .forallE .. => throwError "Unreachable" -- Shouldn't get there + | .letE .. => do + -- Telescope all the let-bindings (remark: this also telescopes the lambdas) + lambdaLetTelescope e fun xs body => do + -- Note that we don't visit the bound values: there shouldn't be + -- recursive calls, lambda expressions, etc. inside + -- Prove that the body is valid + let isValid ← proveExprIsValid k_var kk_var body + -- Add the let-bindings around. + -- Rem.: the let-binding should be *inside* the `is_valid_p`, not outside, + -- but because it reduces in the end it doesn't matter. More precisely: + -- `P (let x := v in y)` and `let x := v in P y` reduce to the same expression. + mkLambdaFVars xs isValid (usedLetOnly := false) + | .mdata _ b => proveExprIsValid k_var kk_var b + | .proj _ _ _ => + -- The projection shouldn't use the continuation + proveNoKExprIsValid k_var e + | .app .. => + e.withApp fun f args => do + -- There are several cases: first, check if this is a match/if + -- Check if the expression is a (dependent) if then else. + -- We treat the if then else expressions differently from the other matches, + -- and have dedicated theorems for them. + let isIte := e.isIte + if isIte || e.isDIte then do + e.withApp fun f args => do + trace[Diverge.def.valid] "ite/dite: {f}:\n{args}" + if args.size ≠ 5 then + throwError "Wrong number of parameters for {f}: {args}" + let cond := args.get! 1 + let dec := args.get! 2 + -- Prove that the branches are valid + let br0 := args.get! 3 + let br1 := args.get! 4 + let proveBranchValid (br : Expr) : MetaM Expr := + if isIte then proveExprIsValid k_var kk_var br + else do + -- There is a lambda + lambdaOne br fun x br => do + let brValid ← proveExprIsValid k_var kk_var br + mkLambdaFVars #[x] brValid + let br0Valid ← proveBranchValid br0 + let br1Valid ← proveBranchValid br1 + let const := if isIte then ``FixI.is_valid_p_ite else ``FixI.is_valid_p_dite + let eIsValid ← mkAppOptM const #[none, none, none, none, some k_var, some cond, some dec, none, none, some br0Valid, some br1Valid] + trace[Diverge.def.valid] "ite/dite: result:\n{eIsValid}:\n{← inferType eIsValid}" + pure eIsValid + -- Check if the expression is a match (this case is for when the elaborator + -- introduces auxiliary definitions to hide the match behind syntactic + -- sugar): + else if let some me := ← matchMatcherApp? e then do + trace[Diverge.def.valid] + "matcherApp: + - params: {me.params} + - motive: {me.motive} + - discrs: {me.discrs} + - altNumParams: {me.altNumParams} + - alts: {me.alts} + - remaining: {me.remaining}" + -- matchMatcherApp does all the work for us: we simply need to gather + -- the information and call the auxiliary helper `proveMatchIsValid` + if me.remaining.size ≠ 0 then + throwError "MatcherApp: non empty remaining array: {me.remaining}" + let me : MatchInfo := { + matcherName := me.matcherName + matcherLevels := me.matcherLevels + params := me.params + motive := me.motive + scruts := me.discrs + branchesNumParams := me.altNumParams + branches := me.alts + } + proveMatchIsValid k_var kk_var me + -- Check if the expression is a raw match (this case is for when the expression + -- is a direct call to the primitive `casesOn` function, without syntactic sugar). + -- We have to check this case because functions like `mkSigmasMatch`, which we + -- use to currify function bodies, introduce such raw matches. + else if ← isCasesExpr f then do + trace[Diverge.def.valid] "rawMatch: {e}" + -- Deconstruct the match, and call the auxiliary helper `proveMatchIsValid`. + -- + -- The casesOn definition is always of the following shape: + -- - input parameters (implicit parameters) + -- - motive (implicit), -- the motive gives the return type of the match + -- - scrutinee (explicit) + -- - branches (explicit). + -- In particular, we notice that the scrutinee is the first *explicit* + -- parameter - this is how we spot it. + let matcherName := f.constName! + let matcherLevels := f.constLevels!.toArray + -- Find the first explicit parameter: this is the scrutinee + forallTelescope (← inferType f) fun xs _ => do + let rec findFirstExplicit (i : Nat) : MetaM Nat := do + if i ≥ xs.size then throwError "Unexpected: could not find an explicit parameter" + else + let x := xs.get! i + let xFVarId := x.fvarId! + let localDecl ← xFVarId.getDecl + match localDecl.binderInfo with + | .default => pure i + | _ => findFirstExplicit (i + 1) + let scrutIdx ← findFirstExplicit 0 + -- Split the arguments + let params := args.extract 0 (scrutIdx - 1) + let motive := args.get! (scrutIdx - 1) + let scrut := args.get! scrutIdx + let branches := args.extract (scrutIdx + 1) args.size + -- Compute the number of parameters for the branches: for this we use + -- the type of the uninstantiated casesOn constant (we can't just + -- destruct the lambdas in the branch expressions because the result + -- of a match might be a lambda expression). + let branchesNumParams : Array Nat ← do + let env ← getEnv + let decl := env.constants.find! matcherName + let ty := decl.type + forallTelescope ty fun xs _ => do + let xs := xs.extract (scrutIdx + 1) xs.size + xs.mapM fun x => do + let xty ← inferType x + forallTelescope xty fun ys _ => do + pure ys.size + let me : MatchInfo := { + matcherName, + matcherLevels, + params, + motive, + scruts := #[scrut], + branchesNumParams, + branches, + } + proveMatchIsValid k_var kk_var me + -- Check if this is a monadic let-binding + else if f.isConstOf ``Bind.bind then do + trace[Diverge.def.valid] "bind:\n{args}" + -- We simply need to prove that the subexpressions are valid, and call + -- the appropriate lemma. + let x := args.get! 4 + let y := args.get! 5 + -- Prove that the subexpressions are valid + let xValid ← proveExprIsValid k_var kk_var x + trace[Diverge.def.valid] "bind: xValid:\n{xValid}:\n{← inferType xValid}" + let yValid ← do + -- This is a lambda expression + lambdaOne y fun x y => do + trace[Diverge.def.valid] "bind: y: {y}" + let yValid ← proveExprIsValid k_var kk_var y + trace[Diverge.def.valid] "bind: yValid (no forall): {yValid}" + trace[Diverge.def.valid] "bind: yValid: x: {x}" + let yValid ← mkLambdaFVars #[x] yValid + trace[Diverge.def.valid] "bind: yValid (forall): {yValid}: {← inferType yValid}" + pure yValid + -- Put everything together + trace[Diverge.def.valid] "bind:\n- xValid: {xValid}: {← inferType xValid}\n- yValid: {yValid}: {← inferType yValid}" + mkAppM ``FixI.is_valid_p_bind #[xValid, yValid] + -- Check if this is a recursive call, i.e., a call to the continuation `kk` + else if f.isFVarOf kk_var.fvarId! then do + trace[Diverge.def.valid] "rec: args: \n{args}" + if args.size ≠ 2 then throwError "Recursive call with invalid number of parameters: {args}" + let i_arg := args.get! 0 + let x_arg := args.get! 1 + let eIsValid ← mkAppM ``FixI.is_valid_p_rec #[k_var, i_arg, x_arg] + trace[Diverge.def.valid] "rec: result: \n{eIsValid}" + pure eIsValid + else do + -- Remaining case: normal application. + -- It shouldn't use the continuation. + proveNoKExprIsValid k_var e + +-- Prove that a match expression is valid. +partial def proveMatchIsValid (k_var kk_var : Expr) (me : MatchInfo) : MetaM Expr := do + trace[Diverge.def.valid] "proveMatchIsValid: {me}" + -- Prove the validity of the branch expressions + let branchesValid:Array Expr ← me.branches.mapIdxM fun idx br => do + -- Go inside the lambdas - note that we have to be careful: some of the + -- binders might come from the match, and some of the binders might come + -- from the fact that the expression in the match is a lambda expression: + -- we use the branchesNumParams field for this reason + let numParams := me.branchesNumParams.get! idx + lambdaTelescopeN br numParams fun xs br => do + -- Prove that the branch expression is valid + let brValid ← proveExprIsValid k_var kk_var br + -- Reconstruct the lambda expression + mkLambdaFVars xs brValid + trace[Diverge.def.valid] "branchesValid:\n{branchesValid}" + -- Compute the motive, which has the following shape: + -- ``` + -- λ scrut => is_valid_p k (λ k => match scrut with ...) + -- ^^^^^^^^^^^^^^^^^^^^ + -- this is the original match expression, with the + -- the difference that the scrutinee(s) is a variable + -- ``` + let validMotive : Expr ← do + -- The motive is a function of the scrutinees (i.e., a lambda expression): + -- introduce binders for the scrutinees + let declInfos := me.scruts.mapIdx fun idx scrut => + let name : Name := mkAnonymous "scrut" idx + let ty := λ (_ : Array Expr) => inferType scrut + (name, ty) + withLocalDeclsD declInfos fun scrutVars => do + -- Create a match expression but where the scrutinees have been replaced + -- by variables + let params : Array (Option Expr) := me.params.map some + let motive : Option Expr := some me.motive + let scruts : Array (Option Expr) := scrutVars.map some + let branches : Array (Option Expr) := me.branches.map some + let args := params ++ [motive] ++ scruts ++ branches + let matchE ← mkAppOptM me.matcherName args + -- Wrap in the `is_valid_p` predicate + let matchE ← mkLambdaFVars #[kk_var] matchE + let validMotive ← mkAppM ``FixI.is_valid_p #[k_var, matchE] + -- Abstract away the scrutinee variables + mkLambdaFVars scrutVars validMotive + trace[Diverge.def.valid] "valid motive: {validMotive}" + -- Put together + let valid ← do + -- We let Lean infer the parameters + let params : Array (Option Expr) := me.params.map (λ _ => none) + let motive := some validMotive + let scruts := me.scruts.map some + let branches := branchesValid.map some + let args := params ++ [motive] ++ scruts ++ branches + mkAppOptM me.matcherName args + trace[Diverge.def.valid] "proveMatchIsValid:\n{valid}:\n{← inferType valid}" + pure valid + +end + +-- Prove that a single body (in the mutually recursive group) is valid. +-- +-- For instance, if we define the mutually recursive group [`is_even`, `is_odd`], +-- we prove that `is_even.body` and `is_odd.body` are valid. +partial def proveSingleBodyIsValid + (k_var : Expr) (preDef : PreDefinition) (bodyConst : Expr) : + MetaM Expr := do + trace[Diverge.def.valid] "proveSingleBodyIsValid: bodyConst: {bodyConst}" + -- Lookup the definition (`bodyConst` is a const, we want to retrieve its + -- definition to dive inside) + let name := bodyConst.constName! + let env ← getEnv + let body := (env.constants.find! name).value! + trace[Diverge.def.valid] "body: {body}" + lambdaTelescope body fun xs body => do + assert! xs.size = 2 + let kk_var := xs.get! 0 + let x_var := xs.get! 1 + -- State the type of the theorem to prove + let thmTy ← mkAppM ``FixI.is_valid_p + #[k_var, ← mkLambdaFVars #[kk_var] (← mkAppM' bodyConst #[kk_var, x_var])] + trace[Diverge.def.valid] "thmTy: {thmTy}" + -- Prove that the body is valid + let proof ← proveExprIsValid k_var kk_var body + let proof ← mkLambdaFVars #[k_var, x_var] proof + trace[Diverge.def.valid] "proveSingleBodyIsValid: proof:\n{proof}:\n{← inferType proof}" + -- The target type (we don't have to do this: this is simply a sanity check, + -- and this allows a nicer debugging output) + let thmTy ← do + let body ← mkAppM' bodyConst #[kk_var, x_var] + let body ← mkLambdaFVars #[kk_var] body + let ty ← mkAppM ``FixI.is_valid_p #[k_var, body] + mkForallFVars #[k_var, x_var] ty + trace[Diverge.def.valid] "proveSingleBodyIsValid: thmTy\n{thmTy}:\n{← inferType thmTy}" + -- Save the theorem + let name := preDef.declName ++ "body_is_valid" + let decl := Declaration.thmDecl { + name + levelParams := preDef.levelParams + type := thmTy + value := proof + all := [name] + } + addDecl decl + trace[Diverge.def.valid] "proveSingleBodyIsValid: added thm: {name}" + -- Return the theorem + pure (Expr.const name (preDef.levelParams.map .param)) + +-- Prove that the list of bodies are valid. +-- +-- For instance, if we define the mutually recursive group [`is_even`, `is_odd`], +-- we prove that `Funs.Cons is_even.body (Funs.Cons is_odd.body Funs.Nil)` is +-- valid. +partial def proveFunsBodyIsValid (inOutTys: Expr) (bodyFuns : Expr) + (k_var : Expr) (bodiesValid : Array Expr) : MetaM Expr := do + -- Create the big "and" expression, which groups the validity proof of the individual bodies + let rec mkValidConj (i : Nat) : MetaM Expr := do + if i = bodiesValid.size then + -- We reached the end + mkAppM ``FixI.Funs.is_valid_p_Nil #[k_var] + else do + -- We haven't reached the end: introduce a conjunction + let valid := bodiesValid.get! i + let valid ← mkAppM' valid #[k_var] + mkAppM ``And.intro #[valid, ← mkValidConj (i + 1)] + let andExpr ← mkValidConj 0 + -- Wrap in the `is_valid_p_is_valid_p` theorem, and abstract the continuation + let isValid ← mkAppM ``FixI.Funs.is_valid_p_is_valid_p #[inOutTys, k_var, bodyFuns, andExpr] + mkLambdaFVars #[k_var] isValid + +-- Prove that the mut rec body (i.e., the unary body which groups the bodies +-- of all the functions in the mutually recursive group and on which we will +-- apply the fixed-point operator) is valid. +-- +-- We save the proof in the theorem "[GROUP_NAME]."mut_rec_body_is_valid", +-- which we return. +-- +-- TODO: maybe this function should introduce k_var itself +def proveMutRecIsValid + (grName : Name) (grLvlParams : List Name) + (inOutTys : Expr) (bodyFuns mutRecBodyConst : Expr) + (k_var : Expr) (preDefs : Array PreDefinition) + (bodies : Array Expr) : MetaM Expr := do + -- First prove that the individual bodies are valid + let bodiesValid ← + bodies.mapIdxM fun idx body => do + let preDef := preDefs.get! idx + trace[Diverge.def.valid] "## Proving that the body {body} is valid" + proveSingleBodyIsValid k_var preDef body + -- Then prove that the mut rec body is valid + trace[Diverge.def.valid] "## Proving that the 'Funs' body is valid" + let isValid ← proveFunsBodyIsValid inOutTys bodyFuns k_var bodiesValid + -- Save the theorem + let thmTy ← mkAppM ``FixI.is_valid #[mutRecBodyConst] + let name := grName ++ "mut_rec_body_is_valid" + let decl := Declaration.thmDecl { + name + levelParams := grLvlParams + type := thmTy + value := isValid + all := [name] + } + addDecl decl + trace[Diverge.def.valid] "proveFunsBodyIsValid: added thm: {name}:\n{thmTy}" + -- Return the theorem + pure (Expr.const name (grLvlParams.map .param)) + +-- Generate the final definions by using the mutual body and the fixed point operator. +-- +-- For instance: +-- ``` +-- def is_even (i : Int) : Result Bool := mut_rec_body 0 i +-- def is_odd (i : Int) : Result Bool := mut_rec_body 1 i +-- ``` +def mkDeclareFixDefs (mutRecBody : Expr) (inOutTys : Array (Expr × Expr)) (preDefs : Array PreDefinition) : + TermElabM (Array Name) := do + let grSize := preDefs.size + let defs ← preDefs.mapIdxM fun idx preDef => do + lambdaTelescope preDef.value fun xs _ => do + -- Retrieve the input type + let in_ty := (inOutTys.get! idx.val).fst + -- Create the index + let idx ← mkFinVal grSize idx.val + -- Group the inputs into a dependent tuple + let input ← mkSigmasVal in_ty xs.toList + -- Apply the fixed point + let fixedBody ← mkAppM ``FixI.fix #[mutRecBody, idx, input] + let fixedBody ← mkLambdaFVars xs fixedBody + -- Create the declaration + let name := preDef.declName + let decl := Declaration.defnDecl { + name := name + levelParams := preDef.levelParams + type := preDef.type + value := fixedBody + hints := ReducibilityHints.regular (getMaxHeight (← getEnv) fixedBody + 1) + safety := .safe + all := [name] + } + addDecl decl + pure name + pure defs + +-- Prove the equations that we will use as unfolding theorems +partial def proveUnfoldingThms (isValidThm : Expr) (inOutTys : Array (Expr × Expr)) + (preDefs : Array PreDefinition) (decls : Array Name) : MetaM Unit := do + let grSize := preDefs.size + let proveIdx (i : Nat) : MetaM Unit := do + let preDef := preDefs.get! i + let defName := decls.get! i + -- Retrieve the arguments + lambdaTelescope preDef.value fun xs body => do + trace[Diverge.def.unfold] "proveUnfoldingThms: xs: {xs}" + trace[Diverge.def.unfold] "proveUnfoldingThms: body: {body}" + -- The theorem statement + let thmTy ← do + -- The equation: the declaration gives the lhs, the pre-def gives the rhs + let lhs ← mkAppOptM defName (xs.map some) + let rhs := body + let eq ← mkAppM ``Eq #[lhs, rhs] + mkForallFVars xs eq + trace[Diverge.def.unfold] "proveUnfoldingThms: thm statement: {thmTy}" + -- The proof + -- Use the fixed-point equation + let proof ← mkAppM ``FixI.is_valid_fix_fixed_eq #[isValidThm] + -- Add the index + let idx ← mkFinVal grSize i + let proof ← mkAppM ``congr_fun #[proof, idx] + -- Add the input argument + let arg ← mkSigmasVal (inOutTys.get! i).fst xs.toList + let proof ← mkAppM ``congr_fun #[proof, arg] + -- Abstract the arguments away + let proof ← mkLambdaFVars xs proof + trace[Diverge.def.unfold] "proveUnfoldingThms: proof: {proof}:\n{← inferType proof}" + -- Declare the theorem + let name := preDef.declName ++ "unfold" + let decl := Declaration.thmDecl { + name + levelParams := preDef.levelParams + type := thmTy + value := proof + all := [name] + } + addDecl decl + -- Add the unfolding theorem to the equation compiler + eqnsAttribute.add preDef.declName #[name] + trace[Diverge.def.unfold] "proveUnfoldingThms: added thm: {name}:\n{thmTy}" + let rec prove (i : Nat) : MetaM Unit := do + if i = preDefs.size then pure () + else do + proveIdx i + prove (i + 1) + -- + prove 0 + +def divRecursion (preDefs : Array PreDefinition) : TermElabM Unit := do + let msg := toMessageData <| preDefs.map fun pd => (pd.declName, pd.levelParams, pd.type, pd.value) + trace[Diverge.def] ("divRecursion: defs:\n" ++ msg) + + -- TODO: what is this? + for preDef in preDefs do + applyAttributesOf #[preDef] AttributeApplicationTime.afterCompilation + + -- Retrieve the name of the first definition, that we will use as the namespace + -- for the definitions common to the group + let def0 := preDefs[0]! + let grName := def0.declName + trace[Diverge.def] "group name: {grName}" + + /- # Compute the input/output types of the continuation `k`. -/ + let grLvlParams := def0.levelParams + trace[Diverge.def] "def0 universe levels: {def0.levelParams}" + + -- We first compute the list of pairs: (input type × output type) + let inOutTys : Array (Expr × Expr) ← + preDefs.mapM (fun preDef => do + withRef preDef.ref do -- is the withRef useful? + -- Check the universe parameters - TODO: I'm not sure what the best thing + -- to do is. In practice, all the type parameters should be in Type 0, so + -- we shouldn't have universe issues. + if preDef.levelParams ≠ grLvlParams then + throwError "Non-uniform polymorphism in the universes" + forallTelescope preDef.type (fun in_tys out_ty => do + let in_ty ← liftM (mkSigmasType in_tys.toList) + -- Retrieve the type in the "Result" + let out_ty ← getResultTy out_ty + let out_ty ← liftM (mkSigmasMatch in_tys.toList out_ty) + pure (in_ty, out_ty) + ) + ) + trace[Diverge.def] "inOutTys: {inOutTys}" + -- Turn the list of input/output type pairs into an expresion + let inOutTysExpr ← inOutTys.mapM (λ (x, y) => mkInOutTy x y) + let inOutTysExpr ← mkListLit (← inferType (inOutTysExpr.get! 0)) inOutTysExpr.toList + + -- From the list of pairs of input/output types, actually compute the + -- type of the continuation `k`. + -- We first introduce the index `i : Fin n` where `n` is the number of + -- functions in the group. + let i_var_ty := mkFin preDefs.size + withLocalDeclD (mkAnonymous "i" 0) i_var_ty fun i_var => do + let in_out_ty ← mkAppM ``List.get #[inOutTysExpr, i_var] + trace[Diverge.def] "in_out_ty := {in_out_ty} : {← inferType in_out_ty}" + -- Add an auxiliary definition for `in_out_ty` + let in_out_ty ← do + let value ← mkLambdaFVars #[i_var] in_out_ty + let name := grName.append "in_out_ty" + let levelParams := grLvlParams + let decl := Declaration.defnDecl { + name := name + levelParams := levelParams + type := ← inferType value + value := value + hints := .abbrev + safety := .safe + all := [name] + } + addDecl decl + -- Return the constant + let in_out_ty := Lean.mkConst name (levelParams.map .param) + mkAppM' in_out_ty #[i_var] + trace[Diverge.def] "in_out_ty (after decl) := {in_out_ty} : {← inferType in_out_ty}" + let in_ty ← mkAppM ``Sigma.fst #[in_out_ty] + trace[Diverge.def] "in_ty: {in_ty}" + withLocalDeclD (mkAnonymous "x" 1) in_ty fun input => do + let out_ty ← mkAppM' (← mkAppM ``Sigma.snd #[in_out_ty]) #[input] + trace[Diverge.def] "out_ty: {out_ty}" + + -- Introduce the continuation `k` + let in_ty ← mkLambdaFVars #[i_var] in_ty + let out_ty ← mkLambdaFVars #[i_var, input] out_ty + let kk_var_ty ← mkAppM ``FixI.kk_ty #[i_var_ty, in_ty, out_ty] + trace[Diverge.def] "kk_var_ty: {kk_var_ty}" + withLocalDeclD (mkAnonymous "kk" 2) kk_var_ty fun kk_var => do + trace[Diverge.def] "kk_var: {kk_var}" + + -- Replace the recursive calls in all the function bodies by calls to the + -- continuation `k` and and generate for those bodies declarations + trace[Diverge.def] "# Generating the unary bodies" + let bodies ← mkDeclareUnaryBodies grLvlParams kk_var inOutTys preDefs + trace[Diverge.def] "Unary bodies (after decl): {bodies}" + -- Generate the mutually recursive body + trace[Diverge.def] "# Generating the mut rec body" + let (bodyFuns, mutRecBody) ← mkDeclareMutRecBody grName grLvlParams kk_var i_var in_ty out_ty inOutTys.toList bodies + trace[Diverge.def] "mut rec body (after decl): {mutRecBody}" + + -- Prove that the mut rec body satisfies the validity criteria required by + -- our fixed-point + let k_var_ty ← mkAppM ``FixI.k_ty #[i_var_ty, in_ty, out_ty] + withLocalDeclD (mkAnonymous "k" 3) k_var_ty fun k_var => do + trace[Diverge.def] "# Proving that the mut rec body is valid" + let isValidThm ← proveMutRecIsValid grName grLvlParams inOutTysExpr bodyFuns mutRecBody k_var preDefs bodies + + -- Generate the final definitions + trace[Diverge.def] "# Generating the final definitions" + let decls ← mkDeclareFixDefs mutRecBody inOutTys preDefs + + -- Prove the unfolding theorems + trace[Diverge.def] "# Proving the unfolding theorems" + proveUnfoldingThms isValidThm inOutTys preDefs decls + + -- Generating code -- TODO + addAndCompilePartialRec preDefs + +-- The following function is copy&pasted from Lean.Elab.PreDefinition.Main +-- This is the only part where we make actual changes and hook into the equation compiler. +-- (I've removed all the well-founded stuff to make it easier to read though.) + +open private ensureNoUnassignedMVarsAtPreDef betaReduceLetRecApps partitionPreDefs + addAndCompilePartial addAsAxioms from Lean.Elab.PreDefinition.Main + +def addPreDefinitions (preDefs : Array PreDefinition) : TermElabM Unit := withLCtx {} {} do + for preDef in preDefs do + trace[Diverge.elab] "{preDef.declName} : {preDef.type} :=\n{preDef.value}" + let preDefs ← preDefs.mapM ensureNoUnassignedMVarsAtPreDef + let preDefs ← betaReduceLetRecApps preDefs + let cliques := partitionPreDefs preDefs + let mut hasErrors := false + for preDefs in cliques do + trace[Diverge.elab] "{preDefs.map (·.declName)}" + try + withRef (preDefs[0]!.ref) do + divRecursion preDefs + catch ex => + -- If it failed, we add the functions as partial functions + hasErrors := true + logException ex + let s ← saveState + try + if preDefs.all fun preDef => preDef.kind == DefKind.def || + preDefs.all fun preDef => preDef.kind == DefKind.abbrev then + -- try to add as partial definition + try + addAndCompilePartial preDefs (useSorry := true) + catch _ => + -- Compilation failed try again just as axiom + s.restore + addAsAxioms preDefs + else return () + catch _ => s.restore + +-- The following two functions are copy-pasted from Lean.Elab.MutualDef + +open private elabHeaders levelMVarToParamHeaders getAllUserLevelNames withFunLocalDecls elabFunValues + instantiateMVarsAtHeader instantiateMVarsAtLetRecToLift checkLetRecsToLiftTypes withUsed from Lean.Elab.MutualDef + +def Term.elabMutualDef (vars : Array Expr) (views : Array DefView) : TermElabM Unit := do + let scopeLevelNames ← getLevelNames + let headers ← elabHeaders views + let headers ← levelMVarToParamHeaders views headers + let allUserLevelNames := getAllUserLevelNames headers + withFunLocalDecls headers fun funFVars => do + for view in views, funFVar in funFVars do + addLocalVarInfo view.declId funFVar + -- Add fake use site to prevent "unused variable" warning (if the + -- function is actually not recursive, Lean would print this warning). + -- Remark: we could detect this case and encode the function without + -- using the fixed-point. In practice it shouldn't happen however: + -- we define non-recursive functions with the `divergent` keyword + -- only for testing purposes. + addTermInfo' view.declId funFVar + let values ← + try + let values ← elabFunValues headers + Term.synthesizeSyntheticMVarsNoPostponing + values.mapM (instantiateMVars ·) + catch ex => + logException ex + headers.mapM fun header => mkSorry header.type (synthetic := true) + let headers ← headers.mapM instantiateMVarsAtHeader + let letRecsToLift ← getLetRecsToLift + let letRecsToLift ← letRecsToLift.mapM instantiateMVarsAtLetRecToLift + checkLetRecsToLiftTypes funFVars letRecsToLift + withUsed vars headers values letRecsToLift fun vars => do + let preDefs ← MutualClosure.main vars headers funFVars values letRecsToLift + for preDef in preDefs do + trace[Diverge.elab] "{preDef.declName} : {preDef.type} :=\n{preDef.value}" + let preDefs ← withLevelNames allUserLevelNames <| levelMVarToParamPreDecls preDefs + let preDefs ← instantiateMVarsAtPreDecls preDefs + let preDefs ← fixLevelParams preDefs scopeLevelNames allUserLevelNames + for preDef in preDefs do + trace[Diverge.elab] "after eraseAuxDiscr, {preDef.declName} : {preDef.type} :=\n{preDef.value}" + checkForHiddenUnivLevels allUserLevelNames preDefs + addPreDefinitions preDefs + +open Command in +def Command.elabMutualDef (ds : Array Syntax) : CommandElabM Unit := do + let views ← ds.mapM fun d => do + let `($mods:declModifiers divergent def $id:declId $sig:optDeclSig $val:declVal) := d + | throwUnsupportedSyntax + let modifiers ← elabModifiers mods + let (binders, type) := expandOptDeclSig sig + let deriving? := none + pure { ref := d, kind := DefKind.def, modifiers, + declId := id, binders, type? := type, value := val, deriving? } + runTermElabM fun vars => Term.elabMutualDef vars views + +-- Special command so that we don't fall back to the built-in mutual when we produce an error. +local syntax "_divergent" Parser.Command.mutual : command +elab_rules : command | `(_divergent mutual $decls* end) => Command.elabMutualDef decls + +macro_rules + | `(mutual $decls* end) => do + unless !decls.isEmpty && decls.all (·.1.getKind == ``divergentDef) do + Macro.throwUnsupported + `(command| _divergent mutual $decls* end) + +open private setDeclIdName from Lean.Elab.Declaration +elab_rules : command + | `($mods:declModifiers divergent%$tk def $id:declId $sig:optDeclSig $val:declVal) => do + let (name, _) := expandDeclIdCore id + if (`_root_).isPrefixOf name then throwUnsupportedSyntax + let view := extractMacroScopes name + let .str ns shortName := view.name | throwUnsupportedSyntax + let shortName' := { view with name := shortName }.review + let cmd ← `(mutual $mods:declModifiers divergent%$tk def $(⟨setDeclIdName id shortName'⟩):declId $sig:optDeclSig $val:declVal end) + if ns matches .anonymous then + Command.elabCommand cmd + else + Command.elabCommand <| ← `(namespace $(mkIdentFrom id ns) $cmd end $(mkIdentFrom id ns)) + +namespace Tests + /- Some examples of partial functions -/ + + divergent def list_nth {a: Type} (ls : List a) (i : Int) : Result a := + match ls with + | [] => .fail .panic + | x :: ls => + if i = 0 then return x + else return (← list_nth ls (i - 1)) + + #check list_nth.unfold + + example {a: Type} (ls : List a) : + ∀ (i : Int), + 0 ≤ i → i < ls.length → + ∃ x, list_nth ls i = .ret x := by + induction ls + . intro i hpos h; simp at h; linarith + . rename_i hd tl ih + intro i hpos h + -- We can directly use `rw [list_nth]`! + rw [list_nth]; simp + split <;> simp [*] + . tauto + . -- TODO: we shouldn't have to do that + have hneq : 0 < i := by cases i <;> rename_i a _ <;> simp_all; cases a <;> simp_all + simp at h + have ⟨ x, ih ⟩ := ih (i - 1) (by linarith) (by linarith) + simp [ih] + tauto + + mutual + divergent def is_even (i : Int) : Result Bool := + if i = 0 then return true else return (← is_odd (i - 1)) + + divergent def is_odd (i : Int) : Result Bool := + if i = 0 then return false else return (← is_even (i - 1)) + end + + #check is_even.unfold + #check is_odd.unfold + + mutual + divergent def foo (i : Int) : Result Nat := + if i > 10 then return (← foo (i / 10)) + (← bar i) else bar 10 + + divergent def bar (i : Int) : Result Nat := + if i > 20 then foo (i / 20) else .ret 42 + end + + #check foo.unfold + #check bar.unfold + + -- Testing dependent branching and let-bindings + -- TODO: why the linter warning? + divergent def isNonZero (i : Int) : Result Bool := + if _h:i = 0 then return false + else + let b := true + return b + + #check isNonZero.unfold + + -- Testing let-bindings + divergent def iInBounds {a : Type} (ls : List a) (i : Int) : Result Bool := + let i0 := ls.length + if i < i0 + then Result.ret True + else Result.ret False + + #check iInBounds.unfold + + divergent def isCons + {a : Type} (ls : List a) : Result Bool := + let ls1 := ls + match ls1 with + | [] => Result.ret False + | _ :: _ => Result.ret True + + #check isCons.unfold + + -- Testing what happens when we use concrete arguments in dependent tuples + divergent def test1 + (_ : Option Bool) (_ : Unit) : + Result Unit + := + test1 Option.none () + + #check test1.unfold + +end Tests + +end Diverge diff --git a/backends/lean/Base/Diverge/ElabBase.lean b/backends/lean/Base/Diverge/ElabBase.lean new file mode 100644 index 00000000..fedb1c74 --- /dev/null +++ b/backends/lean/Base/Diverge/ElabBase.lean @@ -0,0 +1,15 @@ +import Lean + +namespace Diverge + +open Lean Elab Term Meta + +-- We can't define and use trace classes in the same file +initialize registerTraceClass `Diverge.elab +initialize registerTraceClass `Diverge.def +initialize registerTraceClass `Diverge.def.sigmas +initialize registerTraceClass `Diverge.def.genBody +initialize registerTraceClass `Diverge.def.valid +initialize registerTraceClass `Diverge.def.unfold + +end Diverge diff --git a/backends/lean/Base/IList.lean b/backends/lean/Base/IList.lean new file mode 100644 index 00000000..31b66ffa --- /dev/null +++ b/backends/lean/Base/IList.lean @@ -0,0 +1 @@ +import Base.IList.IList diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean new file mode 100644 index 00000000..93047a1b --- /dev/null +++ b/backends/lean/Base/IList/IList.lean @@ -0,0 +1,284 @@ +/- Complementary list functions and lemmas which operate on integers rather + than natural numbers. -/ + +import Std.Data.Int.Lemmas +import Base.Arith + +namespace List + +def len (ls : List α) : Int := + match ls with + | [] => 0 + | _ :: tl => 1 + len tl + +@[simp] theorem len_nil : len ([] : List α) = 0 := by simp [len] +@[simp] theorem len_cons : len ((x :: tl) : List α) = 1 + len tl := by simp [len] + +theorem len_pos : 0 ≤ (ls : List α).len := by + induction ls <;> simp [*] + linarith + +instance (a : Type u) : Arith.HasIntProp (List a) where + prop_ty := λ ls => 0 ≤ ls.len + prop := λ ls => ls.len_pos + +-- Remark: if i < 0, then the result is none +def indexOpt (ls : List α) (i : Int) : Option α := + match ls with + | [] => none + | hd :: tl => if i = 0 then some hd else indexOpt tl (i - 1) + +@[simp] theorem indexOpt_nil : indexOpt ([] : List α) i = none := by simp [indexOpt] +@[simp] theorem indexOpt_zero_cons : indexOpt ((x :: tl) : List α) 0 = some x := by simp [indexOpt] +@[simp] theorem indexOpt_nzero_cons (hne : i ≠ 