diff options
Diffstat (limited to 'backends/lean/Base/Arith')
-rw-r--r-- | backends/lean/Base/Arith/Arith.lean | 329 | ||||
-rw-r--r-- | backends/lean/Base/Arith/Int.lean | 236 | ||||
-rw-r--r-- | backends/lean/Base/Arith/Scalar.lean | 48 |
3 files changed, 284 insertions, 329 deletions
diff --git a/backends/lean/Base/Arith/Arith.lean b/backends/lean/Base/Arith/Arith.lean index da263e86..e69de29b 100644 --- a/backends/lean/Base/Arith/Arith.lean +++ b/backends/lean/Base/Arith/Arith.lean @@ -1,329 +0,0 @@ -/- This file contains tactics to solve arithmetic goals -/ - -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd -import Mathlib.Tactic.Linarith --- TODO: there is no Omega tactic for now - it seems it hasn't been ported yet ---import Mathlib.Tactic.Omega -import Base.Primitives -import Base.Utils -import Base.Arith.Base - -namespace Arith - -open Primitives Utils - --- TODO: move -/- Remark: we can't write the following instance because of restrictions about - the type class parameters (`ty` doesn't appear in the return type, which is - forbidden): - - ``` - instance Scalar.cast (ty : ScalarTy) : Coe (Scalar ty) Int where coe := λ v => v.val - ``` - -/ -def Scalar.toInt {ty : ScalarTy} (x : Scalar ty) : Int := x.val - --- Remark: I tried a version of the shape `HasScalarProp {a : Type} (x : a)` --- but the lookup didn't work -class HasScalarProp (a : Sort u) where - prop_ty : a → Prop - prop : ∀ x:a, prop_ty x - -class HasIntProp (a : Sort u) where - prop_ty : a → Prop - prop : ∀ x:a, prop_ty x - -instance (ty : ScalarTy) : HasScalarProp (Scalar ty) where - -- prop_ty is inferred - prop := λ x => And.intro x.hmin x.hmax - -instance (a : Type) : HasScalarProp (Vec a) where - prop_ty := λ v => v.val.length ≤ Scalar.max ScalarTy.Usize - prop := λ ⟨ _, l ⟩ => l - -class PropHasImp (x : Prop) where - concl : Prop - prop : x → concl - --- This also works for `x ≠ y` because this expression reduces to `¬ x = y` --- and `Ne` is marked as `reducible` -instance (x y : Int) : PropHasImp (¬ x = y) where - concl := x < y ∨ x > y - prop := λ (h:x ≠ y) => ne_is_lt_or_gt h - -open Lean Lean.Elab Command Term Lean.Meta - --- Small utility: print all the declarations in the context -elab "print_all_decls" : tactic => do - let ctx ← Lean.MonadLCtx.getLCtx - for decl in ← ctx.getDecls do - let ty ← Lean.Meta.inferType decl.toExpr - logInfo m!"{decl.toExpr} : {ty}" - pure () - --- Explore a term by decomposing the applications (we explore the applied --- functions and their arguments, but ignore lambdas, forall, etc. - --- should we go inside?). -partial def foldTermApps (k : α → Expr → MetaM α) (s : α) (e : Expr) : MetaM α := do - -- We do it in a very simpler manner: we deconstruct applications, - -- and recursively explore the sub-expressions. Note that we do - -- not go inside foralls and abstractions (should we?). - e.withApp fun f args => do - let s ← k s f - args.foldlM (foldTermApps k) s - --- Provided a function `k` which lookups type class instances on an expression, --- collect all the instances lookuped by applying `k` on the sub-expressions of `e`. -def collectInstances - (k : Expr → MetaM (Option Expr)) (s : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do - let k s e := do - match ← k e with - | none => pure s - | some i => pure (s.insert i) - foldTermApps k s e - --- Similar to `collectInstances`, but explores all the local declarations in the --- main context. -def collectInstancesFromMainCtx (k : Expr → MetaM (Option Expr)) : Tactic.TacticM (HashSet Expr) := do - Tactic.withMainContext do - -- Get the local context - let ctx ← Lean.MonadLCtx.getLCtx - -- Just a matter of precaution - let ctx ← instantiateLCtxMVars ctx - -- Initialize the hashset - let hs := HashSet.empty - -- Explore the declarations - let decls ← ctx.getDecls - decls.foldlM (fun hs d => collectInstances k hs d.toExpr) hs - --- Helper -def lookupProp (fName : String) (className : Name) (e : Expr) : MetaM (Option Expr) := do - trace[Arith] fName - -- TODO: do we need Lean.observing? - -- This actually eliminates the error messages - Lean.observing? do - trace[Arith] m!"