summaryrefslogtreecommitdiff
path: root/backends/lean/Base/Primitives/Scalar.lean
diff options
context:
space:
mode:
Diffstat (limited to 'backends/lean/Base/Primitives/Scalar.lean')
-rw-r--r--backends/lean/Base/Primitives/Scalar.lean161
1 files changed, 85 insertions, 76 deletions
diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean
index f46aded9..53bc7854 100644
--- a/backends/lean/Base/Primitives/Scalar.lean
+++ b/backends/lean/Base/Primitives/Scalar.lean
@@ -265,6 +265,14 @@ theorem Scalar.cMax_suffices ty (h : x ≤ Scalar.cMax ty) : x ≤ Scalar.max ty
have := Scalar.cMax_bound ty
linarith
+/-- The scalar type.
+
+ We could use a subtype, but it using a custom structure type allows us
+ to have more control over the coercions and the simplifications (we tried
+ using a subtype and it caused issues especially as we had to make the Scalar
+ type non-reducible, so that we could have more control, but leading to
+ some natural equalities not being obvious to the simplifier anymore).
+ -/
structure Scalar (ty : ScalarTy) where
val : Int
hmin : Scalar.min ty ≤ val
@@ -274,6 +282,9 @@ deriving Repr
instance (ty : ScalarTy) : CoeOut (Scalar ty) Int where
coe := λ v => v.val
+/- Activate the ↑ notation -/
+attribute [coe] Scalar.val
+
theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) :
Scalar.cMin ty ≤ x ∧ x ≤ Scalar.cMax ty ->
Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty
@@ -339,7 +350,7 @@ def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) :=
-- ```
-- then normalization blocks (for instance, some proofs which use reflexivity fail).
-- However, the version below doesn't block reduction (TODO: investigate):
- return Scalar.ofIntCore x (Scalar.check_bounds_prop h)
+ ok (Scalar.ofIntCore x (Scalar.check_bounds_prop h))
else fail integerOverflow
def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val)
@@ -602,7 +613,7 @@ def core.num.checked_mod (x y : Scalar ty) : Result (Option (Scalar ty)) :=
theorem Scalar.add_spec {ty} {x y : Scalar ty}
(hmin : Scalar.min ty ≤ ↑x + y.val)
(hmax : ↑x + ↑y ≤ Scalar.max ty) :
- (∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y) := by
+ (∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y) := by
-- Applying the unfoldings only on the left
conv => congr; ext; lhs; unfold HAdd.hAdd instHAddScalarResult; simp [add, tryMk]
split
@@ -611,7 +622,7 @@ theorem Scalar.add_spec {ty} {x y : Scalar ty}
theorem Scalar.add_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty}
(hmax : ↑x + ↑y ≤ Scalar.max ty) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
have hmin : Scalar.min ty ≤ ↑x + ↑y := by
have hx := x.hmin
have hy := y.hmin
@@ -620,57 +631,57 @@ theorem Scalar.add_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty}
/- Fine-grained theorems -/
@[pspec] theorem Usize.add_spec {x y : Usize} (hmax : ↑x + ↑y ≤ Usize.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem U8.add_spec {x y : U8} (hmax : ↑x + ↑y ≤ U8.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem U16.add_spec {x y : U16} (hmax : ↑x + ↑y ≤ U16.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem U32.add_spec {x y : U32} (hmax : ↑x + ↑y ≤ U32.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem U64.add_spec {x y : U64} (hmax : ↑x + ↑y ≤ U64.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem U128.add_spec {x y : U128} (hmax : ↑x + ↑y ≤ U128.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem Isize.add_spec {x y : Isize}
(hmin : Isize.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ Isize.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y :=
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I8.add_spec {x y : I8}
(hmin : I8.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I8.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y :=
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I16.add_spec {x y : I16}
(hmin : I16.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I16.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y :=
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I32.add_spec {x y : I32}
(hmin : I32.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I32.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y :=
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I64.add_spec {x y : I64}
(hmin : I64.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I64.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y :=
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I128.add_spec {x y : I128}
(hmin : I128.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I128.max) :
- ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y :=
+ ∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
-- Generic theorem - shouldn't be used much
@@ -678,7 +689,7 @@ theorem Scalar.add_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty}
theorem Scalar.sub_spec {ty} {x y : Scalar ty}
(hmin : Scalar.min ty ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ Scalar.max ty) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
conv => congr; ext; lhs; simp [HSub.hSub, sub, tryMk, Sub.sub]
split
. simp [pure]
@@ -687,7 +698,7 @@ theorem Scalar.sub_spec {ty} {x y : Scalar ty}
theorem Scalar.sub_unsigned_spec {ty : ScalarTy} (s : ¬ ty.isSigned)
{x y : Scalar ty} (hmin : Scalar.min ty ≤ ↑x - ↑y) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
have : ↑x - ↑y ≤ Scalar.max ty := by
have hx := x.hmin
have hxm := x.hmax
@@ -698,64 +709,64 @@ theorem Scalar.sub_unsigned_spec {ty : ScalarTy} (s : ¬ ty.isSigned)
/- Fine-grained theorems -/
@[pspec] theorem Usize.sub_spec {x y : Usize} (hmin : Usize.min ≤ ↑x - ↑y) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
@[pspec] theorem U8.sub_spec {x y : U8} (hmin : U8.min ≤ ↑x - ↑y) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
@[pspec] theorem U16.sub_spec {x y : U16} (hmin : U16.min ≤ ↑x - ↑y) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
@[pspec] theorem U32.sub_spec {x y : U32} (hmin : U32.min ≤ ↑x - ↑y) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
@[pspec] theorem U64.sub_spec {x y : U64} (hmin : U64.min ≤ ↑x - ↑y) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
@[pspec] theorem U128.sub_spec {x y : U128} (hmin : U128.min ≤ ↑x - ↑y) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
@[pspec] theorem Isize.sub_spec {x y : Isize} (hmin : Isize.min ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ Isize.max) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y :=
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
@[pspec] theorem I8.sub_spec {x y : I8} (hmin : I8.min ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ I8.max) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y :=
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
@[pspec] theorem I16.sub_spec {x y : I16} (hmin : I16.min ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ I16.max) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y :=
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
@[pspec] theorem I32.sub_spec {x y : I32} (hmin : I32.min ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ I32.max) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y :=
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
@[pspec] theorem I64.sub_spec {x y : I64} (hmin : I64.min ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ I64.max) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y :=
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
@[pspec] theorem I128.sub_spec {x y : I128} (hmin : I128.min ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ I128.max) :
- ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y :=
+ ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
-- Generic theorem - shouldn't be used much
theorem Scalar.mul_spec {ty} {x y : Scalar ty}
(hmin : Scalar.min ty ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ Scalar.max ty) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
conv => congr; ext; lhs; simp [HMul.hMul]
simp [mul, tryMk]
split
@@ -765,7 +776,7 @@ theorem Scalar.mul_spec {ty} {x y : Scalar ty}
theorem Scalar.mul_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty}
(hmax : ↑x * ↑y ≤ Scalar.max ty) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
have : Scalar.min ty ≤ ↑x * ↑y := by
have hx := x.hmin
have hy := y.hmin
@@ -774,57 +785,57 @@ theorem Scalar.mul_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty}
/- Fine-grained theorems -/
@[pspec] theorem Usize.mul_spec {x y : Usize} (hmax : ↑x * ↑y ≤ Usize.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
@[pspec] theorem U8.mul_spec {x y : U8} (hmax : ↑x * ↑y ≤ U8.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
@[pspec] theorem U16.mul_spec {x y : U16} (hmax : ↑x * ↑y ≤ U16.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
@[pspec] theorem U32.mul_spec {x y : U32} (hmax : ↑x * ↑y ≤ U32.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
@[pspec] theorem U64.mul_spec {x y : U64} (hmax : ↑x * ↑y ≤ U64.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
@[pspec] theorem U128.mul_spec {x y : U128} (hmax : ↑x * ↑y ≤ U128.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
