diff options
Diffstat (limited to 'backends/lean/Base/Arith')
-rw-r--r-- | backends/lean/Base/Arith/Base.lean | 11 | ||||
-rw-r--r-- | backends/lean/Base/Arith/Int.lean | 10 | ||||
-rw-r--r-- | backends/lean/Base/Arith/Scalar.lean | 59 |
3 files changed, 45 insertions, 35 deletions
diff --git a/backends/lean/Base/Arith/Base.lean b/backends/lean/Base/Arith/Base.lean index 8ada4171..fb6b12e5 100644 --- a/backends/lean/Base/Arith/Base.lean +++ b/backends/lean/Base/Arith/Base.lean @@ -1,6 +1,5 @@ import Lean -import Std.Data.Int.Lemmas -import Mathlib.Tactic.Linarith +import Mathlib.Tactic.Linarith -- Introduces a lot of useful lemmas namespace Arith @@ -21,12 +20,12 @@ theorem ne_is_lt_or_gt {x y : Int} (hne : x ≠ y) : x < y ∨ x > y := by have hne : x - y ≠ 0 := by simp intro h - have: x = y := by linarith + have: x = y := by omega simp_all have h := ne_zero_is_lt_or_gt hne match h with - | .inl _ => left; linarith - | .inr _ => right; linarith + | .inl _ => left; omega + | .inr _ => right; omega -- TODO: move? theorem add_one_le_iff_le_ne (n m : Nat) (h1 : m ≤ n) (h2 : m ≠ n) : m + 1 ≤ n := by @@ -66,7 +65,7 @@ theorem to_int_to_nat_lt (x y : ℤ) (h0 : 0 ≤ x) (h1 : x < y) : theorem to_int_sub_to_nat_lt (x y : ℤ) (x' : ℕ) (h0 : ↑x' ≤ x) (h1 : x - ↑x' < y) : ↑(x.toNat - x') < y := by - have : 0 ≤ x := by linarith + have : 0 ≤ x := by omega simp [Int.toNat_sub_of_le, *] end Arith diff --git a/backends/lean/Base/Arith/Int.lean b/backends/lean/Base/Arith/Int.lean index a1cb9da3..ab6dd4ab 100644 --- a/backends/lean/Base/Arith/Int.lean +++ b/backends/lean/Base/Arith/Int.lean @@ -27,7 +27,7 @@ class HasIntPred {a: Sort u} (x: a) where prop : concl /- Proposition with implications: if we find P we can introduce Q in the context -/ -class PropHasImp (x : Prop) where +class PropHasImp (x : Sort u) where concl : Prop prop : x → concl @@ -199,7 +199,7 @@ def introInstances (declToUnfold : Name) (lookup : Expr → MetaM (Option Expr)) -- Add a declaration let nval ← Utils.addDeclTac name e type (asLet := false) -- Simplify to unfold the declaration to unfold (i.e., the projector) - Utils.simpAt true [declToUnfold] [] [] (Location.targets #[mkIdent name] false) + Utils.simpAt true {} #[] [declToUnfold] [] [] (Location.targets #[mkIdent name] false) -- Return the new value pure nval @@ -242,7 +242,7 @@ def intTacPreprocess (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM U extraPreprocess -- Reduce all the terms in the goal - note that the extra preprocessing step -- might have proven the goal, hence the `Tactic.allGoals` - Tactic.allGoals do tryTac (dsimpAt false [] [] [] Tactic.Location.wildcard) + Tactic.allGoals do tryTac (dsimpAt false {} #[] [] [] [] Tactic.Location.wildcard) elab "int_tac_preprocess" : tactic => intTacPreprocess (do pure ()) @@ -259,10 +259,10 @@ def intTac (tacName : String) (splitGoalConjs : Bool) (extraPreprocess : Tactic -- the goal. I think before leads to a smaller proof term? Tactic.allGoals (intTacPreprocess extraPreprocess) -- More preprocessing - Tactic.allGoals (Utils.tryTac (Utils.simpAt true [] [``nat_zero_eq_int_zero] [] .wildcard)) + Tactic.allGoals (Utils.tryTac (Utils.simpAt true {} #[] [] [``nat_zero_eq_int_zero] [] .wildcard)) -- Split the conjunctions in the goal if splitGoalConjs