0) : indexOpt ((x :: tl) : List α) i = indexOpt tl (i - 1) := by simp [*, indexOpt] + +-- Remark: if i < 0, then the result is the defaul element +def index [Inhabited α] (ls : List α) (i : Int) : α := + match ls with + | [] => Inhabited.default + | x :: tl => + if i = 0 then x else index tl (i - 1) + +@[simp] theorem index_zero_cons [Inhabited α] : index ((x :: tl) : List α) 0 = x := by simp [index] +@[simp] theorem index_nzero_cons [Inhabited α] (hne : i ≠ 0) : index ((x :: tl) : List α) i = index tl (i - 1) := by simp [*, index] + +theorem indexOpt_bounds (ls : List α) (i : Int) : + ls.indexOpt i = none ↔ i < 0 ∨ ls.len ≤ i := + match ls with + | [] => + have : ¬ (i < 0) → 0 ≤ i := by int_tac + by simp; tauto + | _ :: tl => + have := indexOpt_bounds tl (i - 1) + if h: i = 0 then + by + simp [*]; + int_tac + else by + simp [*] + constructor <;> intros <;> + casesm* _ ∨ _ <;> -- splits all the disjunctions + first | left; int_tac | right; int_tac + +theorem indexOpt_eq_index [Inhabited α] (ls : List α) (i : Int) : + 0 ≤ i → + i < ls.len → + ls.indexOpt i = some (ls.index i) := + match ls with + | [] => by simp; intros; linarith + | hd :: tl => + if h: i = 0 then + by simp [*] + else + have hi := indexOpt_eq_index tl (i - 1) + by simp [*]; intros; apply hi <;> int_tac + +-- Remark: the list is unchanged if the index is not in bounds (in particular +-- if it is < 0) +def update (ls : List α) (i : Int) (y : α) : List α := + match ls with + | [] => [] + | x :: tl => if i = 0 then y :: tl else x :: update tl (i - 1) y + +-- Remark: the whole list is dropped if the index is not in bounds (in particular +-- if it is < 0) +def idrop (i : Int) (ls : List α) : List α := + match ls with + | [] => [] + | x :: tl => if i = 0 then x :: tl else idrop (i - 1) tl + +section Lemmas + +variable {α : Type u} + +@[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update] +@[simp] theorem update_zero_cons : update ((x :: tl) : List α) 0 y = y :: tl := by simp [update] +@[simp] theorem update_nzero_cons (hne : i ≠ 0) : update ((x :: tl) : List α) i y = x :: update tl (i - 1) y := by simp [*, update] + +@[simp] theorem idrop_nil : idrop i ([] : List α) = [] := by simp [idrop] +@[simp] theorem idrop_zero : idrop 0 (ls : List α) = ls := by cases ls <;> simp [idrop] +@[simp] theorem idrop_nzero_cons (hne : i ≠ 0) : idrop i ((x :: tl) : List α) = idrop (i - 1) tl := by simp [*, idrop] + +theorem len_eq_length (ls : List α) : ls.len = ls.length := by + induction ls + . rfl + . simp [*, Int.ofNat_succ, Int.add_comm] + +@[simp] theorem len_append (l1 l2 : List α) : (l1 ++ l2).len = l1.len + l2.len := by + -- Remark: simp loops here because of the following rewritings: + -- @Nat.cast_add: ↑(List.length l1 + List.length l2) ==> ↑(List.length l1) + ↑(List.length l2) + -- Int.ofNat_add_ofNat: ↑(List.length l1) + ↑(List.length l2) ==> ↑(List.length l1 + List.length l2) + -- TODO: post an issue? + simp only [len_eq_length] + simp only [length_append] + simp only [Int.ofNat_add] + +@[simp] +theorem length_update (ls : List α) (i : Int) (x : α) : (ls.update i x).length = ls.length := by + revert i + induction ls <;> simp_all [length, update] + intro; split <;> simp [*] + +@[simp] +theorem len_update (ls : List α) (i : Int) (x : α) : (ls.update i x).len = ls.len := by + simp [len_eq_length] + +@[simp] +theorem len_map (ls : List α) (f : α → β) : (ls.map f).len = ls.len := by + simp [len_eq_length] + +theorem left_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.length = l1'.length) : + l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by + revert l1' + induction l1 + . intro l1'; cases l1' <;> simp [*] + . intro l1'; cases l1' <;> simp_all; tauto + +theorem right_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l2.length = l2'.length) : + l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by + have := left_length_eq_append_eq l1 l2 l1' l2' + constructor <;> intro heq2 <;> + have : l1.length + l2.length = l1'.length + l2'.length := by + have : (l1 ++ l2).length = (l1' ++ l2').length := by simp [*] + simp only [length_append] at this + apply this + . simp [heq] at this + tauto + . tauto + +theorem left_len_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.len = l1'.len) : + l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by + simp [len_eq_length] at heq + apply left_length_eq_append_eq + assumption + +theorem right_len_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l2.len = l2'.len) : + l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by + simp [len_eq_length] at heq + apply right_length_eq_append_eq + assumption + +open Arith in +theorem idrop_eq_nil_of_le (hineq : ls.len ≤ i) : idrop i ls = [] := by + revert i + induction ls <;> simp [*] + rename_i hd tl hi + intro i hineq + if heq: i = 0 then + simp [*] at * + have := tl.len_pos + linarith + else + simp at hineq + have : 0 < i := by int_tac + simp [*] + apply hi + linarith + +@[simp] +theorem index_ne + {α : Type u} [Inhabited α] (l: List α) (i: ℤ) (j: ℤ) (x: α) : + 0 ≤ i → i < l.len → 0 ≤ j → j < l.len → j ≠ i → + (l.update i x).index j = l.index j + := + λ _ _ _ _ _ => match l with + | [] => by simp at * + | hd :: tl => + if h: i = 0 then + have : j ≠ 0 := by scalar_tac + by simp [*] + else if h : j = 0 then + have : i ≠ 0 := by scalar_tac + by simp [*] + else + by + simp [*] + simp at * + apply index_ne <;> scalar_tac + +@[simp] +theorem index_eq + {α : Type u} [Inhabited α] (l: List α) (i: ℤ) (x: α) : + 0 ≤ i → i < l.len → + (l.update i x).index i = x + := + fun _ _ => match l with + | [] => by simp at *; scalar_tac + | hd :: tl => + if h: i = 0 then + by + simp [*] + else + by + simp [*] + simp at * + apply index_eq <;> scalar_tac + +theorem update_map_eq {α : Type u} {β : Type v} (ls : List α) (i : Int) (x : α) (f : α → β) : + (ls.update i x).map f = (ls.map f).update i (f x) := + match ls with + | [] => by simp + | hd :: tl => + if h : i = 0 then by simp [*] + else + have hi := update_map_eq tl (i - 1) x f + by simp [*] + +theorem len_flatten_update_eq {α : Type u} (ls : List (List α)) (i : Int) (x : List α) + (h0 : 0 ≤ i) (h1 : i < ls.len) : + (ls.update i x).flatten.len = ls.flatten.len + x.len - (ls.index i).len := + match ls with + | [] => by simp at h1; int_tac + | hd :: tl => by + simp at h1 + if h : i = 0 then simp [*]; int_tac + else + have hi := len_flatten_update_eq tl (i - 1) x (by int_tac) (by int_tac) + simp [*] + int_tac + +@[simp] +theorem index_map_eq {α : Type u} {β : Type v} [Inhabited α] [Inhabited β] (ls : List α) (i : Int) (f : α → β) + (h0 : 0 ≤ i) (h1 : i < ls.len) : + (ls.map f).index i = f (ls.index i) := + match ls with + | [] => by simp at h1; int_tac + | hd :: tl => + if h : i = 0 then by + simp [*] + else + have hi := index_map_eq tl (i - 1) f (by int_tac) (by simp at h1; int_tac) + by + simp [*] + +def allP {α : Type u} (l : List α) (p: α → Prop) : Prop := + foldr (fun a r => p a ∧ r) True l + +@[simp] +theorem allP_nil {α : Type u} (p: α → Prop) : allP [] p := + by simp [allP, foldr] + +@[simp] +theorem allP_cons {α : Type u} (hd: α) (tl : List α) (p: α → Prop) : + allP (hd :: tl) p ↔ p hd ∧ allP tl p + := by simp [allP, foldr] + +def pairwise_rel + {α : Type u} (rel : α → α → Prop) (l: List α) : Prop + := match l with + | [] => True + | hd :: tl => allP tl (rel hd) ∧ pairwise_rel rel tl + +@[simp] +theorem pairwise_rel_nil {α : Type u} (rel : α → α → Prop) : + pairwise_rel rel [] + := by simp [pairwise_rel] + +@[simp] +theorem pairwise_rel_cons {α : Type u} (rel : α → α → Prop) (hd: α) (tl: List α) : + pairwise_rel rel (hd :: tl) ↔ allP tl (rel hd) ∧ pairwise_rel rel tl + := by simp [pairwise_rel] + +end Lemmas + +end List diff --git a/backends/lean/Base/Primitives.lean b/backends/lean/Base/Primitives.lean new file mode 100644 index 00000000..91823cb6 --- /dev/null +++ b/backends/lean/Base/Primitives.lean @@ -0,0 +1,3 @@ +import Base.Primitives.Base +import Base.Primitives.Scalar +import Base.Primitives.Vec diff --git a/backends/lean/Base/Primitives/Base.lean b/backends/lean/Base/Primitives/Base.lean new file mode 100644 index 00000000..7c0fa3bb --- /dev/null +++ b/backends/lean/Base/Primitives/Base.lean @@ -0,0 +1,130 @@ +import Lean + +namespace Primitives + +-------------------- +-- ASSERT COMMAND --Std. +-------------------- + +open Lean Elab Command Term Meta + +syntax (name := assert) "#assert" term: command + +@[command_elab assert] +unsafe +def assertImpl : CommandElab := fun (_stx: Syntax) => do + runTermElabM (fun _ => do + let r ← evalTerm Bool (mkConst ``Bool) _stx[1] + if not r then + logInfo ("Assertion failed for:\n" ++ _stx[1]) + throwError ("Expression reduced to false:\n" ++ _stx[1]) + pure ()) + +#eval 2 == 2 +#assert (2 == 2) + +------------- +-- PRELUDE -- +------------- + +-- Results & monadic combinators + +inductive Error where + | assertionFailure: Error + | integerOverflow: Error + | divisionByZero: Error + | arrayOutOfBounds: Error + | maximumSizeExceeded: Error + | panic: Error +deriving Repr, BEq + +open Error + +inductive Result (α : Type u) where + | ret (v: α): Result α + | fail (e: Error): Result α + | div +deriving Repr, BEq + +open Result + +instance Result_Inhabited (α : Type u) : Inhabited (Result α) := + Inhabited.mk (fail panic) + +instance Result_Nonempty (α : Type u) : Nonempty (Result α) := + Nonempty.intro div + +/- HELPERS -/ + +def ret? {α: Type u} (r: Result α): Bool := + match r with + | ret _ => true + | fail _ | div => false + +def div? {α: Type u} (r: Result α): Bool := + match r with + | div => true + | ret _ | fail _ => false + +def massert (b:Bool) : Result Unit := + if b then ret () else fail assertionFailure + +def eval_global {α: Type u} (x: Result α) (_: ret? x): α := + match x with + | fail _ | div => by contradiction + | ret x => x + +/- DO-DSL SUPPORT -/ + +def bind {α : Type u} {β : Type v} (x: Result α) (f: α → Result β) : Result β := + match x with + | ret v => f v + | fail v => fail v + | div => div + +-- Allows using Result in do-blocks +instance : Bind Result where + bind := bind + +-- Allows using return x in do-blocks +instance : Pure Result where + pure := fun x => ret x + +@[simp] theorem bind_ret (x : α) (f : α → Result β) : bind (.ret x) f = f x := by simp [bind] +@[simp] theorem bind_fail (x : Error) (f : α → Result β) : bind (.fail x) f = .fail x := by simp [bind] +@[simp] theorem bind_div (f : α → Result β) : bind .div f = .div := by simp [bind] + +/- CUSTOM-DSL SUPPORT -/ + +-- Let-binding the Result of a monadic operation is oftentimes not sufficient, +-- because we may need a hypothesis for equational reasoning in the scope. We +-- rely on subtype, and a custom let-binding operator, in effect recreating our +-- own variant of the do-dsl + +def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := + match o with + | ret x => ret ⟨x, rfl⟩ + | fail e => fail e + | div => div + +@[simp] theorem bind_tc_ret (x : α) (f : α → Result β) : + (do let y ← .ret x; f y) = f x := by simp [Bind.bind, bind] + +@[simp] theorem bind_tc_fail (x : Error) (f : α → Result β) : + (do let y ← fail x; f y) = fail x := by simp [Bind.bind, bind] + +@[simp] theorem bind_tc_div (f : α → Result β) : + (do let y ← div; f y) = div := by simp [Bind.bind, bind] + +---------- +-- MISC -- +---------- + +@[simp] def mem.replace (a : Type) (x : a) (_ : a) : a := x +@[simp] def mem.replace_back (a : Type) (_ : a) (y : a) : a := y + +/-- Aeneas-translated function -- useful to reduce non-recursive definitions. + Use with `simp [ aeneas ]` -/ +register_simp_attr aeneas + +end Primitives diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean new file mode 100644 index 00000000..2e5be8bf --- /dev/null +++ b/backends/lean/Base/Primitives/Scalar.lean @@ -0,0 +1,831 @@ +import Lean +import Lean.Meta.Tactic.Simp +import Mathlib.Tactic.Linarith +import Base.Primitives.Base +import Base.Diverge.Base +import Base.Progress.Base +import Base.Arith.Int + +namespace Primitives + +---------------------- +-- MACHINE INTEGERS -- +---------------------- + +-- We redefine our machine integers types. + +-- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` +-- using the simplifier, meaning that proofs do not depend on the compile-time value of +-- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at +-- least officially, 16-bit microcontrollers, so this seems like a fine design decision +-- for now.) + +-- Note from Chris Bailey: "If there's more than one salient property of your +-- definition then the subtyping strategy might get messy, and the property part +-- of a subtype is less discoverable by the simplifier or tactics like +-- library_search." So, we will not add refinements on the return values of the +-- operations defined on Primitives, but will rather rely on custom lemmas to +-- invert on possible return values of the primitive operations. + +-- Machine integer constants, done via `ofNatCore`, which requires a proof that +-- the `Nat` fits within the desired integer type. We provide a custom tactic. + +open Result Error +open System.Platform.getNumBits + +-- TODO: is there a way of only importing System.Platform.getNumBits? +-- +@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val + +-- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. + +-- The "structured" bounds +def Isize.smin : Int := - (HPow.hPow 2 (size_num_bits - 1)) +def Isize.smax : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 +def I8.smin : Int := - (HPow.hPow 2 7) +def I8.smax : Int := HPow.hPow 2 7 - 1 +def I16.smin : Int := - (HPow.hPow 2 15) +def I16.smax : Int := HPow.hPow 2 15 - 1 +def I32.smin : Int := -(HPow.hPow 2 31) +def I32.smax : Int := HPow.hPow 2 31 - 1 +def I64.smin : Int := -(HPow.hPow 2 63) +def I64.smax : Int := HPow.hPow 2 63 - 1 +def I128.smin : Int := -(HPow.hPow 2 127) +def I128.smax : Int := HPow.hPow 2 127 - 1 +def Usize.smin : Int := 0 +def Usize.smax : Int := HPow.hPow 2 size_num_bits - 1 +def U8.smin : Int := 0 +def U8.smax : Int := HPow.hPow 2 8 - 1 +def U16.smin : Int := 0 +def U16.smax : Int := HPow.hPow 2 16 - 1 +def U32.smin : Int := 0 +def U32.smax : Int := HPow.hPow 2 32 - 1 +def U64.smin : Int := 0 +def U64.smax : Int := HPow.hPow 2 64 - 1 +def U128.smin : Int := 0 +def U128.smax : Int := HPow.hPow 2 128 - 1 + +-- The "normalized" bounds, that we use in practice +def I8.min : Int := -128 +def I8.max : Int := 127 +def I16.min : Int := -32768 +def I16.max : Int := 32767 +def I32.min : Int := -2147483648 +def I32.max : Int := 2147483647 +def I64.min : Int := -9223372036854775808 +def I64.max : Int := 9223372036854775807 +def I128.min : Int := -170141183460469231731687303715884105728 +def I128.max : Int := 170141183460469231731687303715884105727 +@[simp] +def U8.min : Int := 0 +def U8.max : Int := 255 +@[simp] +def U16.min : Int := 0 +def U16.max : Int := 65535 +@[simp] +def U32.min : Int := 0 +def U32.max : Int := 4294967295 +@[simp] +def U64.min : Int := 0 +def U64.max : Int := 18446744073709551615 +@[simp] +def U128.min : Int := 0 +def U128.max : Int := 340282366920938463463374607431768211455 +@[simp] +def Usize.min : Int := 0 + +def Isize.refined_min : { n:Int // n = I32.min ∨ n = I64.min } := + ⟨ Isize.smin, by + simp [Isize.smin] + cases System.Platform.numBits_eq <;> + unfold System.Platform.numBits at * <;> simp [*] ⟩ + +def Isize.refined_max : { n:Int // n = I32.max ∨ n = I64.max } := + ⟨ Isize.smax, by + simp [Isize.smax] + cases System.Platform.numBits_eq <;> + unfold System.Platform.numBits at * <;> simp [*] ⟩ + +def Usize.refined_max : { n:Int // n = U32.max ∨ n = U64.max } := + ⟨ Usize.smax, by + simp [Usize.smax] + cases System.Platform.numBits_eq <;> + unfold System.Platform.numBits at * <;> simp [*] ⟩ + +def Isize.min := Isize.refined_min.val +def Isize.max := Isize.refined_max.val +def Usize.max := Usize.refined_max.val + +inductive ScalarTy := +| Isize +| I8 +| I16 +| I32 +| I64 +| I128 +| Usize +| U8 +| U16 +| U32 +| U64 +| U128 + +def ScalarTy.isSigned (ty : ScalarTy) : Bool := + match ty with + | Isize + | I8 + | I16 + | I32 + | I64 + | I128 => true + | Usize + | U8 + | U16 + | U32 + | U64 + | U128 => false + + +def Scalar.smin (ty : ScalarTy) : Int := + match ty with + | .Isize => Isize.smin + | .I8 => I8.smin + | .I16 => I16.smin + | .I32 => I32.smin + | .I64 => I64.smin + | .I128 => I128.smin + | .Usize => Usize.smin + | .U8 => U8.smin + | .U16 => U16.smin + | .U32 => U32.smin + | .U64 => U64.smin + | .U128 => U128.smin + +def Scalar.smax (ty : ScalarTy) : Int := + match ty with + | .Isize => Isize.smax + | .I8 => I8.smax + | .I16 => I16.smax + | .I32 => I32.smax + | .I64 => I64.smax + | .I128 => I128.smax + | .Usize => Usize.smax + | .U8 => U8.smax + | .U16 => U16.smax + | .U32 => U32.smax + | .U64 => U64.smax + | .U128 => U128.smax + +def Scalar.min (ty : ScalarTy) : Int := + match ty with + | .Isize => Isize.min + | .I8 => I8.min + | .I16 => I16.min + | .I32 => I32.min + | .I64 => I64.min + | .I128 => I128.min + | .Usize => Usize.min + | .U8 => U8.min + | .U16 => U16.min + | .U32 => U32.min + | .U64 => U64.min + | .U128 => U128.min + +def Scalar.max (ty : ScalarTy) : Int := + match ty with + | .Isize => Isize.max + | .I8 => I8.max + | .I16 => I16.max + | .I32 => I32.max + | .I64 => I64.max + | .I128 => I128.max + | .Usize => Usize.max + | .U8 => U8.max + | .U16 => U16.max + | .U32 => U32.max + | .U64 => U64.max + | .U128 => U128.max + +def Scalar.smin_eq (ty : ScalarTy) : Scalar.min ty = Scalar.smin ty := by + cases ty <;> rfl + +def Scalar.smax_eq (ty : ScalarTy) : Scalar.max ty = Scalar.smax ty := by + cases ty <;> rfl + +-- "Conservative" bounds +-- We use those because we can't compare to the isize bounds (which can't +-- reduce at compile-time). Whenever we perform an arithmetic operation like +-- addition we need to check that the result is in bounds: we first compare +-- to the conservative bounds, which reduce, then compare to the real bounds. +-- This is useful for the various #asserts that we want to reduce at +-- type-checking time. +def Scalar.cMin (ty : ScalarTy) : Int := + match ty with + | .Isize => Scalar.min .I32 + | _ => Scalar.min ty + +def Scalar.cMax (ty : ScalarTy) : Int := + match ty with + | .Isize => Scalar.max .I32 + | .Usize => Scalar.max .U32 + | _ => Scalar.max ty + +theorem Scalar.cMin_bound ty : Scalar.min ty ≤ Scalar.cMin ty := by + cases ty <;> simp [Scalar.min, Scalar.max, Scalar.cMin, Scalar.cMax] at * + have h := Isize.refined_min.property + cases h <;> simp [*, Isize.min] + +theorem Scalar.cMax_bound ty : Scalar.cMax ty ≤ Scalar.max ty := by + cases ty <;> simp [Scalar.min, Scalar.max, Scalar.cMin, Scalar.cMax] at * + . have h := Isize.refined_max.property + cases h <;> simp [*, Isize.max] + . have h := Usize.refined_max.property + cases h <;> simp [*, Usize.max] + +theorem Scalar.cMin_suffices ty (h : Scalar.cMin ty ≤ x) : Scalar.min ty ≤ x := by + have := Scalar.cMin_bound ty + linarith + +theorem Scalar.cMax_suffices ty (h : x ≤ Scalar.cMax ty) : x ≤ Scalar.max ty := by + have := Scalar.cMax_bound ty + linarith + +structure Scalar (ty : ScalarTy) where + val : Int + hmin : Scalar.min ty ≤ val + hmax : val ≤ Scalar.max ty +deriving Repr + +theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : + Scalar.cMin ty ≤ x ∧ x ≤ Scalar.cMax ty -> + Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty + := + λ h => by + apply And.intro <;> have hmin := Scalar.cMin_bound ty <;> have hmax := Scalar.cMax_bound ty <;> linarith + +def Scalar.ofIntCore {ty : ScalarTy} (x : Int) + (hmin : Scalar.min ty ≤ x) (hmax : x ≤ Scalar.max ty) : Scalar ty := + { val := x, hmin := hmin, hmax := hmax } + +-- Tactic to prove that integers are in bounds +-- TODO: use this: https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/instance.20with.20tactic.20autoparam +syntax "intlit" : tactic +macro_rules + | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices; decide) + +def Scalar.ofInt {ty : ScalarTy} (x : Int) + (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty := by intlit) : Scalar ty := + -- Remark: we initially wrote: + -- let ⟨ hmin, hmax ⟩ := h + -- Scalar.ofIntCore x hmin hmax + -- We updated to the line below because a similar pattern in `Scalar.tryMk` + -- made reduction block. Both versions seem to work for `Scalar.ofInt`, though. + -- TODO: investigate + Scalar.ofIntCore x h.left h.right + +@[simp] def Scalar.check_bounds (ty : ScalarTy) (x : Int) : Bool := + (Scalar.cMin ty ≤ x || Scalar.min ty ≤ x) ∧ (x ≤ Scalar.cMax ty || x ≤ Scalar.max ty) + +theorem Scalar.check_bounds_prop {ty : ScalarTy} {x : Int} (h: Scalar.check_bounds ty x) : + Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty := by + simp at * + have ⟨ hmin, hmax ⟩ := h + have hbmin := Scalar.cMin_bound ty + have hbmax := Scalar.cMax_bound ty + cases hmin <;> cases hmax <;> apply And.intro <;> linarith + +-- Further thoughts: look at what has been done here: +-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean +-- and +-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean +-- which both contain a fair amount of reasoning already! +def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := + if h:Scalar.check_bounds ty x then + -- If we do: + -- ``` + -- let ⟨ hmin, hmax ⟩ := (Scalar.check_bounds_prop h) + -- Scalar.ofIntCore x hmin hmax + -- ``` + -- then normalization blocks (for instance, some proofs which use reflexivity fail). + -- However, the version below doesn't block reduction (TODO: investigate): + return Scalar.ofInt x (Scalar.check_bounds_prop h) + else fail integerOverflow + +def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) + +-- Our custom remainder operation, which satisfies the semantics of Rust +-- TODO: is there a better way? +def scalar_rem (x y : Int) : Int := + if 0 ≤ x then x % y + else - (|x| % |y|) + +@[simp] +def scalar_rem_nonneg {x y : Int} (hx : 0 ≤ x) : scalar_rem x y = x % y := by + intros + simp [*, scalar_rem] + +-- Our custom division operation, which satisfies the semantics of Rust +-- TODO: is there a better way? +def scalar_div (x y : Int) : Int := + if 0 ≤ x && 0 ≤ y then x / y + else if 0 ≤ x && y < 0 then - (|x| / |y|) + else if x < 0 && 0 ≤ y then - (|x| / |y|) + else |x| / |y| + +@[simp] +def scalar_div_nonneg {x y : Int} (hx : 0 ≤ x) (hy : 0 ≤ y) : scalar_div x y = x / y := by + intros + simp [*, scalar_div] + +-- Checking that the remainder operation is correct +#assert scalar_rem 1 2 = 1 +#assert scalar_rem (-1) 2 = -1 +#assert scalar_rem 1 (-2) = 1 +#assert scalar_rem (-1) (-2) = -1 +#assert scalar_rem 7 3 = (1:Int) +#assert scalar_rem (-7) 3 = -1 +#assert scalar_rem 7 (-3) = 1 +#assert scalar_rem (-7) (-3) = -1 + +-- Checking that the division operation is correct +#assert scalar_div 3 2 = 1 +#assert scalar_div (-3) 2 = -1 +#assert scalar_div 3 (-2) = -1 +#assert scalar_div (-3) (-2) = 1 +#assert scalar_div 7 3 = 2 +#assert scalar_div (-7) 3 = -2 +#assert scalar_div 7 (-3) = -2 +#assert scalar_div (-7) (-3) = 2 + +def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := + if y.val != 0 then Scalar.tryMk ty (scalar_div x.val y.val) else fail divisionByZero + +def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := + if y.val != 0 then Scalar.tryMk ty (scalar_rem x.val y.val) else fail divisionByZero + +def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := + Scalar.tryMk ty (x.val + y.val) + +def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := + Scalar.tryMk ty (x.val - y.val) + +def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := + Scalar.tryMk ty (x.val * y.val) + +-- TODO: instances of +, -, * etc. for scalars + +-- Cast an integer from a [src_ty] to a [tgt_ty] +-- TODO: check the semantics of casts in Rust +def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := + Scalar.tryMk tgt_ty x.val + +-- The scalar types +-- We declare the definitions as reducible so that Lean can unfold them (useful +-- for type class resolution for instance). +@[reducible] def Isize := Scalar .Isize +@[reducible] def I8 := Scalar .I8 +@[reducible] def I16 := Scalar .I16 +@[reducible] def I32 := Scalar .I32 +@[reducible] def I64 := Scalar .I64 +@[reducible] def I128 := Scalar .I128 +@[reducible] def Usize := Scalar .Usize +@[reducible] def U8 := Scalar .U8 +@[reducible] def U16 := Scalar .U16 +@[reducible] def U32 := Scalar .U32 +@[reducible] def U64 := Scalar .U64 +@[reducible] def U128 := Scalar .U128 + +-- TODO: below: not sure this is the best way. +-- Should we rather overload operations like +, -, etc.? +-- Also, it is possible to automate the generation of those definitions +-- with macros (but would it be a good idea? It would be less easy to +-- read the file, which is not supposed to change a lot) + +-- Negation + +/-- +Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce +one here. + +The notation typeclass for heterogeneous addition. +This enables the notation `- a : β` where `a : α`. +-/ +class HNeg (α : Type u) (β : outParam (Type v)) where + /-- `- a` computes the negation of `a`. + The meaning of this notation is type-dependent. -/ + hNeg : α → β + +prefix:75 "-" => HNeg.hNeg + +instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x +instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x +instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x +instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x +instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x +instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x + +-- Addition +instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where + hAdd x y := Scalar.add x y + +-- Substraction +instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where + hSub x y := Scalar.sub x y + +-- Multiplication +instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where + hMul x y := Scalar.mul x y + +-- Division +instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where + hDiv x y := Scalar.div x y + +-- Remainder +instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where + hMod x y := Scalar.rem x y + +-- Generic theorem - shouldn't be used much +@[cpspec] +theorem Scalar.add_spec {ty} {x y : Scalar ty} + (hmin : Scalar.min ty ≤ x.val + y.val) + (hmax : x.val + y.val ≤ Scalar.max ty) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + simp [HAdd.hAdd, add, Add.add] + simp [tryMk] + split + . simp [pure] + rfl + . tauto + +theorem Scalar.add_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} + (hmax : x.val + y.val ≤ Scalar.max ty) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + have hmin : Scalar.min ty ≤ x.val + y.val := by + have hx := x.hmin + have hy := y.hmin + cases ty <;> simp [min] at * <;> linarith + apply add_spec <;> assumption + +/- Fine-grained theorems -/ +@[cepspec] theorem Usize.add_spec {x y : Usize} (hmax : x.val + y.val ≤ Usize.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U8.add_spec {x y : U8} (hmax : x.val + y.val ≤ U8.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U16.add_spec {x y : U16} (hmax : x.val + y.val ≤ U16.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U32.add_spec {x y : U32} (hmax : x.val + y.val ≤ U32.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U64.add_spec {x y : U64} (hmax : x.val + y.val ≤ U64.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U128.add_spec {x y : U128} (hmax : x.val + y.val ≤ U128.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + +-- Generic theorem - shouldn't be used much +@[cpspec] +theorem Scalar.sub_spec {ty} {x y : Scalar ty} + (hmin : Scalar.min ty ≤ x.val - y.val) + (hmax : x.val - y.val ≤ Scalar.max ty) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by + simp [HSub.hSub, sub, Sub.sub] + simp [tryMk] + split + . simp [pure] + rfl + . tauto + +theorem Scalar.sub_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} + (hmin : Scalar.min ty ≤ x.val - y.val) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by + have : x.val - y.val ≤ Scalar.max ty := by + have hx := x.hmin + have hxm := x.hmax + have hy := y.hmin + cases ty <;> simp [min, max] at * <;> linarith + intros + apply sub_spec <;> assumption + +/- Fine-grained theorems -/ +@[cepspec] theorem Usize.sub_spec {x y : Usize} (hmin : Usize.min ≤ x.val - y.val) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by + apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + +@[cepspec] theorem U8.sub_spec {x y : U8} (hmin : U8.min ≤ x.val - y.val) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by + apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + +@[cepspec] theorem U16.sub_spec {x y : U16} (hmin : U16.min ≤ x.val - y.val) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by + apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + +@[cepspec] theorem U32.sub_spec {x y : U32} (hmin : U32.min ≤ x.val - y.val) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by + apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + +@[cepspec] theorem U64.sub_spec {x y : U64} (hmin : U64.min ≤ x.val - y.val) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by + apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + +@[cepspec] theorem U128.sub_spec {x y : U128} (hmin : U128.min ≤ x.val - y.val) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by + apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + +-- Generic theorem - shouldn't be used much +theorem Scalar.mul_spec {ty} {x y : Scalar ty} + (hmin : Scalar.min ty ≤ x.val * y.val) + (hmax : x.val * y.val ≤ Scalar.max ty) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by + simp [HMul.hMul, mul, Mul.mul] + simp [tryMk] + split + . simp [pure] + rfl + . tauto + +theorem Scalar.mul_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} + (hmax : x.val * y.val ≤ Scalar.max ty) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by + have : Scalar.min ty ≤ x.val * y.val := by + have hx := x.hmin + have hy := y.hmin + cases ty <;> simp at * <;> apply mul_nonneg hx hy + apply mul_spec <;> assumption + +/- Fine-grained theorems -/ +@[cepspec] theorem Usize.mul_spec {x y : Usize} (hmax : x.val * y.val ≤ Usize.max) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by + apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U8.mul_spec {x y : U8} (hmax : x.val * y.val ≤ U8.max) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by + apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U16.mul_spec {x y : U16} (hmax : x.val * y.val ≤ U16.max) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by + apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U32.mul_spec {x y : U32} (hmax : x.val * y.val ≤ U32.max) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by + apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U64.mul_spec {x y : U64} (hmax : x.val * y.val ≤ U64.max) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by + apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U128.mul_spec {x y : U128} (hmax : x.val * y.val ≤ U128.max) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by + apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + +-- Generic theorem - shouldn't be used much +@[cpspec] +theorem Scalar.div_spec {ty} {x y : Scalar ty} + (hnz : y.val ≠ 0) + (hmin : Scalar.min ty ≤ scalar_div x.val y.val) + (hmax : scalar_div x.val y.val ≤ Scalar.max ty) : + ∃ z, x / y = ret z ∧ z.val = scalar_div x.val y.val := by + simp [HDiv.hDiv, div, Div.div] + simp [tryMk, *] + simp [pure] + rfl + +theorem Scalar.div_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : Scalar ty} + (hnz : y.val ≠ 0) : + ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by + have h : Scalar.min ty = 0 := by cases ty <;> simp at * + have hx := x.hmin + have hy := y.hmin + simp [h] at hx hy + have hmin : 0 ≤ x.val / y.val := Int.ediv_nonneg hx hy + have hmax : x.val / y.val ≤ Scalar.max ty := by + have := Int.ediv_le_self y.val hx + have := x.hmax + linarith + have hs := @div_spec ty x y hnz + simp [*] at hs + apply hs + +/- Fine-grained theorems -/ +@[cepspec] theorem Usize.div_spec (x : Usize) {y : Usize} (hnz : y.val ≠ 0) : + ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by + apply Scalar.div_unsigned_spec <;> simp [*] + +@[cepspec] theorem U8.div_spec (x : U8) {y : U8} (hnz : y.val ≠ 0) : + ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by + apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + +@[cepspec] theorem U16.div_spec (x : U16) {y : U16} (hnz : y.val ≠ 0) : + ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by + apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + +@[cepspec] theorem U32.div_spec (x : U32) {y : U32} (hnz : y.val ≠ 0) : + ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by + apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + +@[cepspec] theorem U64.div_spec (x : U64) {y : U64} (hnz : y.val ≠ 0) : + ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by + apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + +@[cepspec] theorem U128.div_spec (x : U128) {y : U128} (hnz : y.val ≠ 0) : + ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by + apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + +-- Generic theorem - shouldn't be used much +@[cpspec] +theorem Scalar.rem_spec {ty} {x y : Scalar ty} + (hnz : y.val ≠ 0) + (hmin : Scalar.min ty ≤ scalar_rem x.val y.val) + (hmax : scalar_rem x.val y.val ≤ Scalar.max ty) : + ∃ z, x % y = ret z ∧ z.val = scalar_rem x.val y.val := by + simp [HMod.hMod, rem] + simp [tryMk, *] + simp [pure] + rfl + +theorem Scalar.rem_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : Scalar ty} + (hnz : y.val ≠ 0) : + ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by + have h : Scalar.min ty = 0 := by cases ty <;> simp at * + have hx := x.hmin + have hy := y.hmin + simp [h] at hx hy + have hmin : 0 ≤ x.val % y.val := Int.emod_nonneg x.val hnz + have hmax : x.val % y.val ≤ Scalar.max ty := by + have h : 0 < y.val := by int_tac + have h := Int.emod_lt_of_pos x.val h + have := y.hmax + linarith + have hs := @rem_spec ty x y hnz + simp [*] at hs + simp [*] + +@[cepspec] theorem Usize.rem_spec (x : Usize) {y : Usize} (hnz : y.val ≠ 0) : + ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by + apply Scalar.rem_unsigned_spec <;> simp [*] + +@[cepspec] theorem U8.rem_spec (x : U8) {y : U8} (hnz : y.val ≠ 0) : + ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by + apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + +@[cepspec] theorem U16.rem_spec (x : U16) {y : U16} (hnz : y.val ≠ 0) : + ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by + apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + +@[cepspec] theorem U32.rem_spec (x : U32) {y : U32} (hnz : y.val ≠ 0) : + ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by + apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + +@[cepspec] theorem U64.rem_spec (x : U64) {y : U64} (hnz : y.val ≠ 0) : + ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by + apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + +@[cepspec] theorem U128.rem_spec (x : U128) {y : U128} (hnz : y.val ≠ 0) : + ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by + apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + +-- ofIntCore +-- TODO: typeclass? +def Isize.ofIntCore := @Scalar.ofIntCore .Isize +def I8.ofIntCore := @Scalar.ofIntCore .I8 +def I16.ofIntCore := @Scalar.ofIntCore .I16 +def I32.ofIntCore := @Scalar.ofIntCore .I32 +def I64.ofIntCore := @Scalar.ofIntCore .I64 +def I128.ofIntCore := @Scalar.ofIntCore .I128 +def Usize.ofIntCore := @Scalar.ofIntCore .Usize +def U8.ofIntCore := @Scalar.ofIntCore .U8 +def U16.ofIntCore := @Scalar.ofIntCore .U16 +def U32.ofIntCore := @Scalar.ofIntCore .U32 +def U64.ofIntCore := @Scalar.ofIntCore .U64 +def U128.ofIntCore := @Scalar.ofIntCore .U128 + +-- ofInt +-- TODO: typeclass? +def Isize.ofInt := @Scalar.ofInt .Isize +def I8.ofInt := @Scalar.ofInt .I8 +def I16.ofInt := @Scalar.ofInt .I16 +def I32.ofInt := @Scalar.ofInt .I32 +def I64.ofInt := @Scalar.ofInt .I64 +def I128.ofInt := @Scalar.ofInt .I128 +def Usize.ofInt := @Scalar.ofInt .Usize +def U8.ofInt := @Scalar.ofInt .U8 +def U16.ofInt := @Scalar.ofInt .U16 +def U32.ofInt := @Scalar.ofInt .U32 +def U64.ofInt := @Scalar.ofInt .U64 +def U128.ofInt := @Scalar.ofInt .U128 + +-- TODO: factor those lemmas out +@[simp] theorem Scalar.ofInt_val_eq {ty} (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : (Scalar.ofInt x h).val = x := by + simp [Scalar.ofInt, Scalar.ofIntCore] + +@[simp] theorem Isize.ofInt_val_eq (h : Scalar.min ScalarTy.Isize ≤ x ∧ x ≤ Scalar.max ScalarTy.Isize) : (Isize.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem I8.ofInt_val_eq (h : Scalar.min ScalarTy.I8 ≤ x ∧ x ≤ Scalar.max ScalarTy.I8) : (I8.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem I16.ofInt_val_eq (h : Scalar.min ScalarTy.I16 ≤ x ∧ x ≤ Scalar.max ScalarTy.I16) : (I16.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem I32.ofInt_val_eq (h : Scalar.min ScalarTy.I32 ≤ x ∧ x ≤ Scalar.max ScalarTy.I32) : (I32.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem I64.ofInt_val_eq (h : Scalar.min ScalarTy.I64 ≤ x ∧ x ≤ Scalar.max ScalarTy.I64) : (I64.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem I128.ofInt_val_eq (h : Scalar.min ScalarTy.I128 ≤ x ∧ x ≤ Scalar.max ScalarTy.I128) : (I128.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem Usize.ofInt_val_eq (h : Scalar.min ScalarTy.Usize ≤ x ∧ x ≤ Scalar.max ScalarTy.Usize) : (Usize.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem U8.ofInt_val_eq (h : Scalar.min ScalarTy.U8 ≤ x ∧ x ≤ Scalar.max ScalarTy.U8) : (U8.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem U16.ofInt_val_eq (h : Scalar.min ScalarTy.U16 ≤ x ∧ x ≤ Scalar.max ScalarTy.U16) : (U16.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem U32.ofInt_val_eq (h : Scalar.min ScalarTy.U32 ≤ x ∧ x ≤ Scalar.max ScalarTy.U32) : (U32.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem U64.ofInt_val_eq (h : Scalar.min ScalarTy.U64 ≤ x ∧ x ≤ Scalar.max ScalarTy.U64) : (U64.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + +@[simp] theorem U128.ofInt_val_eq (h : Scalar.min ScalarTy.U128 ≤ x ∧ x ≤ Scalar.max ScalarTy.U128) : (U128.ofInt x h).val = x := by + apply Scalar.ofInt_val_eq h + + +-- Comparisons +instance {ty} : LT (Scalar ty) where + lt a b := LT.lt a.val b.val + +instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val + +instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. +instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. + +theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j + | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl + +theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := + h ▸ rfl + +theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := + fun h' => absurd (val_eq_of_eq h') h + +instance (ty : ScalarTy) : DecidableEq (Scalar ty) := + fun i j => + match decEq i.val j.val with + | isTrue h => isTrue (Scalar.eq_of_val_eq h) + | isFalse h => isFalse (Scalar.ne_of_val_ne h) + +/- Remark: we can't write the following instance because of restrictions about + the type class parameters (`ty` doesn't appear in the return type, which is + forbidden): + + ``` + instance Scalar.cast (ty : ScalarTy) : Coe (Scalar ty) Int where coe := λ v => v.val + ``` + -/ +def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val + +-- -- We now define a type class that subsumes the various machine integer types, so +-- -- as to write a concise definition for scalar_cast, rather than exhaustively +-- -- enumerating all of the possible pairs. We remark that Rust has sane semantics +-- -- and fails if a cast operation would involve a truncation or modulo. + +-- class MachineInteger (t: Type) where +-- size: Nat +-- val: t -> Fin size +-- ofNatCore: (n:Nat) -> LT.lt n size -> t + +-- set_option hygiene false in +-- run_cmd +-- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do +-- Lean.Elab.Command.elabCommand (← `( +-- namespace $typeName +-- instance: MachineInteger $typeName where +-- size := size +-- val := val +-- ofNatCore := ofNatCore +-- end $typeName +-- )) + +-- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on +-- -- Lean to infer `src`. + +-- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := +-- if h: MachineInteger.val x < MachineInteger.size dst then +-- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) +-- else +-- .fail integerOverflow + +end Primitives diff --git a/backends/lean/Base/Primitives/Vec.lean b/backends/lean/Base/Primitives/Vec.lean new file mode 100644 index 00000000..a09d6ac2 --- /dev/null +++ b/backends/lean/Base/Primitives/Vec.lean @@ -0,0 +1,145 @@ +import Lean +import Lean.Meta.Tactic.Simp +import Init.Data.List.Basic +import Mathlib.Tactic.RunCmd +import Mathlib.Tactic.Linarith +import Base.IList +import Base.Primitives.Scalar +import Base.Arith +import Base.Progress.Base + +namespace Primitives + +open Result Error + +------------- +-- VECTORS -- +------------- + +def Vec (α : Type u) := { l : List α // l.length ≤ Usize.max } + +-- TODO: do we really need it? It should be with Subtype by default +instance Vec.cast (a : Type u): Coe (Vec a) (List a) where coe := λ v => v.val + +instance (a : Type u) : Arith.HasIntProp (Vec a) where + prop_ty := λ v => 0 ≤ v.val.len ∧ v.val.len ≤ Scalar.max ScalarTy.Usize + prop := λ ⟨ _, l ⟩ => by simp[Scalar.max, List.len_eq_length, *] + +@[simp] +abbrev Vec.length {α : Type u} (v : Vec α) : Int := v.val.len + +@[simp] +abbrev Vec.v {α : Type u} (v : Vec α) : List α := v.val + +example {a: Type u} (v : Vec a) : v.length ≤ Scalar.max ScalarTy.Usize := by + scalar_tac + +def Vec.new (α : Type u): Vec α := ⟨ [], by apply Scalar.cMax_suffices .Usize; simp ⟩ + +-- TODO: very annoying that the α is an explicit parameter +def Vec.len (α : Type u) (v : Vec α) : Usize := + Usize.ofIntCore v.val.len (by scalar_tac) (by scalar_tac) + +@[simp] +theorem Vec.len_val {α : Type u} (v : Vec α) : (Vec.len α v).val = v.length := + by rfl + +-- This shouldn't be used +def Vec.push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () + +-- This is actually the backward function +def Vec.push (α : Type u) (v : Vec α) (x : α) : Result (Vec α) + := + let nlen := List.length v.val + 1 + if h : nlen ≤ U32.max || nlen ≤ Usize.max then + have h : nlen ≤ Usize.max := by + simp [Usize.max] at * + have hm := Usize.refined_max.property + cases h <;> cases hm <;> simp [U32.max, U64.max] at * <;> try linarith + return ⟨ List.concat v.val x, by simp at *; assumption ⟩ + else + fail maximumSizeExceeded + +-- This shouldn't be used +def Vec.insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α) : Result Unit := + if i.val < v.length then + .ret () + else + .fail arrayOutOfBounds + +-- This is actually the backward function +def Vec.insert (α : Type u) (v: Vec α) (i: Usize) (x: α) : Result (Vec α) := + if i.val < v.length then + .ret ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩ + else + .fail arrayOutOfBounds + +@[pspec] +theorem Vec.insert_spec {α : Type u} (v: Vec α) (i: Usize) (x: α) + (hbound : i.val < v.length) : + ∃ nv, v.insert α i x = ret nv ∧ nv.val = v.val.update i.val x := by + simp [insert, *] + +def Vec.index (α : Type u) (v: Vec α) (i: Usize) : Result α := + match v.val.indexOpt i.val with + | none => fail .arrayOutOfBounds + | some x => ret x + +/- In the theorems below: we don't always need the `∃ ..`, but we use one + so that `progress` introduces an opaque variable and an equality. This + helps control the context. + -/ + +@[pspec] +theorem Vec.index_spec {α : Type u} [Inhabited α] (v: Vec α) (i: Usize) + (hbound : i.val < v.length) : + ∃ x, v.index α i = ret x ∧ x = v.val.index i.val := by + simp only [index] + -- TODO: dependent rewrite + have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*]) + simp [*] + +-- This shouldn't be used +def Vec.index_back (α : Type u) (v: Vec α) (i: Usize) (_: α) : Result Unit := + if i.val < List.length v.val then + .ret () + else + .fail arrayOutOfBounds + +def Vec.index_mut (α : Type u) (v: Vec α) (i: Usize) : Result α := + match v.val.indexOpt i.val with + | none => fail .arrayOutOfBounds + | some x => ret x + +@[pspec] +theorem Vec.index_mut_spec {α : Type u} [Inhabited α] (v: Vec α) (i: Usize) + (hbound : i.val < v.length) : + ∃ x, v.index_mut α i = ret x ∧ x = v.val.index i.val := by + simp only [index_mut] + -- TODO: dependent rewrite + have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*]) + simp [*] + +instance {α : Type u} (p : Vec α → Prop) : Arith.HasIntProp (Subtype p) where + prop_ty := λ x => p x + prop := λ x => x.property + +def Vec.index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α) : Result (Vec α) := + match v.val.indexOpt i.val with + | none => fail .arrayOutOfBounds + | some _ => + .ret ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩ + +@[pspec] +theorem Vec.index_mut_back_spec {α : Type u} (v: Vec α) (i: Usize) (x : α) + (hbound : i.val < v.length) : + ∃ nv, v.index_mut_back α i x = ret nv ∧ + nv.val = v.val.update i.val x + := by + simp only [index_mut_back] + have h := List.indexOpt_bounds v.val i.val + split + . simp_all [length]; cases h <;> scalar_tac + . simp_all + +end Primitives diff --git a/backends/lean/Base/Progress.lean b/backends/lean/Base/Progress.lean new file mode 100644 index 00000000..d812b896 --- /dev/null +++ b/backends/lean/Base/Progress.lean @@ -0,0 +1 @@ +import Base.Progress.Progress diff --git a/backends/lean/Base/Progress/Base.lean b/backends/lean/Base/Progress/Base.lean new file mode 100644 index 00000000..6f820a84 --- /dev/null +++ b/backends/lean/Base/Progress/Base.lean @@ -0,0 +1,316 @@ +import Lean +import Std.Lean.HashSet +import Base.Utils +import Base.Primitives.Base + +namespace Progress + +open Lean Elab Term Meta +open Utils + +-- We can't define and use trace classes in the same file +initialize registerTraceClass `Progress + +/- # Progress tactic -/ + +structure PSpecDesc where + -- The universally quantified variables + fvars : Array Expr + -- The existentially quantified variables + evars : Array Expr + -- The function + fExpr : Expr + fName : Name + -- The function arguments + fLevels : List Level + args : Array Expr + -- The universally quantified variables which appear in the function arguments + argsFVars : Array FVarId + -- The returned value + ret : Expr + -- The postcondition (if there is) + post : Option Expr + +section Methods + variable [MonadLiftT MetaM m] [MonadControlT MetaM m] [Monad m] [MonadOptions m] + variable [MonadTrace m] [MonadLiftT IO m] [MonadRef m] [AddMessageContext m] + variable [MonadError m] + variable {a : Type} + + /- Analyze a pspec theorem to decompose its arguments. + + PSpec theorems should be of the following shape: + ``` + ∀ x1 ... xn, H1 → ... Hn → ∃ y1 ... ym. f x1 ... xn = .ret ... ∧ Post1 ∧ ... ∧ Postk + ``` + + The continuation `k` receives the following inputs: + - universally quantified variables + - assumptions + - existentially quantified variables + - function name + - function arguments + - return + - postconditions + + TODO: generalize for when we do inductive proofs + -/ + partial + def withPSpec [Inhabited (m a)] [Nonempty (m a)] (th : Expr) (k : PSpecDesc → m a) + (sanityChecks : Bool := false) : + m a := do + trace[Progress] "Proposition: {th}" + -- Dive into the quantified variables and the assumptions + forallTelescope th.consumeMData fun fvars th => do + trace[Progress] "Universally quantified arguments and assumptions: {fvars}" + -- Dive into the existentials + existsTelescope th.consumeMData fun evars th => do + trace[Progress] "Existentials: {evars}" + trace[Progress] "Proposition after stripping the quantifiers: {th}" + -- Take the first conjunct + let (th, post) ← optSplitConj th.consumeMData + trace[Progress] "After splitting the conjunction:\n- eq: {th}\n- post: {post}" + -- Destruct the equality + let (mExpr, ret) ← destEq th.consumeMData + trace[Progress] "After splitting the equality:\n- lhs: {th}\n- rhs: {ret}" + -- Destruct the monadic application to dive into the bind, if necessary (this + -- is for when we use `withPSpec` inside of the `progress` tactic), and + -- destruct the application to get the function name + mExpr.consumeMData.withApp fun mf margs => do + trace[Progress] "After stripping the arguments of the monad expression:\n- mf: {mf}\n- margs: {margs}" + let (fExpr, f, args) ← do + if mf.isConst ∧ mf.constName = ``Bind.bind then do + -- Dive into the bind + let fExpr := (margs.get! 4).consumeMData + fExpr.withApp fun f args => pure (fExpr, f, args) + else pure (mExpr, mf, margs) + trace[Progress] "After stripping the arguments of the function call:\n- f: {f}\n- args: {args}" + if ¬ f.isConst then throwError "Not a constant: {f}" + -- Compute the set of universally quantified variables which appear in the function arguments + let allArgsFVars ← args.foldlM (fun hs arg => getFVarIds arg hs) HashSet.empty + -- Sanity check + if sanityChecks then + -- All the variables which appear in the inputs given to the function are + -- universally quantified (in particular, they are not *existentially* quantified) + let fvarsSet : HashSet FVarId := HashSet.ofArray (fvars.map (fun x => x.fvarId!)) + let filtArgsFVars := allArgsFVars.toArray.filter (fun fvar => ¬ fvarsSet.contains fvar) + if ¬ filtArgsFVars.isEmpty then + let filtArgsFVars := filtArgsFVars.map (fun fvarId => Expr.fvar fvarId) + throwError "Some of the function inputs are not universally quantified: {filtArgsFVars}" + let argsFVars := fvars.map (fun x => x.fvarId!) + let argsFVars := argsFVars.filter (fun fvar => allArgsFVars.contains fvar) + -- Return + trace[Progress] "Function: {f.constName!