diff options
Diffstat (limited to 'backends/lean/Base/Arith')
-rw-r--r-- | backends/lean/Base/Arith/Arith.lean | 42 |
1 files changed, 29 insertions, 13 deletions
diff --git a/backends/lean/Base/Arith/Arith.lean b/backends/lean/Base/Arith/Arith.lean index 0ba73d18..ff628cf3 100644 --- a/backends/lean/Base/Arith/Arith.lean +++ b/backends/lean/Base/Arith/Arith.lean @@ -146,7 +146,7 @@ def collectInstances -- Similar to `collectInstances`, but explores all the local declarations in the -- main context. def collectInstancesFromMainCtx (k : Expr → MetaM (Option Expr)) : Tactic.TacticM (HashSet Expr) := do - Lean.Elab.Tactic.withMainContext do + Tactic.withMainContext do -- Get the local context let ctx ← Lean.MonadLCtx.getLCtx -- Just a matter of precaution @@ -263,8 +263,8 @@ example {a: Type} (v : Vec a) : v.val.length ≤ Scalar.max ScalarTy.Usize := by def splitDisj (h : Expr) (kleft kright : Tactic.TacticM Unit) : Tactic.TacticM Unit := do trace[Arith] "assumption on which to split: {h}" -- Retrieve the main goal - Lean.Elab.Tactic.withMainContext do - let goalType ← Lean.Elab.Tactic.getMainTarget + Tactic.withMainContext do + let goalType ← Tactic.getMainTarget let hDecl := (← getLCtx).get! h.fvarId! let hName := hDecl.userName -- Case disjunction @@ -316,7 +316,7 @@ def splitDisj (h : Expr) (kleft kright : Tactic.TacticM Unit) : Tactic.TacticM U trace[Arith] "new goals: {← Tactic.getUnsolvedGoals}" elab "split_disj " n:ident : tactic => do - Lean.Elab.Tactic.withMainContext do + Tactic.withMainContext do let decl ← Lean.Meta.getLocalDeclFromUserName n.getId let fvar := mkFVar decl.fvarId splitDisj fvar (fun _ => pure ()) (fun _ => pure ()) @@ -347,7 +347,7 @@ example (x y : Int) (h0 : x ≤ y) (h1 : x ≠ y) : x < y := by TODO: we could create a PR for mathlib. -/ def intTacPreprocess : Tactic.TacticM Unit := do - Lean.Elab.Tactic.withMainContext do + Tactic.withMainContext do -- Lookup the instances of PropHasImp (this is how we detect assumptions -- of the proper shape), introduce assumptions in the context and split -- on those @@ -366,19 +366,31 @@ def intTacPreprocess : Tactic.TacticM Unit := do elab "int_tac_preprocess" : tactic => intTacPreprocess +def intTac : Tactic.TacticM Unit := do + Tactic.withMainContext do + Tactic.focus do + -- Preprocess - wondering if we should do this before or after splitting + -- the goal. I think before leads to a smaller proof term? + Tactic.allGoals intTacPreprocess + -- Split the conjunctions in the goal + Utils.repeatTac Utils.splitConjTarget + -- Call linarith + let linarith := + let cfg : Linarith.LinarithConfig := { + -- We do this with our custom preprocessing + splitNe := false + } + Tactic.liftMetaFinishingTactic <| Linarith.linarith false [] cfg + Tactic.allGoals linarith + +elab "int_tac" : tactic => + intTac + example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by int_tac_preprocess linarith linarith -syntax "int_tac" : tactic -macro_rules - | `(tactic| int_tac) => - `(tactic| - (repeat (apply And.intro)) <;> -- TODO: improve this - int_tac_preprocess <;> - linarith) - example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by int_tac @@ -386,6 +398,10 @@ example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y := by int_tac +-- Checking that things append correctly when there are several disjunctions +example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y ∧ x + y ≥ 2 := by + int_tac + -- A tactic to solve linear arithmetic goals in the presence of scalars syntax "scalar_tac" : tactic macro_rules |