summaryrefslogtreecommitdiff
path: root/backends/lean/Base/Primitives
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--backends/lean/Base/Primitives.lean3
-rw-r--r--backends/lean/Base/Primitives/Base.lean130
-rw-r--r--backends/lean/Base/Primitives/Scalar.lean831
-rw-r--r--backends/lean/Base/Primitives/Vec.lean145
4 files changed, 1109 insertions, 0 deletions
diff --git a/backends/lean/Base/Primitives.lean b/backends/lean/Base/Primitives.lean
new file mode 100644
index 00000000..91823cb6
--- /dev/null
+++ b/backends/lean/Base/Primitives.lean
@@ -0,0 +1,3 @@
+import Base.Primitives.Base
+import Base.Primitives.Scalar
+import Base.Primitives.Vec
diff --git a/backends/lean/Base/Primitives/Base.lean b/backends/lean/Base/Primitives/Base.lean
new file mode 100644
index 00000000..7c0fa3bb
--- /dev/null
+++ b/backends/lean/Base/Primitives/Base.lean
@@ -0,0 +1,130 @@
+import Lean
+
+namespace Primitives
+
+--------------------
+-- ASSERT COMMAND --Std.
+--------------------
+
+open Lean Elab Command Term Meta
+
+syntax (name := assert) "#assert" term: command
+
+@[command_elab assert]
+unsafe
+def assertImpl : CommandElab := fun (_stx: Syntax) => do
+ runTermElabM (fun _ => do
+ let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
+ if not r then
+ logInfo ("Assertion failed for:\n" ++ _stx[1])
+ throwError ("Expression reduced to false:\n" ++ _stx[1])
+ pure ())
+
+#eval 2 == 2
+#assert (2 == 2)
+
+-------------
+-- PRELUDE --
+-------------
+
+-- Results & monadic combinators
+
+inductive Error where
+ | assertionFailure: Error
+ | integerOverflow: Error
+ | divisionByZero: Error
+ | arrayOutOfBounds: Error
+ | maximumSizeExceeded: Error
+ | panic: Error
+deriving Repr, BEq
+
+open Error
+
+inductive Result (α : Type u) where
+ | ret (v: α): Result α
+ | fail (e: Error): Result α
+ | div
+deriving Repr, BEq
+
+open Result
+
+instance Result_Inhabited (α : Type u) : Inhabited (Result α) :=
+ Inhabited.mk (fail panic)
+
+instance Result_Nonempty (α : Type u) : Nonempty (Result α) :=
+ Nonempty.intro div
+
+/- HELPERS -/
+
+def ret? {α: Type u} (r: Result α): Bool :=
+ match r with
+ | ret _ => true
+ | fail _ | div => false
+
+def div? {α: Type u} (r: Result α): Bool :=
+ match r with
+ | div => true
+ | ret _ | fail _ => false
+
+def massert (b:Bool) : Result Unit :=
+ if b then ret () else fail assertionFailure
+
+def eval_global {α: Type u} (x: Result α) (_: ret? x): α :=
+ match x with
+ | fail _ | div => by contradiction
+ | ret x => x
+
+/- DO-DSL SUPPORT -/
+
+def bind {α : Type u} {β : Type v} (x: Result α) (f: α → Result β) : Result β :=
+ match x with
+ | ret v => f v
+ | fail v => fail v
+ | div => div
+
+-- Allows using Result in do-blocks
+instance : Bind Result where
+ bind := bind
+
+-- Allows using return x in do-blocks
+instance : Pure Result where
+ pure := fun x => ret x
+
+@[simp] theorem bind_ret (x : α) (f : α → Result β) : bind (.ret x) f = f x := by simp [bind]
+@[simp] theorem bind_fail (x : Error) (f : α → Result β) : bind (.fail x) f = .fail x := by simp [bind]
+@[simp] theorem bind_div (f : α → Result β) : bind .div f = .div := by simp [bind]
+
+/- CUSTOM-DSL SUPPORT -/
+
+-- Let-binding the Result of a monadic operation is oftentimes not sufficient,
+-- because we may need a hypothesis for equational reasoning in the scope. We
+-- rely on subtype, and a custom let-binding operator, in effect recreating our
+-- own variant of the do-dsl
+
+def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } :=
+ match o with
+ | ret x => ret ⟨x, rfl⟩
+ | fail e => fail e
+ | div => div
+
+@[simp] theorem bind_tc_ret (x : α) (f : α → Result β) :
+ (do let y ← .ret x; f y) = f x := by simp [Bind.bind, bind]
+
+@[simp] theorem bind_tc_fail (x : Error) (f : α → Result β) :
+ (do let y ← fail x; f y) = fail x := by simp [Bind.bind, bind]
+
+@[simp] theorem bind_tc_div (f : α → Result β) :
+ (do let y ← div; f y) = div := by simp [Bind.bind, bind]
+
+----------
+-- MISC --
+----------
+
+@[simp] def mem.replace (a : Type) (x : a) (_ : a) : a := x
+@[simp] def mem.replace_back (a : Type) (_ : a) (y : a) : a := y
+
+/-- Aeneas-translated function -- useful to reduce non-recursive definitions.
+ Use with `simp [ aeneas ]` -/
+register_simp_attr aeneas
+
+end Primitives
diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean
new file mode 100644
index 00000000..2e5be8bf
--- /dev/null
+++ b/backends/lean/Base/Primitives/Scalar.lean
@@ -0,0 +1,831 @@
+import Lean
+import Lean.Meta.Tactic.Simp
+import Mathlib.Tactic.Linarith
+import Base.Primitives.Base
+import Base.Diverge.Base
+import Base.Progress.Base
+import Base.Arith.Int
+
+namespace Primitives
+
+----------------------
+-- MACHINE INTEGERS --
+----------------------
+
+-- We redefine our machine integers types.