}"; + let thDesc := { + fvars := fvars + evars := evars + fExpr + fName := f.constName! + fLevels := f.constLevels! + args := args + argsFVars + ret := ret + post := post + } + k thDesc + +end Methods + +def getPSpecFunName (th : Expr) : MetaM Name := + withPSpec th (fun d => do pure d.fName) true + +def getPSpecClassFunNames (th : Expr) : MetaM (Name × Name) := + withPSpec th (fun d => do + let arg0 := d.args.get! 0 + arg0.withApp fun f _ => do + if ¬ f.isConst then throwError "Not a constant: {f}" + pure (d.fName, f.constName) + ) true + +def getPSpecClassFunNameArg (th : Expr) : MetaM (Name × Expr) := + withPSpec th (fun d => do + let arg0 := d.args.get! 0 + pure (d.fName, arg0) + ) true + +-- "Regular" pspec attribute +structure PSpecAttr where + attr : AttributeImpl + ext : MapDeclarationExtension Name + deriving Inhabited + +/- pspec attribute for type classes: we use the name of the type class to + lookup another map. We use the *first* argument of the type class to lookup + into this second map. + + Example: + ======== + We use type classes for addition. For instance, the addition between two + U32 is written (without syntactic sugar) as `HAdd.add (Scalar ty) x y`. As a consequence, + we store the theorem through the bindings: HAdd.add → Scalar → ... + + SH: TODO: this (and `PSpecClassExprAttr`) is a bit ad-hoc. For now it works for the + specs of the scalar operations, which is what I really need, but I'm not sure it + applies well to other situations. A better way would probably to use type classes, but + I couldn't get them to work on those cases. It is worth retrying. +-/ +structure PSpecClassAttr where + attr : AttributeImpl + ext : MapDeclarationExtension (NameMap Name) + deriving Inhabited + +/- Same as `PSpecClassAttr` but we use the full first argument (it works when it + is a constant). -/ +structure PSpecClassExprAttr where + attr : AttributeImpl + ext : MapDeclarationExtension (HashMap Expr Name) + deriving Inhabited + +-- TODO: the original function doesn't define correctly the `addImportedFn`. Do a PR? +def mkMapDeclarationExtension [Inhabited α] (name : Name := by exact decl_name%) : IO (MapDeclarationExtension α) := + registerSimplePersistentEnvExtension { + name := name, + addImportedFn := fun a => a.foldl (fun s a => a.foldl (fun s (k, v) => s.insert k v) s) RBMap.empty, + addEntryFn := fun s n => s.insert n.1 n.2 , + toArrayFn := fun es => es.toArray.qsort (fun a b => Name.quickLt a.1 b.1) + } + +/- The persistent map from function to pspec theorems. -/ +initialize pspecAttr : PSpecAttr ← do + let ext ← mkMapDeclarationExtension `pspecMap + let attrImpl : AttributeImpl := { + name := `pspec + descr := "Marks theorems to use with the `progress` tactic" + add := fun thName stx attrKind => do + Attribute.Builtin.ensureNoArgs stx + -- TODO: use the attribute kind + unless attrKind == AttributeKind.global do + throwError "invalid attribute 'pspec', must be global" + -- Lookup the theorem + let env ← getEnv + let thDecl := env.constants.find! thName + let fName ← MetaM.run' (getPSpecFunName thDecl.type) + trace[Progress] "Registering spec theorem for {fName}" + let env := ext.addEntry env (fName, thName) + setEnv env + pure () + } + registerBuiltinAttribute attrImpl + pure { attr := attrImpl, ext := ext } + +/- The persistent map from type classes to pspec theorems -/ +initialize pspecClassAttr : PSpecClassAttr ← do + let ext : MapDeclarationExtension (NameMap Name) ← mkMapDeclarationExtension `pspecClassMap + let attrImpl : AttributeImpl := { + name := `cpspec + descr := "Marks theorems to use for type classes with the `progress` tactic" + add := fun thName stx attrKind => do + Attribute.Builtin.ensureNoArgs stx + -- TODO: use the attribute kind + unless attrKind == AttributeKind.global do + throwError "invalid attribute 'cpspec', must be global" + -- Lookup the theorem + let env ← getEnv + let thDecl := env.constants.find! thName + let (fName, argName) ← MetaM.run' (getPSpecClassFunNames thDecl.type) + trace[Progress] "Registering class spec theorem for ({fName}, {argName})" + -- Update the entry if there is one, add an entry if there is none + let env := + match (ext.getState (← getEnv)).find? fName with + | none => + let m := RBMap.ofList [(argName, thName)] + ext.addEntry env (fName, m) + | some m => + let m := m.insert argName thName + ext.addEntry env (fName, m) + setEnv env + pure () + } + registerBuiltinAttribute attrImpl + pure { attr := attrImpl, ext := ext } + +/- The 2nd persistent map from type classes to pspec theorems -/ +initialize pspecClassExprAttr : PSpecClassExprAttr ← do + let ext : MapDeclarationExtension (HashMap Expr Name) ← mkMapDeclarationExtension `pspecClassExprMap + let attrImpl : AttributeImpl := { + name := `cepspec + descr := "Marks theorems to use for type classes with the `progress` tactic" + add := fun thName stx attrKind => do + Attribute.Builtin.ensureNoArgs stx + -- TODO: use the attribute kind + unless attrKind == AttributeKind.global do + throwError "invalid attribute 'cpspec', must be global" + -- Lookup the theorem + let env ← getEnv + let thDecl := env.constants.find! thName + let (fName, arg) ← MetaM.run' (getPSpecClassFunNameArg thDecl.type) + -- Sanity check: no variables appear in the argument + MetaM.run' do + let fvars ← getFVarIds arg + if ¬ fvars.isEmpty then throwError "The first argument ({arg}) contains variables" + -- We store two bindings: + -- - arg to theorem name + -- - reduced arg to theorem name + let rarg ← MetaM.run' (reduceAll arg) + trace[Progress] "Registering class spec theorem for ({fName}, {arg}) and ({fName}, {rarg})" + -- Update the entry if there is one, add an entry if there is none + let env := + match (ext.getState (← getEnv)).find? fName with + | none => + let m := HashMap.ofList [(arg, thName), (rarg, thName)] + ext.addEntry env (fName, m) + | some m => + let m := m.insert arg thName + let m := m.insert rarg thName + ext.addEntry env (fName, m) + setEnv env + pure () + } + registerBuiltinAttribute attrImpl + pure { attr := attrImpl, ext := ext } + + +def PSpecAttr.find? (s : PSpecAttr) (name : Name) : MetaM (Option Name) := do + return (s.ext.getState (← getEnv)).find? name + +def PSpecClassAttr.find? (s : PSpecClassAttr) (className argName : Name) : MetaM (Option Name) := do + match (s.ext.getState (← getEnv)).find? className with + | none => return none + | some map => return map.find? argName + +def PSpecClassExprAttr.find? (s : PSpecClassExprAttr) (className : Name) (arg : Expr) : MetaM (Option Name) := do + match (s.ext.getState (← getEnv)).find? className with + | none => return none + | some map => return map.find? arg + +def PSpecAttr.getState (s : PSpecAttr) : MetaM (NameMap Name) := do + pure (s.ext.getState (← getEnv)) + +def PSpecClassAttr.getState (s : PSpecClassAttr) : MetaM (NameMap (NameMap Name)) := do + pure (s.ext.getState (← getEnv)) + +def PSpecClassExprAttr.getState (s : PSpecClassExprAttr) : MetaM (NameMap (HashMap Expr Name)) := do + pure (s.ext.getState (← getEnv)) + +def showStoredPSpec : MetaM Unit := do + let st ← pspecAttr.getState + let s := st.toList.foldl (fun s (f, th) => f!"{s}\n{f} → {th}") f!"" + IO.println s + +def showStoredPSpecClass : MetaM Unit := do + let st ← pspecClassAttr.getState + let s := st.toList.foldl (fun s (f, m) => + let ms := m.toList.foldl (fun s (f, th) => + f!"{s}\n {f} → {th}") f!"" + f!"{s}\n{f} → [{ms}]") f!"" + IO.println s + +def showStoredPSpecExprClass : MetaM Unit := do + let st ← pspecClassExprAttr.getState + let s := st.toList.foldl (fun s (f, m) => + let ms := m.toList.foldl (fun s (f, th) => + f!"{s}\n {f} → {th}") f!"" + f!"{s}\n{f} → [{ms}]") f!"" + IO.println s + +end Progress diff --git a/backends/lean/Base/Progress/Progress.lean b/backends/lean/Base/Progress/Progress.lean new file mode 100644 index 00000000..6a4729dc --- /dev/null +++ b/backends/lean/Base/Progress/Progress.lean @@ -0,0 +1,377 @@ +import Lean +import Base.Arith +import Base.Progress.Base +import Base.Primitives -- TODO: remove? + +namespace Progress + +open Lean Elab Term Meta Tactic +open Utils + +inductive TheoremOrLocal where +| Theorem (thName : Name) +| Local (asm : LocalDecl) + +instance : ToMessageData TheoremOrLocal where + toMessageData := λ x => match x with | .Theorem thName => m!"{thName}" | .Local asm => m!"{asm.userName}" + +/- Type to propagate the errors of `progressWith`. + We need this because we use the exceptions to backtrack, when trying to + use the assumptions for instance. When there is actually an error we want + to propagate to the user, we return it. -/ +inductive ProgressError +| Ok +| Error (msg : MessageData) +deriving Inhabited + +def progressWith (fExpr : Expr) (th : TheoremOrLocal) + (keep : Option Name) (ids : Array (Option Name)) (splitPost : Bool) + (asmTac : TacticM Unit) : TacticM ProgressError := do + /- Apply the theorem + We try to match the theorem with the goal + In order to do so, we introduce meta-variables for all the parameters + (i.e., quantified variables and assumpions), and unify those with the goal. + Remark: we do not introduce meta-variables for the quantified variables + which don't appear in the function arguments (we want to let them + quantified). + We also make sure that all the meta variables which appear in the + function arguments have been instantiated + -/ + let env ← getEnv + let thTy ← do + match th with + | .Theorem thName => + let thDecl := env.constants.find! thName + -- We have to introduce fresh meta-variables for the universes already + let ul : List (Name × Level) ← + thDecl.levelParams.mapM (λ x => do pure (x, ← mkFreshLevelMVar)) + let ulMap : HashMap Name Level := HashMap.ofList ul + let thTy := thDecl.type.instantiateLevelParamsCore (λ x => ulMap.find! x) + pure thTy + | .Local asmDecl => pure asmDecl.type + trace[Progress] "Looked up theorem/assumption type: {thTy}" + -- TODO: the tactic fails if we uncomment withNewMCtxDepth + -- withNewMCtxDepth do + let (mvars, binders, thExBody) ← forallMetaTelescope thTy + trace[Progress] "After stripping foralls: {thExBody}" + -- Introduce the existentially quantified variables and the post-condition + -- in the context + let thBody ← + existsTelescope thExBody.consumeMData fun _evars thBody => do + trace[Progress] "After stripping existentials: {thBody}" + let (thBody, _) ← optSplitConj thBody + trace[Progress] "After splitting the conjunction: {thBody}" + let (thBody, _) ← destEq thBody + trace[Progress] "After splitting equality: {thBody}" + -- There shouldn't be any existential variables in thBody + pure thBody.consumeMData + -- Match the body with the target + trace[Progress] "Matching:\n- body:\n{thBody}\n- target:\n{fExpr}" + let ok ← isDefEq thBody fExpr + if ¬ ok then throwError "Could not unify the theorem with the target:\n- theorem: {thBody}\n- target: {fExpr}" + let mgoal ← Tactic.getMainGoal + postprocessAppMVars `progress mgoal mvars binders true true + Term.synthesizeSyntheticMVarsNoPostponing + let thBody ← instantiateMVars thBody + trace[Progress] "thBody (after instantiation): {thBody}" + -- Add the instantiated theorem to the assumptions (we apply it on the metavariables). + let th ← do + match th with + | .Theorem thName => mkAppOptM thName (mvars.map some) + | .Local decl => mkAppOptM' (mkFVar decl.fvarId) (mvars.map some) + let asmName ← do match keep with | none => mkFreshAnonPropUserName | some n => do pure n + let thTy ← inferType th + let thAsm ← Utils.addDeclTac asmName th thTy (asLet := false) + withMainContext do -- The context changed - TODO: remove once addDeclTac is updated + let ngoal ← getMainGoal + trace[Progress] "current goal: {ngoal}" + trace[Progress] "current goal: {← ngoal.isAssigned}" + -- The assumption should be of the shape: + -- `∃ x1 ... xn, f args = ... ∧ ...` + -- We introduce the existentially quantified variables and split the top-most + -- conjunction if there is one. We use the provided `ids` list to name the + -- introduced variables. + let res ← splitAllExistsTac thAsm ids.toList fun h ids => do + -- Split the conjunctions. + -- For the conjunctions, we split according once to separate the equality `f ... = .ret ...