summaryrefslogtreecommitdiff
path: root/backends/lean/Base/IList
diff options
context:
space:
mode:
Diffstat (limited to 'backends/lean/Base/IList')
-rw-r--r--backends/lean/Base/IList/IList.lean284
1 files changed, 284 insertions, 0 deletions
diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean
new file mode 100644
index 00000000..93047a1b
--- /dev/null
+++ b/backends/lean/Base/IList/IList.lean
@@ -0,0 +1,284 @@
+/- Complementary list functions and lemmas which operate on integers rather
+ than natural numbers. -/
+
+import Std.Data.Int.Lemmas
+import Base.Arith
+
+namespace List
+
+def len (ls : List α) : Int :=
+ match ls with
+ | [] => 0
+ | _ :: tl => 1 + len tl
+
+@[simp] theorem len_nil : len ([] : List α) = 0 := by simp [len]
+@[simp] theorem len_cons : len ((x :: tl) : List α) = 1 + len tl := by simp [len]
+
+theorem len_pos : 0 ≤ (ls : List α).len := by
+ induction ls <;> simp [*]
+ linarith
+
+instance (a : Type u) : Arith.HasIntProp (List a) where
+ prop_ty := λ ls => 0 ≤ ls.len
+ prop := λ ls => ls.len_pos
+
+-- Remark: if i < 0, then the result is none
+def indexOpt (ls : List α) (i : Int) : Option α :=
+ match ls with
+ | [] => none
+ | hd :: tl => if i = 0 then some hd else indexOpt tl (i - 1)
+
+@[simp] theorem indexOpt_nil : indexOpt ([] : List α) i = none := by simp [indexOpt]
+@[simp] theorem indexOpt_zero_cons : indexOpt ((x :: tl) : List α) 0 = some x := by simp [indexOpt]
+@[simp] theorem indexOpt_nzero_cons (hne : i ≠ 0) : indexOpt ((x :: tl) : List α) i = indexOpt tl (i - 1) := by simp [*, indexOpt]
+
+-- Remark: if i < 0, then the result is the defaul element
+def index [Inhabited α] (ls : List α) (i : Int) : α :=
+ match ls with
+ | [] => Inhabited.default
+ | x :: tl =>
+ if i = 0 then x else index tl (i - 1)
+
+@[simp] theorem index_zero_cons [Inhabited α] : index ((x :: tl) : List α) 0 = x := by simp [index]
+@[simp] theorem index_nzero_cons [Inhabited α] (hne : i ≠ 0) : index ((x :: tl) : List α) i = index tl (i - 1) := by simp [*, index]
+
+theorem indexOpt_bounds (ls : List α) (i : Int) :
+ ls.indexOpt i = none ↔ i < 0 ∨ ls.len ≤ i :=
+ match ls with
+ | [] =>
+ have : ¬ (i < 0) → 0 ≤ i := by int_tac
+ by simp; tauto
+ | _ :: tl =>
+ have := indexOpt_bounds tl (i - 1)
+ if h: i = 0 then
+ by
+ simp [*];
+ int_tac
+ else by
+ simp [*]
+ constructor <;> intros <;>
+ casesm* _ ∨ _ <;> -- splits all the disjunctions
+ first | left; int_tac | right; int_tac
+
+theorem indexOpt_eq_index [Inhabited α] (ls : List α) (i : Int) :
+ 0 ≤ i →
+ i < ls.len →
+ ls.indexOpt i = some (ls.index i) :=
+ match ls with
+ | [] => by simp; intros; linarith
+ | hd :: tl =>
+ if h: i = 0 then
+ by simp [*]
+ else
+ have hi := indexOpt_eq_index tl (i - 1)
+ by simp [*]; intros; apply hi <;> int_tac
+
+-- Remark: the list is unchanged if the index is not in bounds (in particular
+-- if it is < 0)
+def update (ls : List α) (i : Int) (y : α) : List α :=
+ match ls with
+ | [] => []
+ | x :: tl => if i = 0 then y :: tl else x :: update tl (i - 1) y
+
