summaryrefslogtreecommitdiff
path: root/backends/lean/Base/IList
diff options
context:
space:
mode:
Diffstat (limited to 'backends/lean/Base/IList')
-rw-r--r--backends/lean/Base/IList/IList.lean57
1 files changed, 56 insertions, 1 deletions
diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean
index 0b483e90..f10ec4e7 100644
--- a/backends/lean/Base/IList/IList.lean
+++ b/backends/lean/Base/IList/IList.lean
@@ -112,7 +112,19 @@ def pairwise_rel
section Lemmas
-variable {α : Type u}
+variable {α : Type u}
+
+def ireplicate {α : Type u} (i : ℤ) (x : α) : List α :=
+ if i ≤ 0 then []
+ else x :: ireplicate (i - 1) x
+termination_by ireplicate i x => i.toNat
+decreasing_by
+ simp_wf
+ -- TODO: simplify this kind of proofs
+ simp at *
+ have : 0 ≤ i := by linarith
+ have : 1 ≤ i := by linarith
+ simp [Int.toNat_sub_of_le, *]
@[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update]
@[simp] theorem update_zero_cons : update ((x :: tl) : List α) 0 y = y :: tl := by simp [update]
@@ -129,6 +141,10 @@ variable {α : Type u}
@[simp] theorem slice_nil : slice i j ([] : List α) = [] := by simp [slice]
@[simp] theorem slice_zero : slice 0 0 (ls : List α) = [] := by cases ls <;> simp [slice]
+@[simp] theorem ireplicate_zero : ireplicate 0 x = [] := by rw [ireplicate]; simp
+@[simp] theorem ireplicate_nzero_cons (hne : 0 < i) : ireplicate i x = x :: ireplicate (i - 1) x := by
+ rw [ireplicate]; simp [*]; intro; linarith
+
@[simp]
theorem slice_nzero_cons (i j : Int) (x : α) (tl : List α) (hne : i ≠ 0) : slice i j ((x :: tl) : List α) = slice (i - 1) (j - 1) tl :=
match tl with
@@ -144,6 +160,45 @@ theorem slice_nzero_cons (i j : Int) (x : α) (tl : List α) (hne : i ≠ 0) : s
conv at this => lhs; simp [slice, *]
simp [*, slice]
+@[simp]
+theorem ireplicate_replicate {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) :
+ ireplicate l x = replicate l.toNat x :=
+ if hz: l = 0 then by
+ simp [*]
+ else by
+ have : 0 < l := by int_tac
+ have hr := ireplicate_replicate (l - 1) x (by int_tac)
+ simp [*]
+ have hl : l.toNat = .succ (l.toNat - 1) := by
+ cases hl: l.toNat <;> simp_all
+ conv => rhs; rw[hl]
+termination_by ireplicate_replicate l x h => l.toNat
+decreasing_by
+ simp_wf
+ -- TODO: simplify this kind of proofs
+ simp at *
+ have : 0 ≤ l := by linarith
+ have : 1 ≤ l := by linarith
+ simp [Int.toNat_sub_of_le, *]
+
+@[simp]
+theorem ireplicate_len {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) :
+ (ireplicate l x).len = l :=
+ if hz: l = 0 then by
+ simp [*]
+ else by
+ have : 0 < l := by int_tac
+ have hr := ireplicate_len (l - 1) x (by int_tac)
+ simp [*]
+termination_by ireplicate_len l x h => l.toNat
+decreasing_by
+ simp_wf
+ -- TODO: simplify this kind of proofs
+ simp at *
+ have : 0 ≤ l := by linarith
+ have : 1 ≤ l := by linarith
+ simp [Int.toNat_sub_of_le, *]
+
theorem len_eq_length (ls : List α) : ls.len = ls.length := by
induction ls
. rfl