` + -- from the postcondition, if there is, then continue to split the postcondition if there + -- are remaining ids. + let splitEqAndPost (k : Expr → Option Expr → List (Option Name) → TacticM ProgressError) : TacticM ProgressError := do + if ← isConj (← inferType h) then do + let hName := (← h.fvarId!.getDecl).userName + let (optIds, ids) ← do + match ids with + | [] => do pure (some (hName, ← mkFreshAnonPropUserName), []) + | none :: ids => do pure (some (hName, ← mkFreshAnonPropUserName), ids) + | some id :: ids => do pure (some (hName, id), ids) + splitConjTac h optIds (fun hEq hPost => k hEq (some hPost) ids) + else k h none ids + -- Simplify the target by using the equality and some monad simplifications, + -- then continue splitting the post-condition + splitEqAndPost fun hEq hPost ids => do + trace[Progress] "eq and post:\n{hEq} : {← inferType hEq}\n{hPost}" + simpAt [] [``Primitives.bind_tc_ret, ``Primitives.bind_tc_fail, ``Primitives.bind_tc_div] + [hEq.fvarId!] (.targets #[] true) + -- Clear the equality, unless the user requests not to do so + let mgoal ← do + if keep.isSome then getMainGoal + else do + let mgoal ← getMainGoal + mgoal.tryClearMany #[hEq.fvarId!] + setGoals (mgoal :: (← getUnsolvedGoals)) + trace[Progress] "Goal after splitting eq and post and simplifying the target: {mgoal}" + -- Continue splitting following the post following the user's instructions + match hPost with + | none => + -- Sanity check + if ¬ ids.isEmpty then + return (.Error m!"Too many ids provided ({ids}): there is no postcondition to split") + else return .Ok + | some hPost => do + let rec splitPostWithIds (prevId : Name) (hPost : Expr) (ids0 : List (Option Name)) : TacticM ProgressError := do + match ids0 with + | [] => + /- We used all the user provided ids. + Split the remaining conjunctions by using fresh ids if the user + instructed to fully split the post-condition, otherwise stop -/ + if splitPost then + splitFullConjTac true hPost (λ _ => pure .Ok) + else pure .Ok + | nid :: ids => do + trace[Progress] "Splitting post: {← inferType hPost}" + -- Split + let nid ← do + match nid with + | none => mkFreshAnonPropUserName + | some nid => pure nid + trace[Progress] "\n- prevId: {prevId}\n- nid: {nid}\n- remaining ids: {ids}" + if ← isConj (← inferType hPost) then + splitConjTac hPost (some (prevId, nid)) (λ _ nhPost => splitPostWithIds nid nhPost ids) + else return (.Error m!"Too many ids provided ({ids0}) not enough conjuncts to split in the postcondition") + let curPostId := (← hPost.fvarId!.getDecl).userName + splitPostWithIds curPostId hPost ids + match res with + | .Error _ => return res -- Can we get there? We're using "return" + | .Ok => + -- Update the set of goals + let curGoals ← getUnsolvedGoals + let newGoals := mvars.map Expr.mvarId! + let newGoals ← newGoals.filterM fun mvar => not <$> mvar.isAssigned + trace[Progress] "new goals: {newGoals}" + setGoals newGoals.toList + allGoals asmTac + let newGoals ← getUnsolvedGoals + setGoals (newGoals ++ curGoals) + trace[Progress] "progress: replaced the goals" + -- + pure .Ok + +-- Small utility: if `args` is not empty, return the name of the app in the first +-- arg, if it is a const. +def getFirstArgAppName (args : Array Expr) : MetaM (Option Name) := do + if args.size = 0 then pure none + else + (args.get! 0).withApp fun f _ => do + if f.isConst then pure (some f.constName) + else pure none + +def getFirstArg (args : Array Expr) : Option Expr := do + if args.size = 0 then none + else some (args.get! 0) + +/- Helper: try to lookup a theorem and apply it, or continue with another tactic + if it fails -/ +def tryLookupApply (keep : Option Name) (ids : Array (Option Name)) (splitPost : Bool) + (asmTac : TacticM Unit) (fExpr : Expr) + (kind : String) (th : Option TheoremOrLocal) (x : TacticM Unit) : TacticM Unit := do + let res ← do + match th with + | none => + trace[Progress] "Could not find a {kind}" + pure none + | some th => do + trace[Progress] "Lookuped up {kind}: {th}" + -- Apply the theorem + let res ← do + try + let res ← progressWith fExpr th keep ids splitPost asmTac + pure (some res) + catch _ => none + match res with + | some .Ok => return () + | some (.Error msg) => throwError msg + | none => x + +-- The array of ids are identifiers to use when introducing fresh variables +def progressAsmsOrLookupTheorem (keep : Option Name) (withTh : Option TheoremOrLocal) + (ids : Array (Option Name)) (splitPost : Bool) (asmTac : TacticM Unit) : TacticM Unit := do + withMainContext do + -- Retrieve the goal + let mgoal ← Tactic.getMainGoal + let goalTy ← mgoal.getType + trace[Progress] "goal: {goalTy}" + -- Dive into the goal to lookup the theorem + let (fExpr, fName, args) ← do + withPSpec goalTy fun desc => + -- TODO: check that no quantified variables in the arguments + pure (desc.fExpr, desc.fName, desc.args) + trace[Progress] "Function: {fName}" + -- If the user provided a theorem/assumption: use it. + -- Otherwise, lookup one. + match withTh with + | some th => do + match ← progressWith fExpr th keep ids splitPost asmTac with + | .Ok => return () + | .Error msg => throwError msg + | none => + -- Try all the assumptions one by one and if it fails try to lookup a theorem. + let ctx ← Lean.MonadLCtx.getLCtx + let decls ← ctx.getDecls + for decl in decls.reverse do + trace[Progress] "Trying assumption: {decl.userName} : {decl.type}" + let res ← do try progressWith fExpr (.Local decl) keep ids splitPost asmTac catch _ => continue + match res with + | .Ok => return () + | .Error msg => throwError msg + -- It failed: try to lookup a theorem + -- TODO: use a list of theorems, and try them one by one? + trace[Progress] "No assumption succeeded: trying to lookup a theorem" + let pspec ← do + let thName ← pspecAttr.find? fName + pure (thName.map fun th => .Theorem th) + tryLookupApply keep ids splitPost asmTac fExpr "pspec theorem" pspec do + -- It failed: try to lookup a *class* expr spec theorem (those are more + -- specific than class spec theorems) + let pspecClassExpr ← do + match getFirstArg args with + | none => pure none + | some arg => do + let thName ← pspecClassExprAttr.find? fName arg + pure (thName.map fun th => .Theorem th) + tryLookupApply keep ids splitPost asmTac fExpr "pspec class expr theorem" pspecClassExpr do + -- It failed: try to lookup a *class* spec theorem + let pspecClass ← do + match ← getFirstArgAppName args with + | none => pure none + | some argName => do + let thName ← pspecClassAttr.find? fName argName + pure (thName.map fun th => .Theorem th) + tryLookupApply keep ids splitPost asmTac fExpr "pspec class theorem" pspecClass do + -- Try a recursive call - we try the assumptions of kind "auxDecl" + let ctx ← Lean.MonadLCtx.getLCtx + let decls ← ctx.getAllDecls + let decls := decls.filter (λ decl => match decl.kind with + | .default | .implDetail => false | .auxDecl => true) + for decl in decls.reverse do + trace[Progress] "Trying recursive assumption: {decl.userName} : {decl.type}" + let res ← do try progressWith fExpr (.Local decl) keep ids splitPost asmTac catch _ => continue + match res with + | .Ok => return () + | .Error msg => throwError msg + -- Nothing worked: failed + throwError "Progress failed" + +syntax progressArgs := ("keep" (ident <|> "_"))? ("with" ident)? ("as" " ⟨ " (ident <|> "_"),* " .."? " ⟩")? + +def evalProgress (args : TSyntax `Progress.progressArgs) : TacticM Unit := do + let args := args.raw + -- Process the arguments to retrieve the identifiers to use + trace[Progress] "Progress arguments: {args}" + let (keepArg, withArg, asArgs) ← + match args.getArgs.toList with + | [keepArg, withArg, asArgs] => do pure (keepArg, withArg, asArgs) + | _ => throwError "Unexpected: invalid arguments" + let keep : Option Name ← do + trace[Progress] "Keep arg: {keepArg}" + let args := keepArg.getArgs + if args.size > 0 then do + trace[Progress] "Keep args: {args}" + let arg := args.get! 1 + trace[Progress] "Keep arg: {arg}" + if arg.isIdent then pure (some arg.getId) + else do pure (some (← mkFreshAnonPropUserName)) + else do pure none + trace[Progress] "Keep: {keep}" + let withArg ← do + let withArg := withArg.getArgs + if withArg.size > 0 then + let id := withArg.get! 1 + trace[Progress] "With arg: {id}" + -- Attempt to lookup a local declaration + match (← getLCtx).findFromUserName? id.getId with + | some decl => do + trace[Progress] "With arg: local decl" + pure (some (.Local decl)) + | none => do + -- Not a local declaration: should be a theorem + trace[Progress] "With arg: theorem" + addCompletionInfo <| CompletionInfo.id id id.getId (danglingDot := false) {} none + let cs ← resolveGlobalConstWithInfos id + match cs with + | [] => throwError "Could not find theorem {id}" + | id :: _ => + pure (some (.Theorem id)) + else pure none + let ids := + let args := asArgs.getArgs + let args := (args.get! 2).getSepArgs + args.map (λ s => if s.isIdent then some s.getId else none) + trace[Progress] "User-provided ids: {ids}" + let splitPost : Bool := + let args := asArgs.getArgs + (args.get! 3).getArgs.size > 0 + trace[Progress] "Split post: {splitPost}" + /- For scalarTac we have a fast track: if the goal is not a linear + arithmetic goal, we skip (note that otherwise, scalarTac would try + to prove a contradiction) -/ + let scalarTac : TacticM Unit := do + if ← Arith.goalIsLinearInt then + -- Also: we don't try to split the goal if it is a conjunction + -- (it shouldn't be) + Arith.scalarTac false + else + throwError "Not a linear arithmetic goal" + progressAsmsOrLookupTheorem keep withArg ids splitPost ( + withMainContext do + trace[Progress] "trying to solve assumption: {← getMainGoal}" + firstTac [assumptionTac, scalarTac]) + trace[Diverge] "Progress done" + +elab "progress" args:progressArgs : tactic => + evalProgress args + +namespace Test + open Primitives Result + + set_option trace.Progress true + set_option pp.rawOnError true + + #eval showStoredPSpec + #eval showStoredPSpecClass + + example {ty} {x y : Scalar ty} + (hmin : Scalar.min ty ≤ x.val + y.val) + (hmax : x.val + y.val ≤ Scalar.max ty) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + progress keep _ as ⟨ z, h1 .. ⟩ + simp [*, h1] + + example {ty} {x y : Scalar ty} + (hmin : Scalar.min ty ≤ x.val + y.val) + (hmax : x.val + y.val ≤ Scalar.max ty) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + progress keep h with Scalar.add_spec as ⟨ z ⟩ + simp [*, h] + + /- Checking that universe instantiation works: the original spec uses + `α : Type u` where u is quantified, while here we use `α : Type 0` -/ + example {α : Type} (v: Vec α) (i: Usize) (x : α) + (hbounds : i.val < v.length) : + ∃ nv, v.index_mut_back α i x = ret nv ∧ + nv.val = v.val.update i.val x := by + progress + simp [*] + +end Test + +end Progress diff --git a/backends/lean/Base/Utils.lean b/backends/lean/Base/Utils.lean new file mode 100644 index 00000000..1f8f1455 --- /dev/null +++ b/backends/lean/Base/Utils.lean @@ -0,0 +1,640 @@ +import Lean +import Mathlib.Tactic.Core +import Mathlib.Tactic.LeftRight +import Base.UtilsBase + +/- +Mathlib tactics: +- rcases: https://leanprover-community.github.io/mathlib_docs/tactics.html#rcases +- split_ifs: https://leanprover-community.github.io/mathlib_docs/tactics.html#split_ifs +- norm_num: https://leanprover-community.github.io/mathlib_docs/tactics.html#norm_num +- should we use linarith or omega? +- hint: https://leanprover-community.github.io/mathlib_docs/tactics.html#hint +- classical: https://leanprover-community.github.io/mathlib_docs/tactics.html#classical +-/ + +/- +TODO: +- we want an easier to use cases: + - keeps in the goal an equation of the shape: `t = case` + - if called on Prop terms, uses Classical.em + Actually, the cases from mathlib seems already quite powerful + (https://leanprover-community.github.io/mathlib_docs/tactics.html#cases) + For instance: cases h : e + Also: **casesm** +- better split tactic +- we need conversions to operate on the head of applications. + Actually, something like this works: + ``` + conv at Hl => + apply congr_fun + simp [fix_fuel_P] + ``` + Maybe we need a rpt ... ; focus? +- simplifier/rewriter have a strange behavior sometimes +-/ + + +namespace List + + -- TODO: I could not find this function?? + @[simp] def flatten {a : Type u} : List (List a) → List a + | [] => [] + | x :: ls => x ++ flatten ls + +end List + +-- TODO: move? +@[simp] +theorem neq_imp {α : Type u} {x y : α} (h : ¬ x = y) : ¬ y = x := by intro; simp_all + +namespace Lean + +namespace LocalContext + + open Lean Lean.Elab Command Term Lean.Meta + + -- Small utility: return the list of declarations in the context, from + -- the last to the first. + def getAllDecls (lctx : Lean.LocalContext) : MetaM (List Lean.LocalDecl) := + lctx.foldrM (fun d ls => do let d ← instantiateLocalDeclMVars d; pure (d :: ls)) [] + + -- Return the list of declarations in the context, but filter the + -- declarations which are considered as implementation details + def getDecls (lctx : Lean.LocalContext) : MetaM (List Lean.LocalDecl) := do + let ls ← lctx.getAllDecls + pure (ls.filter (fun d => not d.isImplementationDetail)) + +end LocalContext + +end Lean + +namespace Utils + +open Lean Elab Term Meta Tactic + +-- Useful helper to explore definitions and figure out the variant +-- of their sub-expressions. +def explore_term (incr : String) (e : Expr) : MetaM Unit := + match e with + | .bvar _ => do logInfo m!"{incr}bvar: {e}"; return () + | .fvar _ => do logInfo m!"{incr}fvar: {e}"; return () + | .mvar _ => do logInfo m!"{incr}mvar: {e}"; return () + | .sort _ => do logInfo m!"{incr}sort: {e}"; return () + | .const _ _ => do logInfo m!"{incr}const: {e}"; return () + | .app fn arg => do + logInfo m!"{incr}app: {e}" + explore_term (incr ++ " ") fn + explore_term (incr ++ " ") arg + | .lam _bName bTy body _binfo => do + logInfo m!"{incr}lam: {e}" + explore_term (incr ++ " ") bTy + explore_term (incr ++ " ") body + | .forallE _bName bTy body _bInfo => do + logInfo m!"{incr}forallE: {e}" + explore_term (incr ++ " ") bTy + explore_term (incr ++ " ") body + | .letE _dName ty val body _nonDep => do + logInfo m!"{incr}letE: {e}" + explore_term (incr ++ " ") ty + explore_term (incr ++ " ") val + explore_term (incr ++ " ") body + | .lit _ => do logInfo m!"{incr}lit: {e}"; return () + | .mdata _ e => do + logInfo m!"{incr}mdata: {e}" + explore_term (incr ++ " ") e + | .proj _ _ struct => do + logInfo m!"{incr}proj: {e}" + explore_term (incr ++ " ") struct + +def explore_decl (n : Name) : TermElabM Unit := do + logInfo m!"Name: {n}" + let env ← getEnv + let decl := env.constants.find! n + match decl with + | .defnInfo val => + logInfo m!"About to explore defn: {decl.name}" + logInfo m!"# Type:" + explore_term "" val.type + logInfo m!"# Value:" + explore_term "" val.value + | .axiomInfo _ => throwError m!"axiom: {n}" + | .thmInfo _ => throwError m!"thm: {n}" + | .opaqueInfo _ => throwError m!"opaque: {n}" + | .quotInfo _ => throwError m!"quot: {n}" + | .inductInfo _ => throwError m!"induct: {n}" + | .ctorInfo _ => throwError m!"ctor: {n}" + | .recInfo _ => throwError m!"rec: {n}" + +syntax (name := printDecl) "print_decl " ident : command + +open Lean.Elab.Command + +@[command_elab printDecl] def elabPrintDecl : CommandElab := fun stx => do + liftTermElabM do + let id := stx[1] + addCompletionInfo <| CompletionInfo.id id id.getId (danglingDot := false) {} none + let cs ← resolveGlobalConstWithInfos id + explore_decl cs[0]! + +private def test1 : Nat := 0 +private def test2 (x : Nat) : Nat := x +print_decl test1 +print_decl test2 + +def printDecls (decls : List LocalDecl) : MetaM Unit := do + let decls ← decls.foldrM (λ decl msg => do + pure (m!"\n{decl.toExpr} : {← inferType decl.toExpr}" ++ msg)) m!"" + logInfo m!"