+
+-- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits`
+-- using the simplifier, meaning that proofs do not depend on the compile-time value of
+-- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at
+-- least officially, 16-bit microcontrollers, so this seems like a fine design decision
+-- for now.)
+
+-- Note from Chris Bailey: "If there's more than one salient property of your
+-- definition then the subtyping strategy might get messy, and the property part
+-- of a subtype is less discoverable by the simplifier or tactics like
+-- library_search." So, we will not add refinements on the return values of the
+-- operations defined on Primitives, but will rather rely on custom lemmas to
+-- invert on possible return values of the primitive operations.
+
+-- Machine integer constants, done via `ofNatCore`, which requires a proof that
+-- the `Nat` fits within the desired integer type. We provide a custom tactic.
+
+open Result Error
+open System.Platform.getNumBits
+
+-- TODO: is there a way of only importing System.Platform.getNumBits?
+--
+@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val
+
+-- Remark: Lean seems to use < for the comparisons with the upper bounds by convention.
+
+-- The "structured" bounds
+def Isize.smin : Int := - (HPow.hPow 2 (size_num_bits - 1))
+def Isize.smax : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1
+def I8.smin : Int := - (HPow.hPow 2 7)
+def I8.smax : Int := HPow.hPow 2 7 - 1
+def I16.smin : Int := - (HPow.hPow 2 15)
+def I16.smax : Int := HPow.hPow 2 15 - 1
+def I32.smin : Int := -(HPow.hPow 2 31)
+def I32.smax : Int := HPow.hPow 2 31 - 1
+def I64.smin : Int := -(HPow.hPow 2 63)
+def I64.smax : Int := HPow.hPow 2 63 - 1
+def I128.smin : Int := -(HPow.hPow 2 127)
+def I128.smax : Int := HPow.hPow 2 127 - 1
+def Usize.smin : Int := 0
+def Usize.smax : Int := HPow.hPow 2 size_num_bits - 1
+def U8.smin : Int := 0
+def U8.smax : Int := HPow.hPow 2 8 - 1
+def U16.smin : Int := 0
+def U16.smax : Int := HPow.hPow 2 16 - 1
+def U32.smin : Int := 0
+def U32.smax : Int := HPow.hPow 2 32 - 1
+def U64.smin : Int := 0
+def U64.smax : Int := HPow.hPow 2 64 - 1
+def U128.smin : Int := 0
+def U128.smax : Int := HPow.hPow 2 128 - 1
+
+-- The "normalized" bounds, that we use in practice
+def I8.min : Int := -128
+def I8.max : Int := 127
+def I16.min : Int := -32768
+def I16.max : Int := 32767
+def I32.min : Int := -2147483648
+def I32.max : Int := 2147483647
+def I64.min : Int := -9223372036854775808
+def I64.max : Int := 9223372036854775807
+def I128.min : Int := -170141183460469231731687303715884105728
+def I128.max : Int := 170141183460469231731687303715884105727
+@[simp]
+def U8.min : Int := 0
+def U8.max : Int := 255
+@[simp]
+def U16.min : Int := 0
+def U16.max : Int := 65535
+@[simp]
+def U32.min : Int := 0
+def U32.max : Int := 4294967295
+@[simp]
+def U64.min : Int := 0
+def U64.max : Int := 18446744073709551615
+@[simp]
+def U128.min : Int := 0
+def U128.max : Int := 340282366920938463463374607431768211455
+@[simp]
+def Usize.min : Int := 0
+
+def Isize.refined_min : { n:Int // n = I32.min ∨ n = I64.min } :=
+ ⟨ Isize.smin, by
+ simp [Isize.smin]
+ cases System.Platform.numBits_eq <;>
+ unfold System.Platform.numBits at * <;> simp [*] ⟩
+
+def Isize.refined_max : { n:Int // n = I32.max ∨ n = I64.max } :=
+ ⟨ Isize.smax, by
+ simp [Isize.smax]
+ cases System.Platform.numBits_eq <;>
+ unfold System.Platform.numBits at * <;> simp [*] ⟩
+
+def Usize.refined_max : { n:Int // n = U32.max ∨ n = U64.max } :=
+ ⟨ Usize.smax, by
+ simp [Usize.smax]
+ cases System.Platform.numBits_eq <;>
+ unfold System.Platform.numBits at * <;> simp [*] ⟩
+
+def Isize.min := Isize.refined_min.val
+def Isize.max := Isize.refined_max.val
+def Usize.max := Usize.refined_max.val
+
+inductive ScalarTy :=
+| Isize
+| I8
+| I16
+| I32
+| I64
+| I128
+| Usize
+| U8
+| U16
+| U32
+| U64
+| U128
+
+def ScalarTy.isSigned (ty : ScalarTy) : Bool :=
+ match ty with
+ | Isize
+ | I8
+ | I16
+ | I32
+ | I64
+ | I128 => true
+ | Usize
+ | U8
+ | U16
+ | U32
+ | U64
+ | U128 => false
+
+
+def Scalar.smin (ty : ScalarTy) : Int :=
+ match ty with
+ | .Isize => Isize.smin
+ | .I8 => I8.smin
+ | .I16 => I16.smin
+ | .I32 => I32.smin
+ | .I64 => I64.smin
+ | .I128 => I128.smin
+ | .Usize => Usize.smin
+ | .U8 => U8.smin
+ | .U16 => U16.smin
+ | .U32 => U32.smin
+ | .U64 => U64.smin
+ | .U128 => U128.smin
+
+def Scalar.smax (ty : ScalarTy) : Int :=
+ match ty with
+ | .Isize => Isize.smax
+ | .I8 => I8.smax
