summaryrefslogtreecommitdiff
path: root/backends/lean/Base/Arith
diff options
context:
space:
mode:
Diffstat (limited to 'backends/lean/Base/Arith')
-rw-r--r--backends/lean/Base/Arith/Arith.lean42
1 files changed, 29 insertions, 13 deletions
diff --git a/backends/lean/Base/Arith/Arith.lean b/backends/lean/Base/Arith/Arith.lean
index 0ba73d18..ff628cf3 100644
--- a/backends/lean/Base/Arith/Arith.lean
+++ b/backends/lean/Base/Arith/Arith.lean
@@ -146,7 +146,7 @@ def collectInstances
-- Similar to `collectInstances`, but explores all the local declarations in the
-- main context.
def collectInstancesFromMainCtx (k : Expr → MetaM (Option Expr)) : Tactic.TacticM (HashSet Expr) := do
- Lean.Elab.Tactic.withMainContext do
+ Tactic.withMainContext do
-- Get the local context
let ctx ← Lean.MonadLCtx.getLCtx
-- Just a matter of precaution
@@ -263,8 +263,8 @@ example {a: Type} (v : Vec a) : v.val.length ≤ Scalar.max ScalarTy.Usize := by
def splitDisj (h : Expr) (kleft kright : Tactic.TacticM Unit) : Tactic.TacticM Unit := do
trace[Arith] "assumption on which to split: {h}"
-- Retrieve the main goal
- Lean.Elab.Tactic.withMainContext do
- let goalType ← Lean.Elab.Tactic.getMainTarget
+ Tactic.withMainContext do
+ let goalType ← Tactic.getMainTarget
let hDecl := (← getLCtx).get! h.fvarId!
let hName := hDecl.userName
-- Case disjunction
@@ -316,7 +316,7 @@ def splitDisj (h : Expr) (kleft kright : Tactic.TacticM Unit) : Tactic.TacticM U
trace[Arith] "new goals: {← Tactic.getUnsolvedGoals}"
elab "split_disj " n:ident : tactic => do
- Lean.Elab.Tactic.withMainContext do
+ Tactic.withMainContext do
let decl ← Lean.Meta.getLocalDeclFromUserName n.getId
let fvar := mkFVar decl.fvarId
splitDisj fvar (fun _ => pure ()) (fun _ => pure ())
@@ -347,7 +347,7 @@ example (x y : Int) (h0 : x ≤ y) (h1 : x ≠ y) : x < y := by
TODO: we could create a PR for mathlib.
-/
def intTacPreprocess : Tactic.TacticM Unit := do
- Lean.Elab.Tactic.withMainContext do
+ Tactic.withMainContext do
-- Lookup the instances of PropHasImp (this is how we detect assumptions
-- of the proper shape), introduce assumptions in the context and split
-- on those
@@ -366,19 +366,31 @@ def intTacPreprocess : Tactic.TacticM Unit := do
elab "int_tac_preprocess" : tactic =>
intTacPreprocess
+def intTac : Tactic.TacticM Unit := do
+ Tactic.withMainContext do
+ Tactic.focus do
+ -- Preprocess - wondering if we should do this before or after splitting
+ -- the goal. I think before leads to a smaller proof term?
+ Tactic.allGoals intTacPreprocess
+ -- Split the conjunctions in the goal
+ Utils.repeatTac Utils.splitConjTarget
+ -- Call linarith
+ let linarith :=
+ let cfg : Linarith.LinarithConfig := {
+ -- We do this with our custom preprocessing
+ splitNe := false
+ }
+ Tactic.liftMetaFinishingTactic <| Linarith.linarith false [] cfg
+ Tactic.allGoals linarith
+
+elab "int_tac" : tactic =>
+ intTac
+
example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by
int_tac_preprocess
linarith
linarith
-syntax "int_tac" : tactic
-macro_rules
- | `(tactic| int_tac) =>
- `(tactic|
- (repeat (apply And.intro)) <;> -- TODO: improve this
- int_tac_preprocess <;>
- linarith)
-
example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by
int_tac
@@ -386,6 +398,10 @@ example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by
example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y := by
int_tac
+-- Checking that things append correctly when there are several disjunctions
+example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y ∧ x + y ≥ 2 := by
+ int_tac
+
-- A tactic to solve linear arithmetic goals in the presence of scalars
syntax "scalar_tac" : tactic
macro_rules