diff options
Diffstat (limited to '')
-rw-r--r-- | backends/lean/Base/Primitives/Base.lean | 7 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/Scalar.lean | 21 |
2 files changed, 28 insertions, 0 deletions
diff --git a/backends/lean/Base/Primitives/Base.lean b/backends/lean/Base/Primitives/Base.lean index 3d70c84a..9dbaf133 100644 --- a/backends/lean/Base/Primitives/Base.lean +++ b/backends/lean/Base/Primitives/Base.lean @@ -116,6 +116,13 @@ def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := @[simp] theorem bind_tc_div (f : α → Result β) : (do let y ← div; f y) = div := by simp [Bind.bind, bind] +@[simp] theorem bind_assoc_eq {a b c : Type u} + (e : Result a) (g : a → Result b) (h : b → Result c) : + (Bind.bind (Bind.bind e g) h) = + (Bind.bind e (λ x => Bind.bind (g x) h)) := by + simp [Bind.bind] + cases e <;> simp + ---------- -- MISC -- ---------- diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean index a8eda6d5..fe8dc8ec 100644 --- a/backends/lean/Base/Primitives/Scalar.lean +++ b/backends/lean/Base/Primitives/Scalar.lean @@ -1038,6 +1038,27 @@ instance {ty} : LT (Scalar ty) where instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val +-- Not marking this one with @[simp] on purpose +theorem Scalar.eq_equiv {ty : ScalarTy} (x y : Scalar ty) : + x = y ↔ x.val = y.val := by + cases x; cases y; simp_all + +-- This is sometimes useful when rewriting the goal with the local assumptions +@[simp] theorem Scalar.eq_imp {ty : ScalarTy} (x y : Scalar ty) : + x = y → x.val = y.val := (eq_equiv x y).mp + +theorem Scalar.lt_equiv {ty : ScalarTy} (x y : Scalar ty) : + x < y ↔ x.val < y.val := by simp [LT.lt] + +@[simp] theorem Scalar.lt_imp {ty : ScalarTy} (x y : Scalar ty) : + x < y → x.val < y.val := (lt_equiv x y).mp + +theorem Scalar.le_equiv {ty : ScalarTy} (x y : Scalar ty) : + x ≤ y ↔ x.val ≤ y.val := by simp [LE.le] + +@[simp] theorem Scalar.le_imp {ty : ScalarTy} (x y : Scalar ty) : + x ≤ y → x.val ≤ y.val := (le_equiv x y).mp + instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. |