+ | .I16 => I16.smax
+ | .I32 => I32.smax
+ | .I64 => I64.smax
+ | .I128 => I128.smax
+ | .Usize => Usize.smax
+ | .U8 => U8.smax
+ | .U16 => U16.smax
+ | .U32 => U32.smax
+ | .U64 => U64.smax
+ | .U128 => U128.smax
+
+def Scalar.min (ty : ScalarTy) : Int :=
+ match ty with
+ | .Isize => Isize.min
+ | .I8 => I8.min
+ | .I16 => I16.min
+ | .I32 => I32.min
+ | .I64 => I64.min
+ | .I128 => I128.min
+ | .Usize => Usize.min
+ | .U8 => U8.min
+ | .U16 => U16.min
+ | .U32 => U32.min
+ | .U64 => U64.min
+ | .U128 => U128.min
+
+def Scalar.max (ty : ScalarTy) : Int :=
+ match ty with
+ | .Isize => Isize.max
+ | .I8 => I8.max
+ | .I16 => I16.max
+ | .I32 => I32.max
+ | .I64 => I64.max
+ | .I128 => I128.max
+ | .Usize => Usize.max
+ | .U8 => U8.max
+ | .U16 => U16.max
+ | .U32 => U32.max
+ | .U64 => U64.max
+ | .U128 => U128.max
+
+def Scalar.smin_eq (ty : ScalarTy) : Scalar.min ty = Scalar.smin ty := by
+ cases ty <;> rfl
+
+def Scalar.smax_eq (ty : ScalarTy) : Scalar.max ty = Scalar.smax ty := by
+ cases ty <;> rfl
+
+-- "Conservative" bounds
+-- We use those because we can't compare to the isize bounds (which can't
+-- reduce at compile-time). Whenever we perform an arithmetic operation like
+-- addition we need to check that the result is in bounds: we first compare
+-- to the conservative bounds, which reduce, then compare to the real bounds.
+-- This is useful for the various #asserts that we want to reduce at
+-- type-checking time.
+def Scalar.cMin (ty : ScalarTy) : Int :=
+ match ty with
+ | .Isize => Scalar.min .I32
+ | _ => Scalar.min ty
+
+def Scalar.cMax (ty : ScalarTy) : Int :=
+ match ty with
+ | .Isize => Scalar.max .I32
+ | .Usize => Scalar.max .U32
+ | _ => Scalar.max ty
+
+theorem Scalar.cMin_bound ty : Scalar.min ty ≤ Scalar.cMin ty := by
+ cases ty <;> simp [Scalar.min, Scalar.max, Scalar.cMin, Scalar.cMax] at *
+ have h := Isize.refined_min.property
+ cases h <;> simp [*, Isize.min]
+
+theorem Scalar.cMax_bound ty : Scalar.cMax ty ≤ Scalar.max ty := by
+ cases ty <;> simp [Scalar.min, Scalar.max, Scalar.cMin, Scalar.cMax] at *
+ . have h := Isize.refined_max.property
+ cases h <;> simp [*, Isize.max]
+ . have h := Usize.refined_max.property
+ cases h <;> simp [*, Usize.max]
+
+theorem Scalar.cMin_suffices ty (h : Scalar.cMin ty ≤ x) : Scalar.min ty ≤ x := by
+ have := Scalar.cMin_bound ty
+ linarith
+
+theorem Scalar.cMax_suffices ty (h : x ≤ Scalar.cMax ty) : x ≤ Scalar.max ty := by
+ have := Scalar.cMax_bound ty
+ linarith
+
+structure Scalar (ty : ScalarTy) where
+ val : Int
+ hmin : Scalar.min ty ≤ val
+ hmax : val ≤ Scalar.max ty
+deriving Repr
+
+theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) :
+ Scalar.cMin ty ≤ x ∧ x ≤ Scalar.cMax ty ->
+ Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty
+ :=
+ λ h => by
+ apply And.intro <;> have hmin := Scalar.cMin_bound ty <;> have hmax := Scalar.cMax_bound ty <;> linarith
+
+def Scalar.ofIntCore {ty : ScalarTy} (x : Int)
+ (hmin : Scalar.min ty ≤ x) (hmax : x ≤ Scalar.max ty) : Scalar ty :=
+ { val := x, hmin := hmin, hmax := hmax }
+
+-- Tactic to prove that integers are in bounds
+-- TODO: use this: https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/instance.20with.20tactic.20autoparam
+syntax "intlit" : tactic
+macro_rules
+ | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices; decide)
+
+def Scalar.ofInt {ty : ScalarTy} (x : Int)
+ (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty := by intlit) : Scalar ty :=
+ -- Remark: we initially wrote:
+ -- let ⟨ hmin, hmax ⟩ := h
+ -- Scalar.ofIntCore x hmin hmax
+ -- We updated to the line below because a similar pattern in `Scalar.tryMk`
+ -- made reduction block. Both versions seem to work for `Scalar.ofInt`, though.
+ -- TODO: investigate
+ Scalar.ofIntCore x h.left h.right
+
+@[simp] def Scalar.check_bounds (ty : ScalarTy) (x : Int) : Bool :=
+ (Scalar.cMin ty ≤ x || Scalar.min ty ≤ x) ∧ (x ≤ Scalar.cMax ty || x ≤ Scalar.max ty)
+
+theorem Scalar.check_bounds_prop {ty : ScalarTy} {x : Int} (h: Scalar.check_bounds ty x) :
+ Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty := by
+ simp at *
+ have ⟨ hmin, hmax ⟩ := h
+ have hbmin := Scalar.cMin_bound ty
+ have hbmax := Scalar.cMax_bound ty
+ cases hmin <;> cases hmax <;> apply And.intro <;> linarith
+
+-- Further thoughts: look at what has been done here:
+-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
+-- and
+-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
+-- which both contain a fair amount of reasoning already!
