diff options
Diffstat (limited to 'backends/lean/Base/IList')
-rw-r--r-- | backends/lean/Base/IList/IList.lean | 57 |
1 files changed, 56 insertions, 1 deletions
diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean index 0b483e90..f10ec4e7 100644 --- a/backends/lean/Base/IList/IList.lean +++ b/backends/lean/Base/IList/IList.lean @@ -112,7 +112,19 @@ def pairwise_rel section Lemmas -variable {α : Type u} +variable {α : Type u} + +def ireplicate {α : Type u} (i : ℤ) (x : α) : List α := + if i ≤ 0 then [] + else x :: ireplicate (i - 1) x +termination_by ireplicate i x => i.toNat +decreasing_by + simp_wf + -- TODO: simplify this kind of proofs + simp at * + have : 0 ≤ i := by linarith + have : 1 ≤ i := by linarith + simp [Int.toNat_sub_of_le, *] @[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update] @[simp] theorem update_zero_cons : update ((x :: tl) : List α) 0 y = y :: tl := by simp [update] @@ -129,6 +141,10 @@ variable {α : Type u} @[simp] theorem slice_nil : slice i j ([] : List α) = [] := by simp [slice] @[simp] theorem slice_zero : slice 0 0 (ls : List α) = [] := by cases ls <;> simp [slice] +@[simp] theorem ireplicate_zero : ireplicate 0 x = [] := by rw [ireplicate]; simp +@[simp] theorem ireplicate_nzero_cons (hne : 0 < i) : ireplicate i x = x :: ireplicate (i - 1) x := by + rw [ireplicate]; simp [*]; intro; linarith + @[simp] theorem slice_nzero_cons (i j : Int) (x : α) (tl : List α) (hne : i ≠ 0) : slice i j ((x :: tl) : List α) = slice (i - 1) (j - 1) tl := match tl with @@ -144,6 +160,45 @@ theorem slice_nzero_cons (i j : Int) (x : α) (tl : List α) (hne : i ≠ 0) : s conv at this => lhs; simp [slice, *] simp [*, slice] +@[simp] +theorem ireplicate_replicate {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) : + ireplicate l x = replicate l.toNat x := + if hz: l = 0 then by + simp [*] + else by + have : 0 < l := by int_tac + have hr := ireplicate_replicate (l - 1) x (by int_tac) + simp [*] + have hl : l.toNat = .succ (l.toNat - 1) := by + cases hl: l.toNat <;> simp_all + conv => rhs; rw[hl] +termination_by ireplicate_replicate l x h => l.toNat +decreasing_by + simp_wf + -- TODO: simplify this kind of proofs + simp at * + have : 0 ≤ l := by linarith + have : 1 ≤ l := by linarith + simp [Int.toNat_sub_of_le, *] + +@[simp] +theorem ireplicate_len {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) : + (ireplicate l x).len = l := + if hz: l = 0 then by + simp [*] + else by + have : 0 < l := by int_tac + have hr := ireplicate_len (l - 1) x (by int_tac) + simp [*] +termination_by ireplicate_len l x h => l.toNat +decreasing_by + simp_wf + -- TODO: simplify this kind of proofs + simp at * + have : 0 ≤ l := by linarith + have : 1 ≤ l := by linarith + simp [Int.toNat_sub_of_le, *] + theorem len_eq_length (ls : List α) : ls.len = ls.length := by induction ls . rfl |