diff options
Diffstat (limited to 'backends/lean/Base/Primitives')
-rw-r--r-- | backends/lean/Base/Primitives/Scalar.lean | 137 |
1 files changed, 130 insertions, 7 deletions
diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean index aaa4027f..1e9b51c2 100644 --- a/backends/lean/Base/Primitives/Scalar.lean +++ b/backends/lean/Base/Primitives/Scalar.lean @@ -438,7 +438,7 @@ instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where hMod x y := Scalar.rem x y --- TODO: make progress work at a more fine grained level (see `Scalar.add_unsigned_spec`) +-- Generic theorem - shouldn't be used much @[cpspec] theorem Scalar.add_spec {ty} {x y : Scalar ty} (hmin : Scalar.min ty ≤ x.val + y.val) @@ -460,7 +460,32 @@ theorem Scalar.add_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} cases ty <;> simp [min] at * <;> linarith apply add_spec <;> assumption --- TODO: make it finer grained +/- Fine-grained theorems -/ +@[cepspec] theorem Usize.add_spec {x y : Usize} (hmax : x.val + y.val ≤ Usize.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U8.add_spec {x y : U8} (hmax : x.val + y.val ≤ U8.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U16.add_spec {x y : U16} (hmax : x.val + y.val ≤ U16.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U32.add_spec {x y : U32} (hmax : x.val + y.val ≤ U32.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U64.add_spec {x y : U64} (hmax : x.val + y.val ≤ U64.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U128.add_spec {x y : U128} (hmax : x.val + y.val ≤ U128.max) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + +-- Generic theorem - shouldn't be used much @[cpspec] theorem Scalar.sub_spec {ty} {x y : Scalar ty} (hmin : Scalar.min ty ≤ x.val - y.val) @@ -484,8 +509,32 @@ theorem Scalar.sub_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} intros apply sub_spec <;> assumption --- TODO: make it finer grained -@[cpspec] +/- Fine-grained theorems -/ +@[cepspec] theorem Usize.sub_spec {x y : Usize} (hmin : Usize.min ≤ x.val - y.val) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by + apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + +@[cepspec] theorem U8.sub_spec {x y : U8} (hmin : U8.min ≤ x.val - y.val) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by + apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + +@[cepspec] theorem U16.sub_spec {x y : U16} (hmin : U16.min ≤ x.val - y.val) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by + apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + +@[cepspec] theorem U32.sub_spec {x y : U32} (hmin : U32.min ≤ x.val - y.val) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by + apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + +@[cepspec] theorem U64.sub_spec {x y : U64} (hmin : U64.min ≤ x.val - y.val) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by + apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + +@[cepspec] theorem U128.sub_spec {x y : U128} (hmin : U128.min ≤ x.val - y.val) : + ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by + apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + +-- Generic theorem - shouldn't be used much theorem Scalar.mul_spec {ty} {x y : Scalar ty} (hmin : Scalar.min ty ≤ x.val * y.val) (hmax : x.val * y.val ≤ Scalar.max ty) : @@ -506,7 +555,32 @@ theorem Scalar.mul_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} cases ty <;> simp at * <;> apply mul_nonneg hx hy apply mul_spec <;> assumption --- TODO: make it finer grained +/- Fine-grained theorems -/ +@[cepspec] theorem Usize.mul_spec {x y : Usize} (hmax : x.val * y.val ≤ Usize.max) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by + apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U8.mul_spec {x y : U8} (hmax : x.val * y.val ≤ U8.max) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by + apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U16.mul_spec {x y : U16} (hmax : x.val * y.val ≤ U16.max) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by + apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U32.mul_spec {x y : U32} (hmax : x.val * y.val ≤ U32.max) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by + apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U64.mul_spec {x y : U64} (hmax : x.val * y.val ≤ U64.max) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by + apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + +@[cepspec] theorem U128.mul_spec {x y : U128} (hmax : x.val * y.val ≤ U128.max) : + ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by + apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + +-- Generic theorem - shouldn't be used much @[cpspec] theorem Scalar.div_spec {ty} {x y : Scalar ty} (hnz : y.val ≠ 0) @@ -534,7 +608,32 @@ theorem Scalar.div_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : S simp [*] at hs apply hs --- TODO: make it finer grained +/- Fine-grained theorems -/ +@[cepspec] theorem Usize.div_spec (x : Usize) {y : Usize} (hnz : y.val ≠ 0) : + ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by + apply Scalar.div_unsigned_spec <;> simp [*] + +@[cepspec] theorem U8.div_spec (x : U8) {y : U8} (hnz : y.val ≠ 0) : + ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by + apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + +@[cepspec] theorem U16.div_spec (x : U16) {y : U16} (hnz : y.val ≠ 0) : + ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by + apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + +@[cepspec] theorem U32.div_spec (x : U32) {y : U32} (hnz : y.val ≠ 0) : + ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by + apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + +@[cepspec] theorem U64.div_spec (x : U64) {y : U64} (hnz : y.val ≠ 0) : + ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by + apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + +@[cepspec] theorem U128.div_spec (x : U128) {y : U128} (hnz : y.val ≠ 0) : + ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by + apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + +-- Generic theorem - shouldn't be used much @[cpspec] theorem Scalar.rem_spec {ty} {x y : Scalar ty} (hnz : y.val ≠ 0) @@ -548,7 +647,7 @@ theorem Scalar.rem_spec {ty} {x y : Scalar ty} theorem Scalar.rem_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : Scalar ty} (hnz : y.val ≠ 0) : - ∃ z, x % y = ret z ∧ z.val = scalar_rem x.val y.val := by + ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by have h : Scalar.min ty = 0 := by cases ty <;> simp at * have hx := x.hmin have hy := y.hmin @@ -565,6 +664,30 @@ theorem Scalar.rem_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : S simp [*] at hs simp [*] +@[cepspec] theorem Usize.rem_spec (x : Usize) {y : Usize} (hnz : y.val ≠ 0) : + ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by + apply Scalar.rem_unsigned_spec <;> simp [*] + +@[cepspec] theorem U8.rem_spec (x : U8) {y : U8} (hnz : y.val ≠ 0) : + ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by + apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + +@[cepspec] theorem U16.rem_spec (x : U16) {y : U16} (hnz : y.val ≠ 0) : + ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by + apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + +@[cepspec] theorem U32.rem_spec (x : U32) {y : U32} (hnz : y.val ≠ 0) : + ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by + apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + +@[cepspec] theorem U64.rem_spec (x : U64) {y : U64} (hnz : y.val ≠ 0) : + ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by + apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + +@[cepspec] theorem U128.rem_spec (x : U128) {y : U128} (hnz : y.val ≠ 0) : + ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by + apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + -- ofIntCore -- TODO: typeclass? def Isize.ofIntCore := @Scalar.ofIntCore .Isize |