+def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) :=
+ if h:Scalar.check_bounds ty x then
+ -- If we do:
+ -- ```
+ -- let ⟨ hmin, hmax ⟩ := (Scalar.check_bounds_prop h)
+ -- Scalar.ofIntCore x hmin hmax
+ -- ```
+ -- then normalization blocks (for instance, some proofs which use reflexivity fail).
+ -- However, the version below doesn't block reduction (TODO: investigate):
+ return Scalar.ofInt x (Scalar.check_bounds_prop h)
+ else fail integerOverflow
+
+def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val)
+
+-- Our custom remainder operation, which satisfies the semantics of Rust
+-- TODO: is there a better way?
+def scalar_rem (x y : Int) : Int :=
+ if 0 ≤ x then x % y
+ else - (|x| % |y|)
+
+@[simp]
+def scalar_rem_nonneg {x y : Int} (hx : 0 ≤ x) : scalar_rem x y = x % y := by
+ intros
+ simp [*, scalar_rem]
+
+-- Our custom division operation, which satisfies the semantics of Rust
+-- TODO: is there a better way?
+def scalar_div (x y : Int) : Int :=
+ if 0 ≤ x && 0 ≤ y then x / y
+ else if 0 ≤ x && y < 0 then - (|x| / |y|)
+ else if x < 0 && 0 ≤ y then - (|x| / |y|)
+ else |x| / |y|
+
+@[simp]
+def scalar_div_nonneg {x y : Int} (hx : 0 ≤ x) (hy : 0 ≤ y) : scalar_div x y = x / y := by
+ intros
+ simp [*, scalar_div]
+
+-- Checking that the remainder operation is correct
+#assert scalar_rem 1 2 = 1
+#assert scalar_rem (-1) 2 = -1
+#assert scalar_rem 1 (-2) = 1
+#assert scalar_rem (-1) (-2) = -1
+#assert scalar_rem 7 3 = (1:Int)
+#assert scalar_rem (-7) 3 = -1
+#assert scalar_rem 7 (-3) = 1
+#assert scalar_rem (-7) (-3) = -1
+
+-- Checking that the division operation is correct
+#assert scalar_div 3 2 = 1
+#assert scalar_div (-3) 2 = -1
+#assert scalar_div 3 (-2) = -1
+#assert scalar_div (-3) (-2) = 1
+#assert scalar_div 7 3 = 2
+#assert scalar_div (-7) 3 = -2
+#assert scalar_div 7 (-3) = -2
+#assert scalar_div (-7) (-3) = 2
+
+def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
+ if y.val != 0 then Scalar.tryMk ty (scalar_div x.val y.val) else fail divisionByZero
+
+def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
+ if y.val != 0 then Scalar.tryMk ty (scalar_rem x.val y.val) else fail divisionByZero
+
+def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
+ Scalar.tryMk ty (x.val + y.val)
+
+def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
+ Scalar.tryMk ty (x.val - y.val)
+
+def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
+ Scalar.tryMk ty (x.val * y.val)
+
+-- TODO: instances of +, -, * etc. for scalars
+
+-- Cast an integer from a [src_ty] to a [tgt_ty]
+-- TODO: check the semantics of casts in Rust
+def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) :=
+ Scalar.tryMk tgt_ty x.val
+
+-- The scalar types
+-- We declare the definitions as reducible so that Lean can unfold them (useful
+-- for type class resolution for instance).
+@[reducible] def Isize := Scalar .Isize
+@[reducible] def I8 := Scalar .I8
+@[reducible] def I16 := Scalar .I16
+@[reducible] def I32 := Scalar .I32
+@[reducible] def I64 := Scalar .I64
+@[reducible] def I128 := Scalar .I128
+@[reducible] def Usize := Scalar .Usize
+@[reducible] def U8 := Scalar .U8
+@[reducible] def U16 := Scalar .U16
+@[reducible] def U32 := Scalar .U32
+@[reducible] def U64 := Scalar .U64
+@[reducible] def U128 := Scalar .U128
+
+-- TODO: below: not sure this is the best way.
+-- Should we rather overload operations like +, -, etc.?
+-- Also, it is possible to automate the generation of those definitions
+-- with macros (but would it be a good idea? It would be less easy to
+-- read the file, which is not supposed to change a lot)
+
+-- Negation
+
+/--
+Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce
+one here.
+
+The notation typeclass for heterogeneous addition.
+This enables the notation `- a : β` where `a : α`.
+-/
+class HNeg (α : Type u) (β : outParam (Type v)) where
+ /-- `- a` computes the negation of `a`.
