summaryrefslogtreecommitdiff
path: root/backends/lean/Base/Arith
diff options
context:
space:
mode:
Diffstat (limited to 'backends/lean/Base/Arith')
-rw-r--r--backends/lean/Base/Arith/Base.lean11
-rw-r--r--backends/lean/Base/Arith/Int.lean10
-rw-r--r--backends/lean/Base/Arith/Scalar.lean59
3 files changed, 45 insertions, 35 deletions
diff --git a/backends/lean/Base/Arith/Base.lean b/backends/lean/Base/Arith/Base.lean
index 8ada4171..fb6b12e5 100644
--- a/backends/lean/Base/Arith/Base.lean
+++ b/backends/lean/Base/Arith/Base.lean
@@ -1,6 +1,5 @@
import Lean
-import Std.Data.Int.Lemmas
-import Mathlib.Tactic.Linarith
+import Mathlib.Tactic.Linarith -- Introduces a lot of useful lemmas
namespace Arith
@@ -21,12 +20,12 @@ theorem ne_is_lt_or_gt {x y : Int} (hne : x ≠ y) : x < y ∨ x > y := by
have hne : x - y ≠ 0 := by
simp
intro h
- have: x = y := by linarith
+ have: x = y := by omega
simp_all
have h := ne_zero_is_lt_or_gt hne
match h with
- | .inl _ => left; linarith
- | .inr _ => right; linarith
+ | .inl _ => left; omega
+ | .inr _ => right; omega
-- TODO: move?
theorem add_one_le_iff_le_ne (n m : Nat) (h1 : m ≤ n) (h2 : m ≠ n) : m + 1 ≤ n := by
@@ -66,7 +65,7 @@ theorem to_int_to_nat_lt (x y : ℤ) (h0 : 0 ≤ x) (h1 : x < y) :
theorem to_int_sub_to_nat_lt (x y : ℤ) (x' : ℕ)
(h0 : ↑x' ≤ x) (h1 : x - ↑x' < y) :
↑(x.toNat - x') < y := by
- have : 0 ≤ x := by linarith
+ have : 0 ≤ x := by omega
simp [Int.toNat_sub_of_le, *]
end Arith
diff --git a/backends/lean/Base/Arith/Int.lean b/backends/lean/Base/Arith/Int.lean
index a1cb9da3..ab6dd4ab 100644
--- a/backends/lean/Base/Arith/Int.lean
+++ b/backends/lean/Base/Arith/Int.lean
@@ -27,7 +27,7 @@ class HasIntPred {a: Sort u} (x: a) where
prop : concl
/- Proposition with implications: if we find P we can introduce Q in the context -/
-class PropHasImp (x : Prop) where
+class PropHasImp (x : Sort u) where
concl : Prop
prop : x → concl
@@ -199,7 +199,7 @@ def introInstances (declToUnfold : Name) (lookup : Expr → MetaM (Option Expr))
-- Add a declaration
let nval ← Utils.addDeclTac name e type (asLet := false)
-- Simplify to unfold the declaration to unfold (i.e., the projector)
- Utils.simpAt true [declToUnfold] [] [] (Location.targets #[mkIdent name] false)
+ Utils.simpAt true {} #[] [declToUnfold] [] [] (Location.targets #[mkIdent name] false)
-- Return the new value
pure nval
@@ -242,7 +242,7 @@ def intTacPreprocess (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM U
extraPreprocess
-- Reduce all the terms in the goal - note that the extra preprocessing step
-- might have proven the goal, hence the `Tactic.allGoals`
- Tactic.allGoals do tryTac (dsimpAt false [] [] [] Tactic.Location.wildcard)
+ Tactic.allGoals do tryTac (dsimpAt false {} #[] [] [] [] Tactic.Location.wildcard)
elab "int_tac_preprocess" : tactic =>
intTacPreprocess (do pure ())
@@ -259,10 +259,10 @@ def intTac (tacName : String) (splitGoalConjs : Bool) (extraPreprocess : Tactic
-- the goal. I think before leads to a smaller proof term?