{fName}: observing" - let ty ← Lean.Meta.inferType e - let hasProp ← mkAppM className #[ty] - let hasPropInst ← trySynthInstance hasProp - match hasPropInst with - | LOption.some i => - trace[Arith] "Found HasScalarProp instance" - let i_prop ← mkProjection i (Name.mkSimple "prop") - some (← mkAppM' i_prop #[e]) - | _ => none - --- Return an instance of `HasIntProp` for `e` if it has some -def lookupHasIntProp (e : Expr) : MetaM (Option Expr) := - lookupProp "lookupHasScalarProp" ``HasIntProp e - --- Return an instance of `HasScalarProp` for `e` if it has some -def lookupHasScalarProp (e : Expr) : MetaM (Option Expr) := - lookupProp "lookupHasScalarProp" ``HasScalarProp e - --- Collect the instances of `HasIntProp` for the subexpressions in the context -def collectHasIntPropInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do - collectInstancesFromMainCtx lookupHasIntProp - --- Collect the instances of `HasScalarProp` for the subexpressions in the context -def collectHasScalarPropInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do - collectInstancesFromMainCtx lookupHasScalarProp - -elab "display_has_prop_instances" : tactic => do - trace[Arith] "Displaying the HasScalarProp instances" - let hs ← collectHasScalarPropInstancesFromMainCtx - hs.forM fun e => do - trace[Arith] "+ HasScalarProp instance: {e}" - -example (x : U32) : True := by - let i : HasScalarProp U32 := inferInstance - have p := @HasScalarProp.prop _ i x - simp only [HasScalarProp.prop_ty] at p - display_has_prop_instances - simp - --- Return an instance of `PropHasImp` for `e` if it has some -def lookupPropHasImp (e : Expr) : MetaM (Option Expr) := do - trace[Arith] "lookupPropHasImp" - -- TODO: do we need Lean.observing? - -- This actually eliminates the error messages - Lean.observing? do - trace[Arith] "lookupPropHasImp: observing" - let ty ← Lean.Meta.inferType e - trace[Arith] "lookupPropHasImp: ty: {ty}" - let cl ← mkAppM ``PropHasImp #[ty] - let inst ← trySynthInstance cl - match inst with - | LOption.some i => - trace[Arith] "Found PropHasImp instance" - let i_prop ← mkProjection i (Name.mkSimple "prop") - some (← mkAppM' i_prop #[e]) - | _ => none - --- Collect the instances of `PropHasImp` for the subexpressions in the context -def collectPropHasImpInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do - collectInstancesFromMainCtx lookupPropHasImp - -elab "display_prop_has_imp_instances" : tactic => do - trace[Arith] "Displaying the PropHasImp instances" - let hs ← collectPropHasImpInstancesFromMainCtx - hs.forM fun e => do - trace[Arith] "+ PropHasImp instance: {e}" - -example (x y : Int) (_ : x ≠ y) (_ : ¬ x = y) : True := by - display_prop_has_imp_instances - simp - --- Lookup instances in a context and introduce them with additional declarations. -def introInstances (declToUnfold : Name) (lookup : Expr → MetaM (Option Expr)) : Tactic.TacticM (Array Expr) := do - let hs ← collectInstancesFromMainCtx lookup - hs.toArray.mapM fun e => do - let type ← inferType e - let name ← mkFreshUserName `h - -- Add a declaration - let nval ← Utils.addDeclTac name e type (asLet := false) - -- Simplify to unfold the declaration to unfold (i.e., the projector) - Utils.simpAt [declToUnfold] [] [] (Tactic.Location.targets #[mkIdent name] false) - -- Return the new value - pure nval - -def introHasIntPropInstances : Tactic.TacticM (Array Expr) := do - trace[Arith] "Introducing the HasIntProp instances" - introInstances ``HasIntProp.prop_ty lookupHasIntProp - -def