+ The meaning of this notation is type-dependent. -/
+ hNeg : α → β
+
+prefix:75 "-" => HNeg.hNeg
+
+instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x
+instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x
+instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x
+instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x
+instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x
+instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x
+
+-- Addition
+instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
+ hAdd x y := Scalar.add x y
+
+-- Substraction
+instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
+ hSub x y := Scalar.sub x y
+
+-- Multiplication
+instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
+ hMul x y := Scalar.mul x y
+
+-- Division
+instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
+ hDiv x y := Scalar.div x y
+
+-- Remainder
+instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
+ hMod x y := Scalar.rem x y
+
+-- Generic theorem - shouldn't be used much
+@[cpspec]
+theorem Scalar.add_spec {ty} {x y : Scalar ty}
+ (hmin : Scalar.min ty ≤ x.val + y.val)
+ (hmax : x.val + y.val ≤ Scalar.max ty) :
+ ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+ simp [HAdd.hAdd, add, Add.add]
+ simp [tryMk]
+ split
+ . simp [pure]
+ rfl
+ . tauto
+
+theorem Scalar.add_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty}
+ (hmax : x.val + y.val ≤ Scalar.max ty) :
+ ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+ have hmin : Scalar.min ty ≤ x.val + y.val := by
+ have hx := x.hmin
+ have hy := y.hmin
+ cases ty <;> simp [min] at * <;> linarith
+ apply add_spec <;> assumption
+
+/- Fine-grained theorems -/
+@[cepspec] theorem Usize.add_spec {x y : Usize} (hmax : x.val + y.val ≤ Usize.max) :
+ ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+ apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *]
+
+@[cepspec] theorem U8.add_spec {x y : U8} (hmax : x.val + y.val ≤ U8.max) :
+ ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+ apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *]
+
+@[cepspec] theorem U16.add_spec {x y : U16} (hmax : x.val + y.val ≤ U16.max) :
+ ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+ apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *]
+
+@[cepspec] theorem U32.add_spec {x y : U32} (hmax : x.val + y.val ≤ U32.max) :
+ ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+ apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *]
+
+@[cepspec] theorem U64.add_spec {x y : U64} (hmax : x.val + y.val ≤ U64.max) :
+ ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+ apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *]
+
+@[cepspec] theorem U128.add_spec {x y : U128} (hmax : x.val + y.val ≤ U128.max) :
+ ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+ apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *]
+
+-- Generic theorem - shouldn't be used much
+@[cpspec]
+theorem Scalar.sub_spec {ty} {x y : Scalar ty}
+ (hmin : Scalar.min ty ≤ x.val - y.val)
+ (hmax : x.val - y.val ≤ Scalar.max ty) :
+ ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by
+ simp [HSub.hSub, sub, Sub.sub]
+ simp [tryMk]
+ split
+ . simp [pure]
+ rfl
+ . tauto
+
+theorem Scalar.sub_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty}
+ (hmin : Scalar.min ty ≤ x.val - y.val) :
+ ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by
+ have : x.val - y.val ≤ Scalar.max ty := by
+ have hx := x.hmin
+ have hxm := x.hmax
+ have hy := y.hmin
+ cases ty <;> simp [min, max] at * <;> linarith
+ intros
+ apply sub_spec <;> assumption
+
+/- Fine-grained theorems -/
+@[cepspec] theorem Usize.sub_spec {x y : Usize} (hmin : Usize.min ≤ x.val - y.val) :
+ ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by
+ apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *]
+
+@[cepspec] theorem U8.sub_spec {x y : U8} (hmin : U8.min ≤ x.val - y.val) :
+ ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by
+ apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *]
+
+@[cepspec] theorem U16.sub_spec {x y : U16} (hmin : U16.min ≤ x.val - y.val) :
+ ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by
+ apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *]
+
+@[cepspec] theorem U32.sub_spec {x y : U32} (hmin : U32.min ≤ x.val - y.val) :
+ ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by
+ apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *]
+
+@[cepspec] theorem U64.sub_spec {x y : U64} (hmin : U64.min ≤ x.val - y.val) :
+ ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by
+ apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *]
+
+@[cepspec] theorem U128.sub_spec {x y : U128} (hmin : U128.min ≤ x.val - y.val) :
+ ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by
+ apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *]
+
+-- Generic theorem - shouldn't be used much
+theorem Scalar.mul_spec {ty} {x y : Scalar ty}
+ (hmin : Scalar.min ty ≤ x.val * y.val)
+ (hmax : x.val * y.val ≤ Scalar.max ty) :
+ ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by
+ simp [HMul.hMul, mul, Mul.mul]
+ simp [tryMk]
+ split
+ . simp [pure]
+ rfl
+ . tauto
+
+theorem Scalar.mul_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty}
+ (hmax : x.val * y.val ≤ Scalar.max ty) :
+ ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by
+ have : Scalar.min ty ≤ x.val * y.val := by
+ have hx := x.hmin
+ have hy := y.hmin
+ cases ty <;> simp at * <;> apply mul_nonneg hx hy
+ apply mul_spec <;> assumption
+
+/- Fine-grained theorems -/
+@[cepspec] theorem Usize.mul_spec {x y : Usize} (hmax : x.val * y.val ≤ Usize.max) :
+ ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by
+ apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *]