Tactic.allGoals (intTacPreprocess extraPreprocess)
-- More preprocessing
- Tactic.allGoals (Utils.tryTac (Utils.simpAt true [] [``nat_zero_eq_int_zero] [] .wildcard))
+ Tactic.allGoals (Utils.tryTac (Utils.simpAt true {} #[] [] [``nat_zero_eq_int_zero] [] .wildcard))
-- Split the conjunctions in the goal
if splitGoalConjs then Tactic.allGoals (Utils.repeatTac Utils.splitConjTarget)
- -- Call linarith
+ -- Call omega
Tactic.allGoals do
try do Tactic.Omega.omegaTactic {}
catch _ =>
diff --git a/backends/lean/Base/Arith/Scalar.lean b/backends/lean/Base/Arith/Scalar.lean
index 86b2e216..ecc5acaf 100644
--- a/backends/lean/Base/Arith/Scalar.lean
+++ b/backends/lean/Base/Arith/Scalar.lean
@@ -8,30 +8,31 @@ open Lean Lean.Elab Lean.Meta
open Primitives
def scalarTacExtraPreprocess : Tactic.TacticM Unit := do
- Tactic.withMainContext do
- -- Inroduce the bounds for the isize/usize types
- let add (e : Expr) : Tactic.TacticM Unit := do
- let ty ← inferType e
- let _ ← Utils.addDeclTac (← Utils.mkFreshAnonPropUserName) e ty (asLet := false)
- add (← mkAppM ``Scalar.cMin_bound #[.const ``ScalarTy.Isize []])
- add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Usize []])
- add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Isize []])
- -- Reveal the concrete bounds, simplify calls to [ofInt]
- Utils.simpAt true
- -- Unfoldings
- [``Scalar.min, ``Scalar.max, ``Scalar.cMin, ``Scalar.cMax,
- ``I8.min, ``I16.min, ``I32.min, ``I64.min, ``I128.min,
- ``I8.max, ``I16.max, ``I32.max, ``I64.max, ``I128.max,
- ``U8.min, ``U16.min, ``U32.min, ``U64.min, ``U128.min,
- ``U8.max, ``U16.max, ``U32.max, ``U64.max, ``U128.max,
- ``Usize.min
- ]
- -- Simp lemmas
- [``Scalar.ofInt_val_eq, ``Scalar.neq_to_neq_val,
- ``Scalar.lt_equiv, ``Scalar.le_equiv, ``Scalar.eq_equiv]
- -- Hypotheses
- [] .wildcard
-
+ Tactic.withMainContext do
+ -- Inroduce the bounds for the isize/usize types
+ let add (e : Expr) : Tactic.TacticM Unit := do
+ let ty ← inferType e
+ let _ ← Utils.addDeclTac (← Utils.mkFreshAnonPropUserName) e ty (asLet := false)
+ add (← mkAppM ``Scalar.cMin_bound #[.const ``ScalarTy.Isize []])
+ add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Usize []])
+ add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Isize []])
+ -- Reveal the concrete bounds, simplify calls to [ofInt]
+ Utils.simpAt true {}
+ -- Simprocs
+ #[]
+ -- Unfoldings
+ [``Scalar.min, ``Scalar.max, ``Scalar.cMin, ``Scalar.cMax,
+ ``I8.min, ``I16.min, ``I32.min, ``I64.min, ``I128.min,
+ ``I8.max, ``I16.max, ``I32.max, ``I64.max, ``I128.max,
+ ``U8.min, ``U16.min, ``U32.min, ``U64.min, ``U128.min,
+ ``U8.max, ``U16.max, ``U32.max, ``U64.max, ``U128.max,
+ ``Usize.min
+ ]
+ -- Simp lemmas
+ [``Scalar.ofInt_val_eq, ``Scalar.neq_to_neq_val,
+ ``Scalar.lt_equiv, ``Scalar.le_equiv, ``Scalar.eq_equiv]
+ -- Hypotheses
+ [] .wildcard
elab "scalar_tac_preprocess" : tactic =>
intTacPreprocess scalarTacExtraPreprocess
@@ -81,4 +82,14 @@ example (x : Int) (h0 : 0 ≤ x) (h1 : x ≤ U32.max) :
example (x : U32) (h0 : ¬ x = U32.ofInt 0) : 0 < x.val := by
scalar_tac
+/- See this: https://aeneas-verif.zulipchat.com/#narrow/stream/349819-general/topic/U64.20trouble/near/444049757
+
+ We solved it by removing the instance `OfNat` for `Scalar`.
+ Note however that we could also solve it with a simplification lemma.
+ However, after testing, we noticed we could only apply such a lemma with
+ the rewriting tactic (not the simplifier), probably because of the use
+ of typeclasses. -/
+example {u: U64} (h1: (u : Int) < 2): (u : Int) = 0 ∨ (u : Int) = 1 := by
+ scalar_tac
+
end Arith