then Tactic.allGoals (Utils.repeatTac Utils.splitConjTarget) - -- Call linarith + -- Call omega Tactic.allGoals do try do Tactic.Omega.omegaTactic {} catch _ => diff --git a/backends/lean/Base/Arith/Scalar.lean b/backends/lean/Base/Arith/Scalar.lean index 86b2e216..ecc5acaf 100644 --- a/backends/lean/Base/Arith/Scalar.lean +++ b/backends/lean/Base/Arith/Scalar.lean @@ -8,30 +8,31 @@ open Lean Lean.Elab Lean.Meta open Primitives def scalarTacExtraPreprocess : Tactic.TacticM Unit := do - Tactic.withMainContext do - -- Inroduce the bounds for the isize/usize types - let add (e : Expr) : Tactic.TacticM Unit := do - let ty ← inferType e - let _ ← Utils.addDeclTac (← Utils.mkFreshAnonPropUserName) e ty (asLet := false) - add (← mkAppM ``Scalar.cMin_bound #[.const ``ScalarTy.Isize []]) - add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Usize []]) - add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Isize []]) - -- Reveal the concrete bounds, simplify calls to [ofInt] - Utils.simpAt true - -- Unfoldings - [``Scalar.min, ``Scalar.max, ``Scalar.cMin, ``Scalar.cMax, - ``I8.min, ``I16.min, ``I32.min, ``I64.min, ``I128.min, - ``I8.max, ``I16.max, ``I32.max, ``I64.max, ``I128.max, - ``U8.min, ``U16.min, ``U32.min, ``U64.min, ``U128.min, - ``U8.max, ``U16.max, ``U32.max, ``U64.max, ``U128.max, - ``Usize.min - ] - -- Simp lemmas - [``Scalar.ofInt_val_eq, ``Scalar.neq_to_neq_val, - ``Scalar.lt_equiv, ``Scalar.le_equiv, ``Scalar.eq_equiv] - -- Hypotheses - [] .wildcard - + Tactic.withMainContext do + -- Inroduce the bounds for the isize/usize types + let add (e : Expr) : Tactic.TacticM Unit := do + let ty ← inferType e + let _ ← Utils.addDeclTac (← Utils.mkFreshAnonPropUserName) e ty (asLet := false) + add (← mkAppM ``Scalar.cMin_bound #[.const ``ScalarTy.Isize []]) + add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Usize []]) + add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Isize []]) + -- Reveal the concrete bounds, simplify calls to [ofInt] + Utils.simpAt true {} + -- Simprocs + #[] + -- Unfoldings + [``Scalar.min, ``Scalar.max, ``Scalar.cMin, ``Scalar.cMax, + ``I8.min, ``I16.min, ``I32.min, ``I64.min, ``I128.min, + ``I8.max, ``I16.max, ``I32.max, ``I64.max, ``I128.max, + ``U8.min, ``U16.min, ``U32.min, ``U64.min, ``U128.min, + ``U8.max, ``U16.max, ``U32.max, ``U64.max, ``U128.max, + ``Usize.min + ] + -- Simp lemmas + [``Scalar.ofInt_val_eq, ``Scalar.neq_to_neq_val, + ``Scalar.lt_equiv, ``Scalar.le_equiv, ``Scalar.eq_equiv] + -- Hypotheses + [] .wildcard elab "scalar_tac_preprocess" : tactic => intTacPreprocess scalarTacExtraPreprocess @@ -81,4 +82,14 @@ example (x : Int) (h0 : 0 ≤ x) (h1 : x ≤ U32.max) : example (x : U32) (h0 : ¬ x = U32.ofInt 0) : 0 < x.val := by scalar_tac +/- See this: https://aeneas-verif.zulipchat.com/#narrow/stream/349819-general/topic/U64.20trouble/near/444049757 + + We solved it by removing the instance `OfNat` for `Scalar`. + Note however that we could also solve it with a simplification lemma. + However, after testing, we noticed we could only apply such a lemma with + the rewriting tactic (not the simplifier), probably because of the use + of typeclasses. -/ +example {u: U64} (h1: (u : Int) < 2): (u : Int) = 0 ∨ (u : Int) = 1 := by + scalar_tac + end Arith |