+-- Remark: the whole list is dropped if the index is not in bounds (in particular
+-- if it is < 0)
+def idrop (i : Int) (ls : List α) : List α :=
+ match ls with
+ | [] => []
+ | x :: tl => if i = 0 then x :: tl else idrop (i - 1) tl
+
+section Lemmas
+
+variable {α : Type u}
+
+@[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update]
+@[simp] theorem update_zero_cons : update ((x :: tl) : List α) 0 y = y :: tl := by simp [update]
+@[simp] theorem update_nzero_cons (hne : i ≠ 0) : update ((x :: tl) : List α) i y = x :: update tl (i - 1) y := by simp [*, update]
+
+@[simp] theorem idrop_nil : idrop i ([] : List α) = [] := by simp [idrop]
+@[simp] theorem idrop_zero : idrop 0 (ls : List α) = ls := by cases ls <;> simp [idrop]
+@[simp] theorem idrop_nzero_cons (hne : i ≠ 0) : idrop i ((x :: tl) : List α) = idrop (i - 1) tl := by simp [*, idrop]
+
+theorem len_eq_length (ls : List α) : ls.len = ls.length := by
+ induction ls
+ . rfl
+ . simp [*, Int.ofNat_succ, Int.add_comm]
+
+@[simp] theorem len_append (l1 l2 : List α) : (l1 ++ l2).len = l1.len + l2.len := by
+ -- Remark: simp loops here because of the following rewritings:
+ -- @Nat.cast_add: ↑(List.length l1 + List.length l2) ==> ↑(List.length l1) + ↑(List.length l2)
+ -- Int.ofNat_add_ofNat: ↑(List.length l1) + ↑(List.length l2) ==> ↑(List.length l1 + List.length l2)
+ -- TODO: post an issue?
+ simp only [len_eq_length]
+ simp only [length_append]
+ simp only [Int.ofNat_add]
+
+@[simp]
+theorem length_update (ls : List α) (i : Int) (x : α) : (ls.update i x).length = ls.length := by
+ revert i
+ induction ls <;> simp_all [length, update]
+ intro; split <;> simp [*]
+
+@[simp]
+theorem len_update (ls : List α) (i : Int) (x : α) : (ls.update i x).len = ls.len := by
+ simp [len_eq_length]
+
+@[simp]
+theorem len_map (ls : List α) (f : α → β) : (ls.map f).len = ls.len := by
+ simp [len_eq_length]
+
+theorem left_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.length = l1'.length) :
+ l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by
+ revert l1'
+ induction l1
+ . intro l1'; cases l1' <;> simp [*]
+ . intro l1'; cases l1' <;> simp_all; tauto
+
+theorem right_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l2.length = l2'.length) :
+ l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by
+ have := left_length_eq_append_eq l1 l2 l1' l2'
+ constructor <;> intro heq2 <;>
+ have : l1.length + l2.length = l1'.length + l2'.length := by
+ have : (l1 ++ l2).length = (l1' ++ l2').length := by simp [*]
+ simp only [length_append] at this
+ apply this
+ . simp [heq] at this
+ tauto
+ . tauto
+
+theorem left_len_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.len = l1'.len) :
+ l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by
+ simp [len_eq_length] at heq
+ apply left_length_eq_append_eq
+ assumption
+
+theorem right_len_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l2.len = l2'.len) :
+ l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by
+ simp [len_eq_length] at heq
+ apply right_length_eq_append_eq
+ assumption
+
+open Arith in