introHasScalarPropInstances : Tactic.TacticM (Array Expr) := do - trace[Arith] "Introducing the HasScalarProp instances" - introInstances ``HasScalarProp.prop_ty lookupHasScalarProp - --- Lookup the instances of `HasScalarProp for all the sub-expressions in the context, --- and introduce the corresponding assumptions -elab "intro_has_prop_instances" : tactic => do - let _ ← introHasScalarPropInstances - -example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by - intro_has_prop_instances - simp [*] - -example {a: Type} (v : Vec a) : v.val.length ≤ Scalar.max ScalarTy.Usize := by - intro_has_prop_instances - simp_all [Scalar.max, Scalar.min] - --- Lookup the instances of `PropHasImp for all the sub-expressions in the context, --- and introduce the corresponding assumptions -elab "intro_prop_has_imp_instances" : tactic => do - trace[Arith] "Introducing the PropHasImp instances" - let _ ← introInstances ``PropHasImp.concl lookupPropHasImp - -example (x y : Int) (h0 : x ≤ y) (h1 : x ≠ y) : x < y := by - intro_prop_has_imp_instances - rename_i h - split_disj h - . linarith - . linarith - -/- Boosting a bit the linarith tac. - - We do the following: - - for all the assumptions of the shape `(x : Int) ≠ y` or `¬ (x = y), we - introduce two goals with the assumptions `x < y` and `x > y` - TODO: we could create a PR for mathlib. - -/ -def intTacPreprocess : Tactic.TacticM Unit := do - Tactic.withMainContext do - -- Lookup the instances of PropHasImp (this is how we detect assumptions - -- of the proper shape), introduce assumptions in the context and split - -- on those - -- TODO: get rid of the assumptions that we split - let rec splitOnAsms (asms : List Expr) : Tactic.TacticM Unit := - match asms with - | [] => pure () - | asm :: asms => - let k := splitOnAsms asms - Utils.splitDisjTac asm k k - -- Introduce - let _ ← introHasIntPropInstances - let asms ← introInstances ``PropHasImp.concl lookupPropHasImp - -- Split - splitOnAsms asms.toList - -elab "int_tac_preprocess" : tactic => - intTacPreprocess - -def intTac : Tactic.TacticM Unit := do - Tactic.withMainContext do - Tactic.focus do - -- Preprocess - wondering if we should do this before or after splitting - -- the goal. I think before leads to a smaller proof term? - Tactic.allGoals intTacPreprocess - -- Split the conjunctions in the goal - Utils.repeatTac Utils.splitConjTarget - -- Call linarith - let linarith := - let cfg : Linarith.LinarithConfig := { - -- We do this with our custom preprocessing - splitNe := false - } - Tactic.liftMetaFinishingTactic <| Linarith.linarith false [] cfg - Tactic.allGoals linarith - -elab "int_tac" : tactic => - intTac - -example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by - int_tac_preprocess - linarith - linarith - -example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by - int_tac - --- Checking that things append correctly when there are several disjunctions -example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y := by - int_tac - --- Checking that things append correctly when there are several disjunctions -example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y ∧ x + y ≥ 2 := by - int_tac - -def scalarTacPreprocess (tac : Tactic.TacticM Unit) : Tactic.TacticM Unit := do - Tactic.withMainContext do - -- Introduce the scalar bounds - let _ ← introHasScalarPropInstances - Tactic.allGoals do - -- Inroduce the bounds for the isize/usize types - let add (e : Expr) : Tactic.TacticM Unit := do - let ty ← inferType e - let _ ← Utils.addDeclTac (← mkFreshUserName `h) e ty (asLet := false) - add (← mkAppM ``Scalar.cMin_bound #[.const ``ScalarTy.Isize []]) - add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Usize []]) - add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Isize []]) - -- Reveal the concrete bounds - Utils.simpAt [``Scalar.min, ``Scalar.max, ``Scalar.cMin, ``Scalar.cMax, - ``I8.min, ``I16.min, ``I32.min, ``I64.min, ``I128.min, - ``I8.max, ``I16.max, ``I32.max, ``I64.max, ``I128.max, - ``U8.min, ``U16.min, ``U32.min, ``U64.min, ``U128.min, - ``U8.max, ``U16.max, ``U32.max, ``U64.max, ``U128.max - ] [] [] .wildcard - -- Finish the proof - tac - -elab "scalar_tac_preprocess" : tactic => - scalarTacPreprocess intTacPreprocess - --- A tactic to solve linear arithmetic goals in the presence of scalars -def scalarTac : Tactic.TacticM Unit := do - scalarTacPreprocess intTac - -elab "scalar_tac" : tactic => - scalarTac - -example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by - scalar_tac - -example {a: Type} (v : Vec a) : v.val.length ≤ Scalar.max ScalarTy.Usize := by - scalar_tac - -end Arith diff --git a/backends/lean/Base/Arith/Int.lean b/backends/lean/Base/Arith/Int.lean new file mode 100644 index 00000000..5f00ab52 --- /dev/null +++ b/backends/lean/Base/Arith/Int.lean @@ -0,0 +1,236 @@ +/- This file contains tactics to solve arithmetic goals -/ + +import Lean +import Lean.Meta.Tactic.Simp +import Init.Data.List.Basic +import Mathlib.Tactic.RunCmd +import Mathlib.Tactic.Linarith +-- TODO: there is no Omega tactic for now - it seems it hasn't been ported yet +--import Mathlib.Tactic.Omega +import Base.Utils +import Base.Arith.Base + +namespace Arith + +open Utils + +-- Remark: I tried a version of the shape `HasScalarProp {a : Type} (x : a)` +-- but the lookup didn't work +class HasIntProp (a : Sort u) where + prop_ty : a → Prop + prop : ∀ x:a, prop_ty x + +class PropHasImp (x : Prop) where + concl : Prop + prop : x → concl + +-- This also works for `x ≠ y` because this expression reduces to `¬ x = y` +-- and `Ne` is marked as `reducible` +instance (x y : Int) : PropHasImp (¬ x = y) where + concl := x < y ∨ x > y + prop := λ (h:x ≠ y) => ne_is_lt_or_gt h + +open Lean Lean.Elab Lean.Meta + +-- Small utility: print all the declarations in the context +elab "print_all_decls" : tactic => do + let ctx ← Lean.MonadLCtx.getLCtx + for decl in ← ctx.getDecls do + let ty ← Lean.Meta.inferType decl.toExpr + logInfo m!"{decl.toExpr} : {ty}" + pure () + +-- Explore a term by decomposing the applications (we explore the applied +-- functions and their arguments, but ignore lambdas, forall, etc. - +-- should we go inside?). +partial def foldTermApps (k : α → Expr → MetaM α) (s : α) (e : Expr) : MetaM α := do + -- We do it in a very simpler manner: we deconstruct applications, + -- and recursively explore the sub-expressions. Note that we do + -- not go inside foralls and abstractions (should we?). + e.withApp fun f args => do + let s ← k s f + args.foldlM (foldTermApps k) s + +-- Provided a function `k` which lookups type class instances on an expression, +-- collect all the instances lookuped by applying `k` on the sub-expressions of `e`. +def collectInstances + (k : Expr → MetaM (Option Expr)) (s : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do + let k s e := do + match ← k e with + | none => pure s + | some i => pure (s.insert i) + foldTermApps k s e + +-- Similar to `collectInstances`, but explores all the local declarations in the +-- main context. +def collectInstancesFromMainCtx (k : Expr → MetaM (Option Expr)) : Tactic.TacticM (HashSet Expr) := do + Tactic.withMainContext do + -- Get the local context + let ctx ← Lean.MonadLCtx.getLCtx + -- Just a matter of precaution + let ctx ← instantiateLCtxMVars ctx + -- Initialize the hashset + let hs := HashSet.empty + -- Explore the declarations + let decls ← ctx.getDecls + decls.foldlM (fun hs d => collectInstances k hs d.toExpr) hs + +-- Helper +def lookupProp (fName : String) (className : Name) (e : Expr) : MetaM (Option Expr) := do + trace[Arith] fName + -- TODO: do we need Lean.observing? + -- This actually eliminates the error messages + Lean.observing? do + trace[Arith] m!"