+
+@[cepspec] theorem U8.mul_spec {x y : U8} (hmax : x.val * y.val ≤ U8.max) :
+ ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by
+ apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *]
+
+@[cepspec] theorem U16.mul_spec {x y : U16} (hmax : x.val * y.val ≤ U16.max) :
+ ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by
+ apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *]
+
+@[cepspec] theorem U32.mul_spec {x y : U32} (hmax : x.val * y.val ≤ U32.max) :
+ ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by
+ apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *]
+
+@[cepspec] theorem U64.mul_spec {x y : U64} (hmax : x.val * y.val ≤ U64.max) :
+ ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by
+ apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *]
+
+@[cepspec] theorem U128.mul_spec {x y : U128} (hmax : x.val * y.val ≤ U128.max) :
+ ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by
+ apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *]
+
+-- Generic theorem - shouldn't be used much
+@[cpspec]
+theorem Scalar.div_spec {ty} {x y : Scalar ty}
+ (hnz : y.val ≠ 0)
+ (hmin : Scalar.min ty ≤ scalar_div x.val y.val)
+ (hmax : scalar_div x.val y.val ≤ Scalar.max ty) :
+ ∃ z, x / y = ret z ∧ z.val = scalar_div x.val y.val := by
+ simp [HDiv.hDiv, div, Div.div]
+ simp [tryMk, *]
+ simp [pure]
+ rfl
+
+theorem Scalar.div_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : Scalar ty}
+ (hnz : y.val ≠ 0) :
+ ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by
+ have h : Scalar.min ty = 0 := by cases ty <;> simp at *
+ have hx := x.hmin
+ have hy := y.hmin
+ simp [h] at hx hy
+ have hmin : 0 ≤ x.val / y.val := Int.ediv_nonneg hx hy
+ have hmax : x.val / y.val ≤ Scalar.max ty := by
+ have := Int.ediv_le_self y.val hx
+ have := x.hmax
+ linarith
+ have hs := @div_spec ty x y hnz
+ simp [*] at hs
+ apply hs
+
+/- Fine-grained theorems -/
+@[cepspec] theorem Usize.div_spec (x : Usize) {y : Usize} (hnz : y.val ≠ 0) :
+ ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by
+ apply Scalar.div_unsigned_spec <;> simp [*]
+
+@[cepspec] theorem U8.div_spec (x : U8) {y : U8} (hnz : y.val ≠ 0) :
+ ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by
+ apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *]
+
+@[cepspec] theorem U16.div_spec (x : U16) {y : U16} (hnz : y.val ≠ 0) :
+ ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by
+ apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *]
+
+@[cepspec] theorem U32.div_spec (x : U32) {y : U32} (hnz : y.val ≠ 0) :
+ ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by
+ apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *]
+
+@[cepspec] theorem U64.div_spec (x : U64) {y : U64} (hnz : y.val ≠ 0) :
+ ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by
+ apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *]
+
+@[cepspec] theorem U128.div_spec (x : U128) {y : U128} (hnz : y.val ≠ 0) :
+ ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by
+ apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *]
+
+-- Generic theorem - shouldn't be used much
+@[cpspec]
+theorem Scalar.rem_spec {ty} {x y : Scalar ty}
+ (hnz : y.val ≠ 0)
+ (hmin : Scalar.min ty ≤ scalar_rem x.val y.val)
+ (hmax : scalar_rem x.val y.val ≤ Scalar.max ty) :
+ ∃ z, x % y = ret z ∧ z.val = scalar_rem x.val y.val := by
+ simp [HMod.hMod, rem]
+ simp [tryMk, *]
+ simp [pure]
+ rfl
+
+theorem Scalar.rem_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : Scalar ty}
+ (hnz : y.val ≠ 0) :
+ ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by
+ have h : Scalar.min ty = 0 := by cases ty <;> simp at *
+ have hx := x.hmin
+ have hy := y.hmin
+ simp [h] at hx hy
+ have hmin : 0 ≤ x.val % y.val := Int.emod_nonneg x.val hnz
+ have hmax : x.val % y.val ≤ Scalar.max ty := by
+ have h : 0 < y.val := by int_tac
+ have h := Int.emod_lt_of_pos x.val h
+ have := y.hmax
+ linarith
+ have hs := @rem_spec ty x y hnz
+ simp [*] at hs
+ simp [*]
+
+@[cepspec] theorem Usize.rem_spec (x : Usize) {y : Usize} (hnz : y.val ≠ 0) :
+ ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by
+ apply Scalar.rem_unsigned_spec <;> simp [*]
+
+@[cepspec] theorem U8.rem_spec (x : U8) {y : U8} (hnz : y.val ≠ 0) :
+ ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by
+ apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *]
+
+@[cepspec] theorem U16.rem_spec (x : U16) {y : U16} (hnz : y.val ≠ 0) :
+ ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by
+ apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *]
+
+@[cepspec] theorem U32.rem_spec (x : U32) {y : U32} (hnz : y.val ≠ 0) :
+ ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by
+ apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *]
+
+@[cepspec] theorem U64.rem_spec (x : U64) {y : U64} (hnz : y.val ≠ 0) :
+ ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by
+ apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *]
+
+@[cepspec] theorem U128.rem_spec (x : U128) {y : U128} (hnz : y.val ≠ 0) :
+ ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by
+ apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *]
+
+-- ofIntCore
+-- TODO: typeclass?
+def Isize.ofIntCore := @Scalar.ofIntCore .Isize
+def I8.ofIntCore := @Scalar.ofIntCore .I8
+def I16.ofIntCore := @Scalar.ofIntCore .I16
+def I32.ofIntCore := @Scalar.ofIntCore .I32
+def I64.ofIntCore := @Scalar.ofIntCore .I64
+def I128.ofIntCore := @Scalar.ofIntCore .I128
+def Usize.ofIntCore := @Scalar.ofIntCore .Usize
+def U8.ofIntCore := @Scalar.ofIntCore .U8
+def U16.ofIntCore := @Scalar.ofIntCore .U16
+def U32.ofIntCore := @Scalar.ofIntCore .U32
+def U64.ofIntCore := @Scalar.ofIntCore .U64
+def U128.ofIntCore := @Scalar.ofIntCore .U128
+
+-- ofInt
+-- TODO: typeclass?
