summaryrefslogtreecommitdiff
path: root/backends/lean/Base/IList
diff options
context:
space:
mode:
Diffstat (limited to 'backends/lean/Base/IList')
-rw-r--r--backends/lean/Base/IList/IList.lean142
1 files changed, 142 insertions, 0 deletions
diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean
new file mode 100644
index 00000000..2a335cac
--- /dev/null
+++ b/backends/lean/Base/IList/IList.lean
@@ -0,0 +1,142 @@
+/- Complementary list functions and lemmas which operate on integers rather
+ than natural numbers. -/
+
+import Std.Data.Int.Lemmas
+import Base.Arith
+
+namespace List
+
+def len (ls : List α) : Int :=
+ match ls with
+ | [] => 0
+ | _ :: tl => 1 + len tl
+
+-- Remark: if i < 0, then the result is none
+def indexOpt (ls : List α) (i : Int) : Option α :=
+ match ls with
+ | [] => none
+ | hd :: tl => if i = 0 then some hd else indexOpt tl (i - 1)
+
+-- Remark: if i < 0, then the result is the defaul element
+def index [Inhabited α] (ls : List α) (i : Int) : α :=
+ match ls with
+ | [] => Inhabited.default
+ | x :: tl =>
+ if i = 0 then x else index tl (i - 1)
+
+-- Remark: the list is unchanged if the index is not in bounds (in particular
+-- if it is < 0)
+def update (ls : List α) (i : Int) (y : α) : List α :=
+ match ls with
+ | [] => []
+ | x :: tl => if i = 0 then y :: tl else x :: update tl (i - 1) y
+
+-- Remark: the whole list is dropped if the index is not in bounds (in particular
+-- if it is < 0)
+def idrop (i : Int) (ls : List α) : List α :=
+ match ls with
+ | [] => []
+ | x :: tl => if i = 0 then x :: tl else idrop (i - 1) tl
+
+section Lemmas
+
+variable {α : Type u}
+
+@[simp] theorem len_nil : len ([] : List α) = 0 := by simp [len]
+@[simp] theorem len_cons : len ((x :: tl) : List α) = 1 + len tl := by simp [len]
+
+@[simp] theorem index_zero_cons [Inhabited α] : index ((x :: tl) : List α) 0 = x := by simp [index]
+@[simp] theorem index_nzero_cons [Inhabited α] (hne : i ≠ 0) : index ((x :: tl) : List α) i = index tl (i - 1) := by simp [*, index]
+
+@[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update]
+@[simp] theorem update_zero_cons : update ((x :: tl) : List α) 0 y = y :: tl := by simp [update]
+@[simp] theorem update_nzero_cons (hne : i ≠ 0) : update ((x :: tl) : List α) i y = x :: update tl (i - 1) y := by simp [*, update]
+
+@[simp] theorem idrop_nil : idrop i ([] : List α) = [] := by simp [idrop]
+@[simp] theorem idrop_zero : idrop 0 (ls : List α) = ls := by cases ls <;> simp [idrop]
+@[simp] theorem idrop_nzero_cons (hne : i ≠ 0) : idrop i ((x :: tl) : List α) = idrop (i - 1) tl := by simp [*, idrop]
+
+theorem len_eq_length (ls : List α) : ls.len = ls.length := by
+ induction ls
+ . rfl
+ . simp [*, Int.ofNat_succ, Int.add_comm]
+
+@[simp] theorem len_append (l1 l2 : List α) : (l1 ++ l2).len = l1.len + l2.len := by
+ -- Remark: simp loops here because of the following rewritings:
+ -- @Nat.cast_add: ↑(List.length l1 + List.length l2) ==> ↑(List.length l1) + ↑(List.length l2)
+ -- Int.ofNat_add_ofNat: ↑(List.length l1) + ↑(List.length l2) ==> ↑(List.length l1 + List.length l2)
+ -- TODO: post an issue?
+ simp only [len_eq_length]
+ simp only [length_append]
+ simp only [Int.ofNat_add]
+
+@[simp]
+theorem length_update (ls : List α) (i : Int) (x : α) : (ls.update i x).length = ls.length := by
+ revert i
+ induction ls <;> simp_all [length, update]
+ intro; split <;> simp [*]
+
+@[simp]
+theorem len_update (ls : List α) (i : Int) (x : α) : (ls.update i x).len = ls.len := by
+ simp [len_eq_length]
+
+
+theorem len_pos : 0 ≤ (ls : List α).len := by
+ induction ls <;> simp [*]
+ linarith
+
+instance (a : Type u) : Arith.HasIntProp (List a) where
+ prop_ty := λ ls => 0 ≤ ls.len
+ prop := λ ls => ls.len_pos
+
+theorem left_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.length = l1'.length) :
+ l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by
+ revert l1'
+ induction l1
+ . intro l1'; cases l1' <;> simp [*]
+ . intro l1'; cases l1' <;> simp_all; tauto
+
+theorem right_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l2.length = l2'.length) :
+ l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by
+ have := left_length_eq_append_eq l1 l2 l1' l2'
+ constructor <;> intro heq2 <;>
+ have : l1.length + l2.length = l1'.length + l2'.length := by
+ have : (l1 ++ l2).length = (l1' ++ l2').length := by simp [*]
+ simp only [length_append] at this
+ apply this
+ . simp [heq] at this
+ tauto
+ . tauto
+
+theorem left_len_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.len = l1'.len) :
+ l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by
+ simp [len_eq_length] at heq
+ apply left_length_eq_append_eq
+ assumption
+
+theorem right_len_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l2.len = l2'.len) :
+ l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by
+ simp [len_eq_length] at heq
+ apply right_length_eq_append_eq
+ assumption
+
+open Arith in
+theorem idrop_eq_nil_of_le (hineq : ls.len ≤ i) : idrop i ls = [] := by
+ revert i
+ induction ls <;> simp [*]
+ rename_i hd tl hi
+ intro i hineq
+ if heq: i = 0 then
+ simp [*] at *
+ have := tl.len_pos
+ linarith
+ else
+ simp at hineq
+ have : 0 < i := by int_tac
+ simp [*]
+ apply hi
+ linarith
+
+end Lemmas
+
+end List