{fName}: observing" + let ty ← Lean.Meta.inferType e + let hasProp ← mkAppM className #[ty] + let hasPropInst ← trySynthInstance hasProp + match hasPropInst with + | LOption.some i => + trace[Arith] "Found {fName} instance" + let i_prop ← mkProjection i (Name.mkSimple "prop") + some (← mkAppM' i_prop #[e]) + | _ => none + +-- Return an instance of `HasIntProp` for `e` if it has some +def lookupHasIntProp (e : Expr) : MetaM (Option Expr) := + lookupProp "lookupHasIntProp" ``HasIntProp e + +-- Collect the instances of `HasIntProp` for the subexpressions in the context +def collectHasIntPropInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do + collectInstancesFromMainCtx lookupHasIntProp + +-- Return an instance of `PropHasImp` for `e` if it has some +def lookupPropHasImp (e : Expr) : MetaM (Option Expr) := do + trace[Arith] "lookupPropHasImp" + -- TODO: do we need Lean.observing? + -- This actually eliminates the error messages + Lean.observing? do + trace[Arith] "lookupPropHasImp: observing" + let ty ← Lean.Meta.inferType e + trace[Arith] "lookupPropHasImp: ty: {ty}" + let cl ← mkAppM ``PropHasImp #[ty] + let inst ← trySynthInstance cl + match inst with + | LOption.some i => + trace[Arith] "Found PropHasImp instance" + let i_prop ← mkProjection i (Name.mkSimple "prop") + some (← mkAppM' i_prop #[e]) + | _ => none + +-- Collect the instances of `PropHasImp` for the subexpressions in the context +def collectPropHasImpInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do + collectInstancesFromMainCtx lookupPropHasImp + +elab "display_prop_has_imp_instances" : tactic => do + trace[Arith] "Displaying the PropHasImp instances" + let hs ← collectPropHasImpInstancesFromMainCtx + hs.forM fun e => do + trace[Arith] "+ PropHasImp instance: {e}" + +example (x y : Int) (_ : x ≠ y) (_ : ¬ x = y) : True := by + display_prop_has_imp_instances + simp + +-- Lookup instances in a context and introduce them with additional declarations. +def introInstances (declToUnfold : Name) (lookup : Expr → MetaM (Option Expr)) : Tactic.TacticM (Array Expr) := do + let hs ← collectInstancesFromMainCtx lookup + hs.toArray.mapM fun e => do + let type ← inferType e + let name ← mkFreshUserName `h + -- Add a declaration + let nval ← Utils.addDeclTac name e type (asLet := false) + -- Simplify to unfold the declaration to unfold (i.e., the projector) + Utils.simpAt [declToUnfold] [] [] (Tactic.Location.targets #[mkIdent name] false) + -- Return the new value + pure nval + +def introHasIntPropInstances : Tactic.TacticM (Array Expr) := do + trace[Arith] "Introducing the HasIntProp instances" + introInstances ``HasIntProp.prop_ty lookupHasIntProp + +-- Lookup the instances of `HasIntProp for all the sub-expressions in the context, +-- and introduce the corresponding assumptions +elab "intro_has_int_prop_instances" : tactic => do + let _ ← introHasIntPropInstances + +-- Lookup the instances of `PropHasImp for all the sub-expressions in the context, +-- and introduce the corresponding assumptions +elab "intro_prop_has_imp_instances" : tactic => do + trace[Arith] "Introducing the PropHasImp instances" + let _ ← introInstances ``PropHasImp.concl lookupPropHasImp + +example (x y : Int) (h0 : x ≤ y) (h1 : x ≠ y) : x < y := by + intro_prop_has_imp_instances + rename_i h + split_disj h + . linarith + . linarith + +/- Boosting a bit the linarith tac. + + We do the following: + - for all the assumptions of the shape `(x : Int) ≠ y` or `¬ (x = y), we + introduce two goals with the assumptions `x < y` and `x > y` + TODO: we could create a PR for mathlib. + -/ +def intTacPreprocess (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM Unit := do + Tactic.withMainContext do + -- Lookup the instances