+def Isize.ofInt := @Scalar.ofInt .Isize
+def I8.ofInt := @Scalar.ofInt .I8
+def I16.ofInt := @Scalar.ofInt .I16
+def I32.ofInt := @Scalar.ofInt .I32
+def I64.ofInt := @Scalar.ofInt .I64
+def I128.ofInt := @Scalar.ofInt .I128
+def Usize.ofInt := @Scalar.ofInt .Usize
+def U8.ofInt := @Scalar.ofInt .U8
+def U16.ofInt := @Scalar.ofInt .U16
+def U32.ofInt := @Scalar.ofInt .U32
+def U64.ofInt := @Scalar.ofInt .U64
+def U128.ofInt := @Scalar.ofInt .U128
+
+-- TODO: factor those lemmas out
+@[simp] theorem Scalar.ofInt_val_eq {ty} (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : (Scalar.ofInt x h).val = x := by
+ simp [Scalar.ofInt, Scalar.ofIntCore]
+
+@[simp] theorem Isize.ofInt_val_eq (h : Scalar.min ScalarTy.Isize ≤ x ∧ x ≤ Scalar.max ScalarTy.Isize) : (Isize.ofInt x h).val = x := by
+ apply Scalar.ofInt_val_eq h
+
+@[simp] theorem I8.ofInt_val_eq (h : Scalar.min ScalarTy.I8 ≤ x ∧ x ≤ Scalar.max ScalarTy.I8) : (I8.ofInt x h).val = x := by
+ apply Scalar.ofInt_val_eq h
+
+@[simp] theorem I16.ofInt_val_eq (h : Scalar.min ScalarTy.I16 ≤ x ∧ x ≤ Scalar.max ScalarTy.I16) : (I16.ofInt x h).val = x := by
+ apply Scalar.ofInt_val_eq h
+
+@[simp] theorem I32.ofInt_val_eq (h : Scalar.min ScalarTy.I32 ≤ x ∧ x ≤ Scalar.max ScalarTy.I32) : (I32.ofInt x h).val = x := by
+ apply Scalar.ofInt_val_eq h
+
+@[simp] theorem I64.ofInt_val_eq (h : Scalar.min ScalarTy.I64 ≤ x ∧ x ≤ Scalar.max ScalarTy.I64) : (I64.ofInt x h).val = x := by
+ apply Scalar.ofInt_val_eq h
+
+@[simp] theorem I128.ofInt_val_eq (h : Scalar.min ScalarTy.I128 ≤ x ∧ x ≤ Scalar.max ScalarTy.I128) : (I128.ofInt x h).val = x := by
+ apply Scalar.ofInt_val_eq h
+
+@[simp] theorem Usize.ofInt_val_eq (h : Scalar.min ScalarTy.Usize ≤ x ∧ x ≤ Scalar.max ScalarTy.Usize) : (Usize.ofInt x h).val = x := by
+ apply Scalar.ofInt_val_eq h
+
+@[simp] theorem U8.ofInt_val_eq (h : Scalar.min ScalarTy.U8 ≤ x ∧ x ≤ Scalar.max ScalarTy.U8) : (U8.ofInt x h).val = x := by
+ apply Scalar.ofInt_val_eq h
+
+@[simp] theorem U16.ofInt_val_eq (h : Scalar.min ScalarTy.U16 ≤ x ∧ x ≤ Scalar.max ScalarTy.U16) : (U16.ofInt x h).val = x := by
+ apply Scalar.ofInt_val_eq h
+
+@[simp] theorem U32.ofInt_val_eq (h : Scalar.min ScalarTy.U32 ≤ x ∧ x ≤ Scalar.max ScalarTy.U32) : (U32.ofInt x h).val = x := by
+ apply Scalar.ofInt_val_eq h
+
+@[simp] theorem U64.ofInt_val_eq (h : Scalar.min ScalarTy.U64 ≤ x ∧ x ≤ Scalar.max ScalarTy.U64) : (U64.ofInt x h).val = x := by
+ apply Scalar.ofInt_val_eq h
+
+@[simp] theorem U128.ofInt_val_eq (h : Scalar.min ScalarTy.U128 ≤ x ∧ x ≤ Scalar.max ScalarTy.U128) : (U128.ofInt x h).val = x := by
+ apply Scalar.ofInt_val_eq h
+
+
+-- Comparisons
+instance {ty} : LT (Scalar ty) where
+ lt a b := LT.lt a.val b.val
+
+instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val
+
+instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt ..
+instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe ..
+
+theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j
+ | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl
+
+theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val :=
+ h ▸ rfl
+
+theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) :=
+ fun h' => absurd (val_eq_of_eq h') h
+
+instance (ty : ScalarTy) : DecidableEq (Scalar ty) :=
+ fun i j =>
+ match decEq i.val j.val with
+ | isTrue h => isTrue (Scalar.eq_of_val_eq h)
+ | isFalse h => isFalse (Scalar.ne_of_val_ne h)
+
+/- Remark: we can't write the following instance because of restrictions about
+ the type class parameters (`ty` doesn't appear in the return type, which is
+ forbidden):
+
+ ```
+ instance Scalar.cast (ty : ScalarTy) : Coe (Scalar ty) Int where coe := λ v => v.val
+ ```
+ -/
+def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val
+
+-- -- We now define a type class that subsumes the various machine integer types, so
+-- -- as to write a concise definition for scalar_cast, rather than exhaustively
+-- -- enumerating all of the possible pairs. We remark that Rust has sane semantics
+-- -- and fails if a cast operation would involve a truncation or modulo.
+
+-- class MachineInteger (t: Type) where
+-- size: Nat
+-- val: t -> Fin size
+-- ofNatCore: (n:Nat) -> LT.lt n size -> t
+
+-- set_option hygiene false in
+-- run_cmd
+-- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
+-- Lean.Elab.Command.elabCommand (← `(
+-- namespace $typeName
+-- instance: MachineInteger $typeName where
+-- size := size
+-- val := val
+-- ofNatCore := ofNatCore
+-- end $typeName
+-- ))
+
+-- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on
+-- -- Lean to infer `src`.