@[pspec] theorem Isize.mul_spec {x y : Isize} (hmin : Isize.min ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ Isize.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y :=
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
@[pspec] theorem I8.mul_spec {x y : I8} (hmin : I8.min ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ I8.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y :=
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
@[pspec] theorem I16.mul_spec {x y : I16} (hmin : I16.min ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ I16.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y :=
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
@[pspec] theorem I32.mul_spec {x y : I32} (hmin : I32.min ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ I32.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y :=
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
@[pspec] theorem I64.mul_spec {x y : I64} (hmin : I64.min ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ I64.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y :=
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
@[pspec] theorem I128.mul_spec {x y : I128} (hmin : I128.min ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ I128.max) :
- ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y :=
+ ∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
-- Generic theorem - shouldn't be used much
@@ -833,15 +844,14 @@ theorem Scalar.div_spec {ty} {x y : Scalar ty}
(hnz : ↑y ≠ (0 : Int))
(hmin : Scalar.min ty ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ Scalar.max ty) :
- ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y := by
+ ∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y := by
simp [HDiv.hDiv, div, Div.div]
simp [tryMk, *]
- simp [pure]
rfl
theorem Scalar.div_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : Scalar ty}
(hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
+ ∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
have h : Scalar.min ty = 0 := by cases ty <;> simp [ScalarTy.isSigned, min] at *
have hx := x.hmin
have hy := y.hmin
@@ -857,69 +867,69 @@ theorem Scalar.div_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : S
/- Fine-grained theorems -/
@[pspec] theorem Usize.div_spec (x : Usize) {y : Usize} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
+ ∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U8.div_spec (x : U8) {y : U8} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
+ ∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U16.div_spec (x : U16) {y : U16} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
+ ∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U32.div_spec (x : U32) {y : U32} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
+ ∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U64.div_spec (x : U64) {y : U64} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
+ ∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U128.div_spec (x : U128) {y : U128} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
+ ∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem Isize.div_spec (x : Isize) {y : Isize}
(hnz : ↑y ≠ (0 : Int))
(hmin : Isize.min ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ Isize.max):
- ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
+ ∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I8.div_spec (x : I8) {y : I8}
(hnz : ↑y ≠ (0 : Int))
(hmin : I8.min ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ I8.max):
- ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
+ ∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I16.div_spec (x : I16) {y : I16}
(hnz : ↑y ≠ (0 : Int))
(hmin : I16.min ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ I16.max):
- ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
+ ∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I32.div_spec (x : I32) {y : I32}
(hnz : ↑y ≠ (0 : Int))
(hmin : I32.min ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ I32.max):
- ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
+ ∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I64.div_spec (x : I64) {y : I64}
(hnz : ↑y ≠ (0 : Int))
(hmin : I64.min ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ I64.max):
- ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
+ ∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I128.div_spec (x : I128) {y : I128}
(hnz : ↑y ≠ (0 : Int))
(hmin : I128.min ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ I128.max):
- ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
+ ∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
-- Generic theorem - shouldn't be used much
@@ -928,15 +938,14 @@ theorem Scalar.rem_spec {ty} {x y : Scalar ty}
(hnz : ↑y ≠ (0 : Int))
(hmin : Scalar.min ty ≤ scalar_rem ↑x ↑y)
(hmax : scalar_rem ↑x ↑y ≤ Scalar.max ty) :
- ∃ z, x % y = ret z ∧ (↑z : Int) = scalar_rem ↑x ↑y := by
+ ∃ z, x % y = ok z ∧ (↑z : Int) = scalar_rem ↑x ↑y := by
simp [HMod.hMod, rem]
simp [tryMk, *]
- simp [pure]
rfl
theorem Scalar.rem_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : Scalar ty}
(hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
+ ∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
have h : Scalar.min ty = 0 := by cases ty <;> simp [ScalarTy.isSigned, min] at *
have hx := x.hmin
have hy := y.hmin
@@ -952,62 +961,62 @@ theorem Scalar.rem_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : S
simp [*]
@[pspec] theorem Usize.rem_spec (x : Usize) {y : Usize} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
+ ∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U8.rem_spec (x : U8) {y : U8} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
+ ∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U16.rem_spec (x : U16) {y : U16} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
+ ∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U32.rem_spec (x : U32) {y : U32} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
+ ∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U64.rem_spec (x : U64) {y : U64} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
+ ∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U128.rem_spec (x : U128) {y : U128} (hnz : ↑y ≠ (0 : Int)) :
- ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
+ ∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem I8.rem_spec (x : I8) {y : I8}
(hnz : ↑y ≠ (0 : Int))
(hmin : I8.min ≤ scalar_rem ↑x ↑y)
(hmax : scalar_rem ↑x ↑y ≤ I8.max):
- ∃ z, x % y = ret z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
+ ∃ z, x % y = ok z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
@[pspec] theorem I16.rem_spec (x : I16) {y : I16}
(hnz : ↑y ≠ (0 : Int))
(hmin : I16.min ≤ scalar_rem ↑x ↑y)
(hmax : scalar_rem ↑x ↑y ≤ I16.max):
- ∃ z, x % y = ret z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
+ ∃ z, x % y = ok z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
@[pspec] theorem I32.rem_spec (x : I32) {y : I32}
(hnz : ↑y ≠ (0 : Int))
(hmin : I32.min ≤ scalar_rem ↑x ↑y)
(hmax : scalar_rem ↑x ↑y ≤ I32.max):
- ∃ z, x % y = ret z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
+ ∃ z, x % y = ok z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
@[pspec] theorem I64.rem_spec (x : I64) {y : I64}
(hnz : ↑y ≠ (0 : Int))
(hmin : I64.min ≤ scalar_rem ↑x ↑y)
(hmax : scalar_rem ↑x ↑y ≤ I64.max):
- ∃ z, x % y = ret z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
+ ∃ z, x % y = ok z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
@[pspec] theorem I128.rem_spec (x : I128) {y : I128}
(hnz : ↑y ≠ (0 : Int))
(hmin : I128.min ≤ scalar_rem ↑x ↑y)
(hmax : scalar_rem ↑x ↑y ≤ I128.max):
- ∃ z, x % y = ret z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
+ ∃ z, x % y = ok z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
-- ofIntCore
@@ -1148,19 +1157,19 @@ theorem Scalar.eq_equiv {ty : ScalarTy} (x y : Scalar ty) :
-- This is sometimes useful when rewriting the goal with the local assumptions
@[simp] theorem Scalar.eq_imp {ty : ScalarTy} (x y : Scalar ty) :
- x = y → (↑x : Int) = ↑y := (eq_equiv x y).mp
+ (↑x : Int) = ↑y → x = y := (eq_equiv x y).mpr
theorem Scalar.lt_equiv {ty : ScalarTy} (x y : Scalar ty) :
x < y ↔ (↑x : Int) < ↑y := by simp [LT.lt]
@[simp] theorem Scalar.lt_imp {ty : ScalarTy} (x y : Scalar ty) :
- x < y → (↑x : Int) < ↑y := (lt_equiv x y).mp
+ (↑x : Int) < (↑y) → x < y := (lt_equiv x y).mpr
theorem Scalar.le_equiv {ty : ScalarTy} (x y : Scalar ty) :
x ≤ y ↔ (↑x : Int) ≤ ↑y := by simp [LE.le]
@[simp] theorem Scalar.le_imp {ty : ScalarTy} (x y : Scalar ty) :
- x ≤ y → (↑x : Int) ≤ ↑y := (le_equiv x y).mp
+ (↑x : Int) ≤ ↑y → x ≤ y := (le_equiv x y).mpr
instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt ..
instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe ..
@@ -1181,6 +1190,6 @@ instance (ty : ScalarTy) : DecidableEq (Scalar ty) :=
| isFalse h => isFalse (Scalar.ne_of_val_ne h)
@[simp] theorem Scalar.neq_to_neq_val {ty} : ∀ {i j : Scalar ty}, (¬ i = j) ↔ ¬ i.val = j.val := by
- intro i j; cases i; cases j; simp
+ simp [eq_equiv]
end Primitives