of PropHasImp (this is how we detect assumptions + -- of the proper shape), introduce assumptions in the context and split + -- on those + -- TODO: get rid of the assumptions that we split + let rec splitOnAsms (asms : List Expr) : Tactic.TacticM Unit := + match asms with + | [] => pure () + | asm :: asms => + let k := splitOnAsms asms + Utils.splitDisjTac asm k k + -- Introduce the scalar bounds + let _ ← introHasIntPropInstances + -- Extra preprocessing, before we split on the disjunctions + extraPreprocess + -- Split + let asms ← introInstances ``PropHasImp.concl lookupPropHasImp + splitOnAsms asms.toList + +elab "int_tac_preprocess" : tactic => + intTacPreprocess (do pure ()) + +def intTac (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM Unit := do + Tactic.withMainContext do + Tactic.focus do + -- Preprocess - wondering if we should do this before or after splitting + -- the goal. I think before leads to a smaller proof term? + Tactic.allGoals (intTacPreprocess extraPreprocess) + -- Split the conjunctions in the goal + Tactic.allGoals (Utils.repeatTac Utils.splitConjTarget) + -- Call linarith + let linarith := + let cfg : Linarith.LinarithConfig := { + -- We do this with our custom preprocessing + splitNe := false + } + Tactic.liftMetaFinishingTactic <| Linarith.linarith false [] cfg + Tactic.allGoals linarith + +elab "int_tac" : tactic => + intTac (do pure ()) + +example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by + int_tac_preprocess + linarith + linarith + +example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by + int_tac + +-- Checking that things append correctly when there are several disjunctions +example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y := by + int_tac + +-- Checking that things append correctly when there are several disjunctions +example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y ∧ x + y ≥ 2 := by + int_tac + +end Arith diff --git a/backends/lean/Base/Arith/Scalar.lean b/backends/lean/Base/Arith/Scalar.lean new file mode 100644 index 00000000..f8903ecf --- /dev/null +++ b/backends/lean/Base/Arith/Scalar.lean @@ -0,0 +1,48 @@ +import Base.Arith.Int +import Base.Primitives.Scalar + +/- Automation for scalars - TODO: not sure it is worth having two files (Int.lean and Scalar.lean) -/ +namespace Arith + +open Lean Lean.Elab Lean.Meta +open Primitives + +def scalarTacExtraPreprocess : Tactic.TacticM Unit := do + Tactic.withMainContext do + -- Inroduce the bounds for the isize/usize types + let add (e : Expr) : Tactic.TacticM Unit := do + let ty ← inferType e + let _ ← Utils.addDeclTac (← mkFreshUserName `h) e ty (asLet := false) + add (← mkAppM ``Scalar.cMin_bound #[.const ``ScalarTy.Isize []]) + add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Usize []]) + add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Isize []]) + -- Reveal the concrete bounds + Utils.simpAt [``Scalar.min, ``Scalar.max, ``Scalar.cMin, ``Scalar.cMax, + ``I8.min, ``I16.min, ``I32.min, ``I64.min, ``I128.min, + ``I8.max, ``I16.max, ``I32.max, ``I64.max, ``I128.max, + ``U8.min, ``U16.min, ``U32.min, ``U64.min, ``U128.min, + ``U8.max, ``U16.max, ``U32.max, ``U64.max, ``U128.max + ] [] [] .wildcard + +elab "scalar_tac_preprocess" : tactic => + intTacPreprocess scalarTacExtraPreprocess + +-- A tactic to solve linear arithmetic goals in the presence of scalars +def scalarTac : Tactic.TacticM Unit := do + intTac scalarTacExtraPreprocess + +elab "scalar_tac" : tactic => + scalarTac + +instance (ty : ScalarTy) : HasIntProp (Scalar ty) where + -- prop_ty is inferred + prop := λ x => And.intro x.hmin x.hmax + +example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by + intro_has_int_prop_instances + simp [*] + +example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by + scalar_tac + +end Arith |