+
+-- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
+-- if h: MachineInteger.val x < MachineInteger.size dst then
+-- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
+-- else
+-- .fail integerOverflow
+
+end Primitives
diff --git a/backends/lean/Base/Primitives/Vec.lean b/backends/lean/Base/Primitives/Vec.lean
new file mode 100644
index 00000000..a09d6ac2
--- /dev/null
+++ b/backends/lean/Base/Primitives/Vec.lean
@@ -0,0 +1,145 @@
+import Lean
+import Lean.Meta.Tactic.Simp
+import Init.Data.List.Basic
+import Mathlib.Tactic.RunCmd
+import Mathlib.Tactic.Linarith
+import Base.IList
+import Base.Primitives.Scalar
+import Base.Arith
+import Base.Progress.Base
+
+namespace Primitives
+
+open Result Error
+
+-------------
+-- VECTORS --
+-------------
+
+def Vec (α : Type u) := { l : List α // l.length ≤ Usize.max }
+
+-- TODO: do we really need it? It should be with Subtype by default
+instance Vec.cast (a : Type u): Coe (Vec a) (List a) where coe := λ v => v.val
+
+instance (a : Type u) : Arith.HasIntProp (Vec a) where
+ prop_ty := λ v => 0 ≤ v.val.len ∧ v.val.len ≤ Scalar.max ScalarTy.Usize
+ prop := λ ⟨ _, l ⟩ => by simp[Scalar.max, List.len_eq_length, *]
+
+@[simp]
+abbrev Vec.length {α : Type u} (v : Vec α) : Int := v.val.len
+
+@[simp]
+abbrev Vec.v {α : Type u} (v : Vec α) : List α := v.val
+
+example {a: Type u} (v : Vec a) : v.length ≤ Scalar.max ScalarTy.Usize := by
+ scalar_tac
+
+def Vec.new (α : Type u): Vec α := ⟨ [], by apply Scalar.cMax_suffices .Usize; simp ⟩
+
+-- TODO: very annoying that the α is an explicit parameter
+def Vec.len (α : Type u) (v : Vec α) : Usize :=
+ Usize.ofIntCore v.val.len (by scalar_tac) (by scalar_tac)
+
+@[simp]
+theorem Vec.len_val {α : Type u} (v : Vec α) : (Vec.len α v).val = v.length :=
+ by rfl
+
+-- This shouldn't be used
+def Vec.push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
+
+-- This is actually the backward function
+def Vec.push (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
+ :=
+ let nlen := List.length v.val + 1
+ if h : nlen ≤ U32.max || nlen ≤ Usize.max then
+ have h : nlen ≤ Usize.max := by
+ simp [Usize.max] at *
+ have hm := Usize.refined_max.property
+ cases h <;> cases hm <;> simp [U32.max, U64.max] at * <;> try linarith
+ return ⟨ List.concat v.val x, by simp at *; assumption ⟩
+ else
+ fail maximumSizeExceeded
+
+-- This shouldn't be used
+def Vec.insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α) : Result Unit :=
+ if i.val < v.length then
+ .ret ()
+ else
+ .fail arrayOutOfBounds
+
+-- This is actually the backward function
+def Vec.insert (α : Type u) (v: Vec α) (i: Usize) (x: α) : Result (Vec α) :=
+ if i.val < v.length then
+ .ret ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩
+ else
+ .fail arrayOutOfBounds
+
+@[pspec]
+theorem Vec.insert_spec {α : Type u} (v: Vec α) (i: Usize) (x: α)
+ (hbound : i.val < v.length) :
+ ∃ nv, v.insert α i x = ret nv ∧ nv.val = v.val.update i.val x := by
+ simp [insert, *]
+
+def Vec.index (α : Type u) (v: Vec α) (i: Usize) : Result α :=
+ match v.val.indexOpt i.val with
+ | none => fail .arrayOutOfBounds
+ | some x => ret x
+
+/- In the theorems below: we don't always need the `∃ ..`, but we use one
+ so that `progress` introduces an opaque variable and an equality. This
+ helps control the context.
+ -/
+
+@[pspec]
+theorem Vec.index_spec {α : Type u} [Inhabited α] (v: Vec α) (i: Usize)
+ (hbound : i.val < v.length) :
+ ∃ x, v.index α i = ret x ∧ x = v.val.index i.val := by
+ simp only [index]
+ -- TODO: dependent rewrite
+ have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*])
+ simp [*]
+
+-- This shouldn't be used
+def Vec.index_back (α : Type u) (v: Vec α) (i: Usize) (_: α) : Result Unit :=
+ if i.val < List.length v.val then
+ .ret ()
+ else
+ .fail arrayOutOfBounds
+
+def Vec.index_mut (α : Type u) (v: Vec α) (i: Usize) : Result α :=
+ match v.val.indexOpt i.val with
+ | none => fail .arrayOutOfBounds
+ | some x => ret x
+
+@[pspec]
+theorem Vec.index_mut_spec {α : Type u} [Inhabited α] (v: Vec α) (i: Usize)
+ (hbound : i.val < v.length) :
+ ∃ x, v.index_mut α i = ret x ∧ x = v.val.index i.val := by
+ simp only [index_mut]
+ -- TODO: dependent rewrite
+ have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*])
+ simp [*]
+
+instance {α : Type u} (p : Vec α → Prop) : Arith.HasIntProp (Subtype p) where
+ prop_ty := λ x => p x
+ prop := λ x => x.property
+
+def Vec.index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α) : Result (Vec α) :=
+ match v.val.indexOpt i.val with
+ | none => fail .arrayOutOfBounds
+ | some _ =>
+ .ret ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩
+
+@[pspec]
+theorem Vec.index_mut_back_spec {α : Type u} (v: Vec α) (i: Usize) (x : α)
+ (hbound : i.val < v.length) :
+ ∃ nv, v.index_mut_back α i x = ret nv ∧
+ nv.val = v.val.update i.val x
+ := by
+ simp only [index_mut_back]
+ have h := List.indexOpt_bounds v.val i.val
+ split
+ . simp_all [length]; cases h <;> scalar_tac
+ . simp_all
+
+end Primitives