+theorem idrop_eq_nil_of_le (hineq : ls.len ≤ i) : idrop i ls = [] := by
+ revert i
+ induction ls <;> simp [*]
+ rename_i hd tl hi
+ intro i hineq
+ if heq: i = 0 then
+ simp [*] at *
+ have := tl.len_pos
+ linarith
+ else
+ simp at hineq
+ have : 0 < i := by int_tac
+ simp [*]
+ apply hi
+ linarith
+
+@[simp]
+theorem index_ne
+ {α : Type u} [Inhabited α] (l: List α) (i: ℤ) (j: ℤ) (x: α) :
+ 0 ≤ i → i < l.len → 0 ≤ j → j < l.len → j ≠ i →
+ (l.update i x).index j = l.index j
+ :=
+ λ _ _ _ _ _ => match l with
+ | [] => by simp at *
+ | hd :: tl =>
+ if h: i = 0 then
+ have : j ≠ 0 := by scalar_tac
+ by simp [*]
+ else if h : j = 0 then
+ have : i ≠ 0 := by scalar_tac
+ by simp [*]
+ else
+ by
+ simp [*]
+ simp at *
+ apply index_ne <;> scalar_tac
+
+@[simp]
+theorem index_eq
+ {α : Type u} [Inhabited α] (l: List α) (i: ℤ) (x: α) :
+ 0 ≤ i → i < l.len →
+ (l.update i x).index i = x
+ :=
+ fun _ _ => match l with
+ | [] => by simp at *; scalar_tac
+ | hd :: tl =>
+ if h: i = 0 then
+ by
+ simp [*]
+ else
+ by
+ simp [*]
+ simp at *
+ apply index_eq <;> scalar_tac
+
+theorem update_map_eq {α : Type u} {β : Type v} (ls : List α) (i : Int) (x : α) (f : α → β) :
+ (ls.update i x).map f = (ls.map f).update i (f x) :=
+ match ls with
+ | [] => by simp
+ | hd :: tl =>
+ if h : i = 0 then by simp [*]
+ else
+ have hi := update_map_eq tl (i - 1) x f
+ by simp [*]
+
+theorem len_flatten_update_eq {α : Type u} (ls : List (List α)) (i : Int) (x : List α)
+ (h0 : 0 ≤ i) (h1 : i < ls.len) :
+ (ls.update i x).flatten.len = ls.flatten.len + x.len - (ls.index i).len :=
+ match ls with
+ | [] => by simp at h1; int_tac
+ | hd :: tl => by
+ simp at h1
+ if h : i = 0 then simp [*]; int_tac
+ else
+ have hi := len_flatten_update_eq tl (i - 1) x (by int_tac) (by int_tac)
+ simp [*]
+ int_tac
+
+@[simp]
+theorem index_map_eq {α : Type u} {β : Type v} [Inhabited α] [Inhabited β] (ls : List α) (i : Int) (f : α → β)
+ (h0 : 0 ≤ i) (h1 : i < ls.len) :
+ (ls.map f).index i = f (ls.index i) :=
+ match ls with
+ | [] => by simp at h1; int_tac
+ | hd :: tl =>
+ if h : i = 0 then by
+ simp [*]
+ else
+ have hi := index_map_eq tl (i - 1) f (by int_tac) (by simp at h1; int_tac)
+ by
+ simp [*]
+
+def allP {α : Type u} (l : List α) (p: α → Prop) : Prop :=
+ foldr (fun a r => p a ∧ r) True l
+
+@[simp]
+theorem allP_nil {α : Type u} (p: α → Prop) : allP [] p :=
+ by simp [allP, foldr]
+
+@[simp]
+theorem allP_cons {α : Type u} (hd: α) (tl : List α) (p: α → Prop) :
+ allP (hd :: tl) p ↔ p hd ∧ allP tl p
+ := by simp [allP, foldr]
+
+def pairwise_rel
+ {α : Type u} (rel : α → α → Prop) (l: List α) : Prop
+ := match l with
+ | [] => True
+ | hd :: tl => allP tl (rel hd) ∧ pairwise_rel rel tl
+
+@[simp]
+theorem pairwise_rel_nil {α : Type u} (rel : α → α → Prop) :
+ pairwise_rel rel []
+ := by simp [pairwise_rel]
+
+@[simp]
+theorem pairwise_rel_cons {α : Type u} (rel : α → α → Prop) (hd: α) (tl: List α) :
+ pairwise_rel rel (hd :: tl) ↔ allP tl (rel hd) ∧ pairwise_rel rel tl
+ := by simp [pairwise_rel]
+
+end Lemmas
+
+end List