# Ctx decls:{decls}" + +-- Small utility: print all the declarations in the context (including the "implementation details") +elab "print_all_ctx_decls" : tactic => do + let ctx ← Lean.MonadLCtx.getLCtx + let decls ← ctx.getAllDecls + printDecls decls + +-- Small utility: print all declarations in the context +elab "print_ctx_decls" : tactic => do + let ctx ← Lean.MonadLCtx.getLCtx + let decls ← ctx.getDecls + printDecls decls + +-- A map visitor function for expressions (adapted from `AbstractNestedProofs.visit`) +-- The continuation takes as parameters: +-- - the current depth of the expression (useful for printing/debugging) +-- - the expression to explore +partial def mapVisit (k : Nat → Expr → MetaM Expr) (e : Expr) : MetaM Expr := do + let mapVisitBinders (xs : Array Expr) (k2 : MetaM Expr) : MetaM Expr := do + let localInstances ← getLocalInstances + let mut lctx ← getLCtx + for x in xs do + let xFVarId := x.fvarId! + let localDecl ← xFVarId.getDecl + let type ← mapVisit k localDecl.type + let localDecl := localDecl.setType type + let localDecl ← match localDecl.value? with + | some value => let value ← mapVisit k value; pure <| localDecl.setValue value + | none => pure localDecl + lctx :=lctx.modifyLocalDecl xFVarId fun _ => localDecl + withLCtx lctx localInstances k2 + -- TODO: use a cache? (Lean.checkCache) + let rec visit (i : Nat) (e : Expr) : MetaM Expr := do + -- Explore + let e ← k i e + match e with + | .bvar _ + | .fvar _ + | .mvar _ + | .sort _ + | .lit _ + | .const _ _ => pure e + | .app .. => do e.withApp fun f args => return mkAppN f (← args.mapM (visit (i + 1))) + | .lam .. => + lambdaLetTelescope e fun xs b => + mapVisitBinders xs do mkLambdaFVars xs (← visit (i + 1) b) (usedLetOnly := false) + | .forallE .. => do + forallTelescope e fun xs b => mapVisitBinders xs do mkForallFVars xs (← visit (i + 1) b) + | .letE .. => do + lambdaLetTelescope e fun xs b => mapVisitBinders xs do + mkLambdaFVars xs (← visit (i + 1) b) (usedLetOnly := false) + | .mdata _ b => return e.updateMData! (← visit (i + 1) b) + | .proj _ _ b => return e.updateProj! (← visit (i + 1) b) + visit 0 e + +-- Generate a fresh user name for an anonymous proposition to introduce in the +-- assumptions +def mkFreshAnonPropUserName := mkFreshUserName `_ + +section Methods + variable [MonadLiftT MetaM m] [MonadControlT MetaM m] [Monad m] [MonadError m] + variable {a : Type} + + /- Like `lambdaTelescopeN` but only destructs a fixed number of lambdas -/ + def lambdaTelescopeN (e : Expr) (n : Nat) (k : Array Expr → Expr → m a) : m a := + lambdaTelescope e fun xs body => do + if xs.size < n then throwError "lambdaTelescopeN: not enough lambdas" + let xs := xs.extract 0 n + let ys := xs.extract n xs.size + let body ← liftMetaM (mkLambdaFVars ys body) + k xs body + + /- Like `lambdaTelescope`, but only destructs one lambda + TODO: is there an equivalent of this function somewhere in the + standard library? -/ + def lambdaOne (e : Expr) (k : Expr → Expr → m a) : m a := + lambdaTelescopeN e 1 λ xs b => k (xs.get! 0) b + + def isExists (e : Expr) : Bool := e.getAppFn.isConstOf ``Exists ∧ e.getAppNumArgs = 2 + + -- Remark: Lean doesn't find the inhabited and nonempty instances if we don' + -- put them explicitely in the signature + partial def existsTelescopeProcess [Inhabited (m a)] [Nonempty (m a)] + (fvars : Array Expr) (e : Expr) (k : Array Expr → Expr → m a) : m a := do + -- Attempt to deconstruct an existential + if isExists e then do + let p := e.appArg! + lambdaOne p fun x ne => + existsTelescopeProcess (fvars.push x) ne k + else + -- No existential: call the continuation + k fvars e + + def existsTelescope [Inhabited (m a)] [Nonempty (m a)] (e : Expr) (k : Array Expr → Expr → m a) : m a := do + existsTelescopeProcess #[] e k + +end Methods + +-- TODO: this should take a continuation +def addDeclTac (name : Name) (val : Expr) (type : Expr) (asLet : Bool) : TacticM Expr := + -- I don't think we need that + withMainContext do + -- Insert the new declaration + let withDecl := if asLet then withLetDecl name type val else withLocalDeclD name type + withDecl fun nval => do + -- For debugging + let lctx ← Lean.MonadLCtx.getLCtx + let fid := nval.fvarId! + let decl := lctx.get! fid + trace[Arith] " new decl: \"{decl.userName}\" ({nval}) : {decl.type} := {decl.value}" + -- + -- Tranform the main goal `?m0` to `let x = nval in ?m1` + let mvarId ← getMainGoal + let newMVar ← mkFreshExprSyntheticOpaqueMVar (← mvarId.getType) + let newVal ← mkLetFVars #[nval] newMVar + -- There are two cases: + -- - asLet is true: newVal is `let $name := $val in $newMVar` + -- - asLet is false: ewVal is `λ $name => $newMVar` + -- We need to apply it to `val` + let newVal := if asLet then newVal else mkAppN newVal #[val] + -- Assign the main goal and update the current goal + mvarId.assign newVal + let goals ← getUnsolvedGoals + setGoals (newMVar.mvarId! :: goals) + -- Return the new value - note: we are in the *new* context, created + -- after the declaration was added, so it will persist + pure nval + +def addDeclTacSyntax (name : Name) (val : Syntax) (asLet : Bool) : TacticM Unit := + -- I don't think we need that + withMainContext do + -- + let val ← Term.elabTerm val .none + let type ← inferType val + -- In some situations, the type will be left as a metavariable (for instance, + -- if the term is `3`, Lean has the choice between `Nat` and `Int` and will + -- not choose): we force the instantiation of the meta-variable + synthesizeSyntheticMVarsUsingDefault + -- + let _ ← addDeclTac name val type asLet + +elab "custom_let " n:ident " := " v:term : tactic => do + addDeclTacSyntax n.getId v (asLet := true) + +elab "custom_have " n:ident " := " v:term : tactic => + addDeclTacSyntax n.getId v (asLet := false) + +example : Nat := by + custom_let x := 4 + custom_have y := 4 + apply y + +example (x : Bool) : Nat := by + cases x <;> custom_let x := 3 <;> apply x + +-- Repeatedly apply a tactic +partial def repeatTac (tac : TacticM Unit) : TacticM Unit := do + try + tac + allGoals (focus (repeatTac tac)) + -- TODO: does this restore the state? + catch _ => pure () + +def firstTac (tacl : List (TacticM Unit)) : TacticM Unit := do + match tacl with + | [] => pure () + | tac :: tacl => + -- Should use try ... catch or Lean.observing? + -- Generally speaking we should use Lean.observing? to restore the state, + -- but with tactics the try ... catch variant seems to work + try do + tac + -- Check that there are no remaining goals + let gl ← Tactic.getUnsolvedGoals + if ¬ gl.isEmpty then throwError "tactic failed" + catch _ => firstTac tacl +/- let res ← Lean.observing? do + tac + -- Check that there are no remaining goals + let gl ← Tactic.getUnsolvedGoals + if ¬ gl.isEmpty then throwError "tactic failed" + match res with + | some _ => pure () + | none => firstTac tacl -/ + +-- Taken from Lean.Elab.evalAssumption +def assumptionTac : TacticM Unit := + liftMetaTactic fun mvarId => do mvarId.assumption; pure [] + +def isConj (e : Expr) : MetaM Bool := + e.consumeMData.withApp fun f args => pure (f.isConstOf ``And ∧ args.size = 2) + +-- Return the first conjunct if the expression is a conjunction, or the +-- expression itself otherwise. Also return the second conjunct if it is a +-- conjunction. +def optSplitConj (e : Expr) : MetaM (Expr × Option Expr) := do + e.consumeMData.withApp fun f args => + if f.isConstOf ``And ∧ args.size = 2 then pure (args.get! 0, some (args.get! 1)) + else pure (e, none) + +-- Split the goal if it is a conjunction +def splitConjTarget : TacticM Unit := do + withMainContext do + let g ← getMainTarget + trace[Utils] "splitConjTarget: goal: {g}" + -- The tactic was initially implemened with `_root_.Lean.MVarId.apply` + -- but it tended to mess the goal by unfolding terms, even when it failed + let (l, r) ← optSplitConj g + match r with + | none => do throwError "The goal is not a conjunction" + | some r => do + let lmvar ← mkFreshExprSyntheticOpaqueMVar l + let rmvar ← mkFreshExprSyntheticOpaqueMVar r + let and_intro ← mkAppM ``And.intro #[lmvar, rmvar] + let g ← getMainGoal + g.assign and_intro + let goals ← getUnsolvedGoals + setGoals (lmvar.mvarId! :: rmvar.mvarId! :: goals) + +-- Destruct an equaliy and return the two sides +def destEq (e : Expr) : MetaM (Expr × Expr) := do + e.withApp fun f args => + if f.isConstOf ``Eq ∧ args.size = 3 then pure (args.get! 1, args.get! 2) + else throwError "Not an equality: {e}" + +-- Return the set of FVarIds in the expression +partial def getFVarIds (e : Expr) (hs : HashSet FVarId := HashSet.empty) : MetaM (HashSet FVarId) := do + e.withApp fun body args => do + let hs := if body.isFVar then hs.insert body.fvarId! else hs + args.foldlM (fun hs arg => getFVarIds arg hs) hs + +-- Tactic to split on a disjunction. +-- The expression `h` should be an fvar. +-- TODO: there must be simpler. Use use _root_.Lean.MVarId.cases for instance +def splitDisjTac (h : Expr) (kleft kright : TacticM Unit) : TacticM Unit := do + trace[Arith] "assumption on which to split: {h}" + -- Retrieve the main goal + withMainContext do + let goalType ← getMainTarget + let hDecl := (← getLCtx).get! h.fvarId! + let hName := hDecl.userName + -- Case disjunction + let hTy ← inferType h + hTy.withApp fun f xs => do + trace[Arith] "as app: {f} {xs}" + -- Sanity check + if ¬ (f.isConstOf ``Or ∧ xs.size = 2) then throwError "Invalid argument to splitDisjTac" + let a := xs.get! 0 + let b := xs.get! 1 + -- Introduce the new goals + -- Returns: + -- - the match branch + -- - a fresh new mvar id + let mkGoal (hTy : Expr) (nGoalName : String) : MetaM (Expr × MVarId) := do + -- Introduce a variable for the assumption (`a` or `b`). Note that we reuse + -- the name of the assumption we split. + withLocalDeclD hName hTy fun var => do + -- The new goal + let mgoal ← mkFreshExprSyntheticOpaqueMVar goalType (tag := Name.mkSimple nGoalName) + -- Clear the assumption that we split + let mgoal ← mgoal.mvarId!.tryClearMany #[h.fvarId!] + -- The branch expression + let branch ← mkLambdaFVars #[var] (mkMVar mgoal) + pure (branch, mgoal) + let (inl, mleft) ← mkGoal a "left" + let (inr, mright) ← mkGoal b "right" + trace[Arith] "left: {inl}: {mleft}" + trace[Arith] "right: {inr}: {mright}" + -- Create the match expression + withLocalDeclD (← mkFreshAnonPropUserName) hTy fun hVar => do + let motive ← mkLambdaFVars #[hVar] goalType + let casesExpr ← mkAppOptM ``Or.casesOn #[a, b, motive, h, inl, inr] + let mgoal ← getMainGoal + trace[Arith] "goals: {← getUnsolvedGoals}" + trace[Arith] "main goal: {mgoal}" + mgoal.assign casesExpr + let goals ← getUnsolvedGoals + -- Focus on the left + setGoals [mleft] + withMainContext kleft + let leftGoals ← getUnsolvedGoals + -- Focus on the right + setGoals [mright] + withMainContext kright + let rightGoals ← getUnsolvedGoals + -- Put all the goals back + setGoals (leftGoals ++ rightGoals ++ goals) + trace[Arith] "new goals: {← getUnsolvedGoals}" + +elab "split_disj " n:ident : tactic => do + withMainContext do + let decl ← Lean.Meta.getLocalDeclFromUserName n.getId + let fvar := mkFVar decl.fvarId + splitDisjTac fvar (fun _ => pure ()) (fun _ => pure ()) + +example (x y : Int) (h0 : x ≤ y ∨ x ≥ y) : x ≤ y ∨ x ≥ y := by + split_disj h0 + . left; assumption + . right; assumption + + +-- Tactic to split on an exists. +-- `h` must be an FVar +def splitExistsTac (h : Expr) (optId : Option Name) (k : Expr → Expr → TacticM α) : TacticM α := do + withMainContext do + let goal ← getMainGoal + let hTy ← inferType h + if isExists hTy then do + -- Try to use the user-provided names + let altVarNames ← do + let hDecl ← h.fvarId!.getDecl + let id ← do + match optId with + | none => mkFreshUserName `x + | some id => pure id + pure #[{ varNames := [id, hDecl.userName] }] + let newGoals ← goal.cases h.fvarId! altVarNames + -- There should be exactly one goal + match newGoals.toList with + | [ newGoal ] => + -- Set the new goal + let goals ← getUnsolvedGoals + setGoals (newGoal.mvarId :: goals) + -- There should be exactly two fields + let fields := newGoal.fields + withMainContext do + k (fields.get! 0) (fields.get! 1) + | _ => + throwError "Unreachable" + else + throwError "Not a conjunction" + +-- TODO: move +def listTryPopHead (ls : List α) : Option α × List α := + match ls with + | [] => (none, ls) + | hd :: tl => (some hd, tl) + +/- Destruct all the existentials appearing in `h`, and introduce them as variables + in the context. + + If `ids` is not empty, we use it to name the introduced variables. We + transmit the stripped expression and the remaining ids to the continuation. + -/ +partial def splitAllExistsTac [Inhabited α] (h : Expr) (ids : List (Option Name)) (k : Expr → List (Option Name) → TacticM α) : TacticM α := do + try + let (optId, ids) := + match ids with + | [] => (none, []) + | x :: ids => (x, ids) + splitExistsTac h optId (fun _ body => splitAllExistsTac body ids k) + catch _ => k h ids + +-- Tactic to split on a conjunction. +def splitConjTac (h : Expr) (optIds : Option (Name × Name)) (k : Expr → Expr → TacticM α) : TacticM α := do + withMainContext do + let goal ← getMainGoal + let hTy ← inferType h + if ← isConj hTy then do + -- Try to use the user-provided names + let altVarNames ← + match optIds with + | none => do + let id0 ← mkFreshAnonPropUserName + let id1 ← mkFreshAnonPropUserName + pure #[{ varNames := [id0, id1] }] + | some (id0, id1) => do + pure #[{ varNames := [id0, id1] }] + let newGoals ← goal.cases h.fvarId! altVarNames + -- There should be exactly one goal + match newGoals.toList with + | [ newGoal ] => + -- Set the new goal + let goals ← getUnsolvedGoals + setGoals (newGoal.mvarId :: goals) + -- There should be exactly two fields + let fields := newGoal.fields + withMainContext do + k (fields.get! 0) (fields.get! 1) + | _ => + throwError "Unreachable" + else + throwError "Not a conjunction" + +-- Tactic to fully split a conjunction +partial def splitFullConjTacAux [Inhabited α] [Nonempty α] (keepCurrentName : Bool) (l : List Expr) (h : Expr) (k : List Expr → TacticM α) : TacticM α := do + try + let ids ← do + if keepCurrentName then do + let cur := (← h.fvarId!.getDecl).userName + let nid ← mkFreshAnonPropUserName + pure (some (cur, nid)) + else + pure none + splitConjTac h ids (λ h1 h2 => + splitFullConjTacAux keepCurrentName l h1 (λ l1 => + splitFullConjTacAux keepCurrentName l1 h2 (λ l2 => + k l2))) + catch _ => + k (h :: l) + +-- Tactic to fully split a conjunction +-- `keepCurrentName`: if `true`, then the first conjunct has the name of the original assumption +def splitFullConjTac [Inhabited α] [Nonempty α] (keepCurrentName : Bool) (h : Expr) (k : List Expr → TacticM α) : TacticM α := do + splitFullConjTacAux keepCurrentName [] h (λ l => k l.reverse) + +syntax optAtArgs := ("at" ident)? +def elabOptAtArgs (args : TSyntax `Utils.optAtArgs) : TacticM (Option Expr) := do + withMainContext do + let args := (args.raw.getArgs.get! 0).getArgs + if args.size > 0 then do + let n := (args.get! 1).getId + let decl ← Lean.Meta.getLocalDeclFromUserName n + let fvar := mkFVar decl.fvarId + pure (some fvar) + else + pure none + +elab "split_conj" args:optAtArgs : tactic => do + withMainContext do + match ← elabOptAtArgs args with + | some fvar => do + trace[Utils] "split at {fvar}" + splitConjTac fvar none (fun _ _ => pure ()) + | none => do + trace[Utils] "split goal" + splitConjTarget + +elab "split_conjs" args:optAtArgs : tactic => do + withMainContext do + match ← elabOptAtArgs args with + | some fvar => + trace[Utils] "split at {fvar}" + splitFullConjTac false fvar (fun _ => pure ()) + | none => + trace[Utils] "split goal" + repeatTac splitConjTarget + +elab "split_existsl" " at " n:ident : tactic => do + withMainContext do + let decl ← Lean.Meta.getLocalDeclFromUserName n.getId + let fvar := mkFVar decl.fvarId + splitAllExistsTac fvar [] (fun _ _ => pure ()) + +example (h : a ∧ b) : a := by + split_existsl at h + split_conj at h + assumption + +example (h : ∃ x y z, x + y + z ≥ 0) : ∃ x, x ≥ 0 := by + split_existsl at h + rename_i x y z + exists x + y + z + +/- Call the simp tactic. + The initialization of the context is adapted from Tactic.elabSimpArgs. + Something very annoying is that there is no function which allows to + initialize a simp context without doing an elaboration - as a consequence + we write our own here. -/ +def simpAt (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId) + (loc : Tactic.Location) : + Tactic.TacticM Unit := do + -- Initialize with the builtin simp theorems + let simpThms ← Tactic.simpOnlyBuiltins.foldlM (·.addConst ·) ({} : SimpTheorems) + -- Add the equational theorem for the declarations to unfold + let simpThms ← + declsToUnfold.foldlM (fun thms decl => thms.addDeclToUnfold decl) simpThms + -- Add the hypotheses and the rewriting theorems + let simpThms ← + hypsToUse.foldlM (fun thms fvarId => + -- post: TODO: don't know what that is + -- inv: invert the equality + thms.add (.fvar fvarId) #[] (mkFVar fvarId) (post := false) (inv := false) + -- thms.eraseCore (.fvar fvar) + ) simpThms + -- Add the rewriting theorems to use + let simpThms ← + thms.foldlM (fun thms thmName => do + let info ← getConstInfo thmName + if (← isProp info.type) then + -- post: TODO: don't know what that is + -- inv: invert the equality + thms.addConst thmName (post := false) (inv := false) + else + throwError "Not a proposition: {thmName}" + ) simpThms + let congrTheorems ← getSimpCongrTheorems + let ctx : Simp.Context := { simpTheorems := #[simpThms], congrTheorems } + -- Apply the simplifier + let _ ← Tactic.simpLocation ctx (discharge? := .none) loc + +end Utils |